Белок крови который участвует в поддержании иммунитета называется

Белок крови который участвует в поддержании иммунитета называется thumbnail

Состав крови

Кровеносная, она же сердечно-сосудистая система обеспечивает циркуляцию крови и лимфы в организме человека. Среди всех органов тела только поверхность глаз может получать кислород непосредственно из воздуха. Все остальные органы и ткани, даже кожа, получают кислород с током крови.

Кровь относится к соединительной ткани, клетки в ней занимают гораздо меньший объем, чем межклеточное вещество. Кровь состоит из жидкости с растворенными веществами (плазмы) и форменных элементов: лейкоцитов, эритроцитов и тромбоцитов. Плазма крови образует внутреннюю среду организма: жидкость из крови «выдавливается» в ткани и становится тканевой жидкостью, избыток тканевой жидкости попадает в лимфатические сосуды, становясь лимфой. Лимфа в итоге попадает в кровоток, возвращая жидкость в кровь.

Плазма крови содержит 0,9% хлорида натрия (поваренная соль), поэтому для внутривенных вливаний используют водный 0,9% раствор NaCl («физиологический», или изотонический раствор). Другие соли и органические вещества в сумме занимают около 9% массы плазмы. Большую роль играют белки плазмы, особенно альбумины.

Для поддержания постоянной кислотности в плазме присутствуют буферные системы. Водородный показатель крови человека (pH) в среднем равен 7,4. При его смещении в кислотную или основную сторону происходят химические реакции в буферных системах, которые уравновешивают изменения кислотности.

Поддерживать постоянство внутренней среды (гемостаз) необходимо для нормальной жизни клеток. Клеточная мембрана проницаема для молекул воды, поэтому если снаружи концентрация раствора повышается (гипертонический раствор), вода стремится выйти из клетки по закону осморегуляции. Клетка при этом скукоживается, становится неправильной формы, многие ее органеллы перестают правильно работать.

Если же концентрация соли в окружающем растворе слишком мала (гипотонический раствор), вода стремится внутри клетки, чтобы «разбавить» ее содержимое. В этом случае клетки разбухают, мембрана может не выдержать и лопнуть. Таким образом, изменение солености крови может привести к необратимым изменениям в организме.

Клетки составляют около 45% объема крови. Выделяют «белую» кровь – лейкоциты и «красную» кровь – эритроциты. Эритроциты имеют небольшой размер и двояковогнутую дисковидную форму. Такая форма дает большую площадь поверхности при минимальном объеме, что повышает эффективность газообмена. Эритроциты человека не имеют ядра, они теряют его в процессе созревания.

Эритроциты

В 1 мл крови содержится 4-6 млн эритроцитов. Их главная функция – перенос кислорода, за это отвечает крупный белок – гемоглобин. Одна молекула гемоглобина состоит из четырех полипептидных цепей (глобина) и железосодержащих групп (гема). Каждая молекула гемоглобина может перенести четыре молекулы кислорода, причем способность связывать и отдавать кислород зависит от условий среды: в более щелочной среде (легких) гемоглобин лучше связывает кислород, в то время как в более кислой среде (тканях), он лучше отдает его.

Механизм действия гемоглобина

Помимо кислорода с гемоглобином могут связываться другие газы, самым опасным из которых является угарный (СО). Он образуется при неполном сгорании органики в условиях нехватки кислорода и не имеет цвета и запаха. Сродство гемоглобина к угарному газу гораздо выше, чем к кислороду, поэтому, однажды связавшись с гемоглобином, угарный газ будет еще долго циркулировать в крови. При этом свободных сайтов связывания кислорода станет меньше и ткани начнут страдать от его нехватки. Тяжелое отравление угарным газом требует немедленной специализированной помощи.

Клетки крови

Лейкоциты

Лейкоциты являются основой клеточного иммунитета, это сферические клетки с достаточно крупным ядром. 1 мл крови содержит 4-11 тысяч лейкоцитов. Из всех клеток организма они наиболее уязвимы к действию радиации.

В зависимости от свойств лейкоциты делятся на несколько типов: содержащие гранулы, или гранулоциты (эозинофилы, нейтрофилы, базофилы) и не содержащие – агранулоциты.

Тромбоциты

Также кровь содержит тромбоциты, которые представляют собой отшнуровавшиеся куски гигантской клетки. Сами тромбоциты клетками не являются, они выглядят как мелкие пластинки неправильной формы и содержат только цитоплазму с гранулами. В гранулах находятся ферменты свертывающей системы, которые активируются при повреждении сосуда: образуется сгусток крови (тромб), который закупоривает поврежденный участок. 1 мл крови содержит 200-500 тысяч тромбоцитов.

Начало всем форменным элементам крови дают стволовые клетки красного костного мозга. Клетки крови постоянно обновляются, но у разных типов клеток обновление происходит с разной периодичностью. Эритроциты могут циркулировать 120-130 суток, в то время как лейкоциты и тромбоциты обычно живут не дольше 5-7 суток.

Иммунитет

Иммунная система защищает организм от воздействия бактерий, вирусов, грибов и паразитов, вредных веществ. В случае сбоя в работе иммунитета могут возникать аутоиммунные заболевания, в организме человека есть несколько механизмов, чтобы их предотвратить.

Органы, участвующие в формировании иммунитета

Основными органами иммунной системы являются селезенка, тимус (вилочковая железа) и костный мозг, где появляются и начинают созревать иммунные клетки. Клетки иммунитета циркулируют с кровью, располагаются в лимфоузлах и тканях, особенно много их в местах контакта с внешней средой (кожа, ЖКТ, дыхательные пути). Некоторые органы защищены от иммунного ответа барьерами, они называются иммунологически привилегированными органами. Это мозг, камеры глаза, семенники, плацента и плод и т.д. При травмах иммунологически привилегированных органов, когда нарушается целостность барьера, могут возникнуть аутоиммунные реакции.

Макрофаги

Другие клетки неспецифического иммунитета, которые первыми отвечают на воздействие, – макрофаги. Это крупные клетки, которые способны к активному передвижению и фагоцитозу, они пожирают бактерии и инородные тела. Самостоятельно распознавать чужеродные белки макрофаги не способны, их действие не избирательно. «Ориентируют» макрофагов на уничтожение конкретных клеток антитела.

Макрофаг, фагоцитирующий бактерии.

Другими клетками иммунитета являются нейтрофилы и эозинофилы. Они, как и макрофаги, являются фагоцитами (то есть способны к фагоцитозу). Кроме того, в их цитоплазме есть гранулы с едкими веществами, которые высвобождаются при активации клетки. Запускается каскад химических реакций, в ходе которых образуются активные формы кислорода, это называется кислородным взрывом. Нейтрофилы и эозинофилы, а также окружающие здоровые клетки тоже погибают в результате кислородного взрыва, их остатки фагоцитируют макрофаги. Эозинофилы играют основную роль в развитии аллергий.

Нейтрофил, эозинофил, базофил

Фагоциты способны к направленному движению (хемотаксису), их можно обнаружить во многих тканях и органах, даже на поверхности кожи. Благодаря их постоянной активности большая часть атакующих агентов не вызывает инфекции, то есть системного ответа организма. Инфекция возникает в том случае, если иммунитет ослаблен (переутомление, переохлаждение, голодание и т.д.) или если инфекционный агент не был вовремя распознан фагоцитами.

Различают два вида иммунитета: клеточный и гуморальный. Гуморальный иммунитет – это система комплемента и циркулирующие с плазмой крупные молекулы – антитела. Белки системы комплемента «помечают» чужеродные агенты, вызывая направленное движение клеток иммунитета. Также система комплемента может формировать поры в мембране бактерий, что будет вести к их разрушению.

Антитела

Каждое антитело имеет на конце вариабельные домены (участки), комплементарные к чужеродному белку и специфические для конкретного возбудителя. Они прикрепляются к комплементарным участкам белков, «помечая» их для других клеток иммунного ответа, например, для фагоцитов. Также антитела могут слипаться между собой, что вызывает агглютинацию возбудителя. Особенно эффективны антитела против бактерий.

На рисунке изображены молекулы антител. Каждая состоит из двух пар цепей, синим цветом нарисованы тяжелые цепи, коричневым – легкие.

Клеточный иммунитет состоит из Т и В-лимофцитов. Т-лимофоциты могут быть двух видов: Т-хелперы и Т-киллеры. Т-киллеры клетки-убийцы, они запускают процессы апоптоза, то есть запрограммированной гибели клеток, их самоуничтожения. Это необходимо, если клетки организма заражены вирусами или бактериями или если при делении в геноме появились мутации (то есть Т-киллеры борются также с раковыми клетками).

Читайте также:  Иммунитет и привилегии оон

В-лимфоциты синтезируют антитела и таким образом управляют гуморальным иммунитетом. При миграции В-клеток из крови в ткань они дифференцируются в плазматические клетки.

Лимфоциты действуют избирательно, они «настроены» на уничтожение возбудителя с конкретными антигенами. Чтобы правильно «настроить» лимфоциты, нужны антиген-презентирующие клетки (АПК). АПК фагоцитируют чужеродных агентов и выставляют на своей поверхности участки их молекул в комплексе с МНС II (главный комплекс гистосовместимости II). Т-хелперы способны распознавать чужие молекулы на поверхности АПК и активировать иммунный ответ.

Специфический иммунитет очень эффективен, но требует времени на развертывание. От попадания возбудителя в кровь до выработки антител может пройти несколько дней.

К неспецифическому иммунитету относят в основном фагоциты, которые пытаются поглотить или разрушить любое инородное тело или подозрительную клетку, которую встречают.

Немаловажную роль в иммунной защите организма играет воспаление. Это сложный стадийный процесс, который имеет следующие признаки: отек, местное повышение температуры, покраснение, боль и утрата функции органа. Благодаря отеку затрудняется распространение возбудителей по организму, место проникновения ограничивается. При повышении температуры повышается активность некоторых белков гуморального иммунитета, в то время как активность бактерий и скорость их размножения снижаются. Воспалительный процесс особенно эффективен против паразитов.

N-киллеры (натуральные киллеры), как и Т-киллеры могут запускать процессы клеточной гибели. Однако они, в отличии от Т-клеток, не требуют специальной подготовки – презентации антигена и активации. N-киллеры хорошо борются с опухолями.

Интерфероны – белки крови, которые составляют основу противовирусного гуморального иммунитета. Вирусы проникают в клетки организма, после чего здоровые клетки перестают синтезировать необходимые белки и начинают воспроизводить белки и генетическую информацию вирусов. Чтобы остановить распространение вирусных частиц и выиграть время на формирование специфического иммунитета, интерфероны замедляют или даже останавливают синтез белка в зараженных клетках.

Неспецифический иммунитет не требует времени на развертывание, его действие начинается уже в первые минуты после воздействия. Однако и точность неспецифического иммунитета низкая, при развитии иммунного ответа могут страдать здоровые клетки.

Синтез клеток специфического иммунитета (лимфоцитов) включает в себя элемент случайности, только так можно достигнуть неимоверного разнообразия иммунных клеток. Чтобы в кровоток не выходили клетки, которые способны атаковать собственный организм, они проходят строгий отбор в органах иммунной системы, где происходит созревание лимфоцитов (тимус, лимфоузлы). Если в результате отбора оказывается, что юный лимфоцит распознает клетки своего организма в качестве «врагов», в нем запускается процесс апоптоза, самоуничтожения.

Группы крови. Гемотрансфузия.

На поверхности эритроцитов могут находиться белки-агглютиногены А и В. В зависимости от того, какие агглютиногены есть в организме, выделяют: I группу крови (без агглютиногенов), II (только А), III (только В) и IV (оба агглютиногена).

При гемотрансфузии (переливании крови) необходимо учитывать группу, чтобы избежать возникновения иммунного конфликта. Если человеку с I группой крови перелить любую другую, клетки его иммунитета распознают чужеродные белки-агглютиногены и выработают антитела. В результате все чужие эритроциты «слипнутся» (агглютинируют), что может быть очень опасно для организма хозяина. Поэтому людям с I группой крови можно переливать только кровь такой же группы.

Если же перелить кому-нибудь эритроциты I группы крови, не имеющие белков-агглютиногенов, реакции иммунитета не последует. Можно сказать, что обладатели I группы самые «щедрые», потому что могут поделиться своей кровью со всеми. Также их называют универсальными донорами.

Обратная ситуация с IV группой: в крови таких людей нет антител ни к агглютиногену А, ни к агглютиногену В, поэтому им можно перелить кровь любой группы. Однако при попадании эритроцита группы IV в организм с другой группой произойдет агглютинация, поэтому обладателей IV группы крови можно назвать самыми «жадными» или универсальными реципиентами. Соответственно, II группу крови нельзя перелить обладателю III и наоборот.

Помимо агглютиногенов А и В существует много других белков, которые могут привести к возникновению иммунного конфликта. Международное общество трансфузиологов в настоящее время признает всего 36 систем деления крови на группы. Наиболее часто применяют систему АВО, в которой также учитывают резус-фактор. Впервые этот белок был описан у макак-резусов, за что и получил свое название.

Большая часть людей резус-положительна (Rh+), то есть имеет на эритроцитах белок-резус. Им можно переливать кровь с любым резусом. Людям же с резус-отрицательной кровью (Rh-) можно переливать только резус-отрицательную кровь.

Резус-фактор может стать причиной резус-конфликта между матерью и плодом. Если у резус-отрицательной матери будет резус-положительный ребенок, то при попадании крови плода в кровоток матери сформируются антитела к Rh+ белку. Чаще всего смешение крови происходит при родах и не несет опасности для ребенка. Если же антитела каким-то образом появились до родов, они могут проникнуть через плаценту и вызвать агглютинацию эритроцитов плода, что приведет к его гибели. Такая опасность часто возникает при повторной беременности резус-отрицательных женщин.

Распространенность групп крови варьирует в разных популяциях. На картинке приведена частота встречаемость разных групп по системе АВО в мире.

Распространенность групп крови

Источник

Форменные элементы крови

Форменные элементы крови

Кровь — это жидкая соединительная ткань, которая состоит из жидкой части — плазмы и взвешенных в ней клеток — форменных элементов: эритроцитов (красных клеток крови), лейкоцитов (белых клеток крови), тромбоцитов (кровяных пластинок). У взрослого человека форменные элементы крови составляют около 40-48%, а плазма — 52-60%.

Кровь представляет собой жидкую ткань. Она имеет красный цвет, который ей придают эритроциты (красные кровяные тельца). Реализация основных функций крови обеспечивается поддержанием оптимального объема плазмы, определенного уровня клеточных элементов крови (рис. 1) и различных компонентов плазмы.

Плазма, лишенная фибриногена, называется сывороткой.

Рис. 1. Форменные элементы крови: а — крупного рогатого скота; б — курицы; 1 — эритроциты; 2, б — эозинофильные гранулоциты; 3,8,11 — лимфоциты: средний, малый, большой; 4 — кровяные пластинки; 5,9 — нейтрофильные гранулоциты: сегментоядерный (зрелый), палочкоядерный (молодой); 7 — базофильный гранулоцит; 10 — моноцит; 12 — ядро эритроцита; 13 — незернистые лейкоциты; 14 — зернистые лейкоциты

Все форменные элементы крови — эритроциты, лейкоциты и тромбоциты — образуются в красном костном мозге. Несмотря на то что все клетки крови являются потомками единой кроветворной клетки — фибробластов, они выполняют различные специфические функции, в то же время общность происхождения наделила их и общими свойствами. Так, все клетки крови, независимо от их специфики, участвуют в транспорте различных веществ, выполняют защитные и регуляторные функции.

Содержание форменных элементов

Эритроцитов у мужчин 4,0- 5,0х 10 12 /л, у женщин 3,9-4,7х 10 12 /л; лейкоцитов 4,0-9,0х 10 9 /л; тромбоцитов 180-320х 10 9 /л.

Эритроциты

Эритроциты, или красные клетки крови, впервые были обнаружены Мальпиги в крови лягушки (1661), а Левенгук (1673) показал, что они также присутствуют в крови человека и млекопитающих.

Эритроциты — безъядерные красные кровяные клетки двояковогнутой дисковидной формы. Благодаря такой форме и эластичности цитоскелета эритроциты могут транспортировать большое количество различных веществ и проникать через узкие капилляры.

Эритроцит состоит из стромы и полупроницаемой оболочки.

Основной составной частью эритроцитов (до 95% массы) является гемоглобин, придающий крови красный цвет и состоящий из белка глобина и железосодержащего гема. Основной функцией гемоглобина и эритроцитов является перенос кислорода (02) и диоксида углерода (С02).

Читайте также:  Гомеопатические препараты укрепление иммунитета

В крови человека содержится около 25 трлн красных кровяных телец. Если уложить рядом друг с другом все эритроциты, то получится цепочка длиной около 200 тыс. км, которой можно 5 раз опоясать земной шар по экватору. Если положить все эритроциты одного человека один на другой, то получится «столбик» высотой более 60 км.

Эритроциты имеют форму двояковогнутого диска, при поперечном разрезе напоминают гантели. Такая форма не только увеличивает поверхность клетки, но и способствует более быстрой и равномерной диффузии газов через клеточную мембрану. Если бы они имели форму шара, то расстояние от центра клетки до поверхности увеличилось в 3 раза, а общая площадь эритроцитов была бы на 20% меньше. Эритроциты отличаются большой эластичностью. Они легко проходят по капиллярам, имеющим вдвое меньший диаметр, чем сама клетка. Общая поверхность всех эритроцитов достигает 3000 м 2 , что в 1500 раз превышает поверхность тела человека. Такие соотношения поверхности и объема способствуют оптимальному выполнению основной функции эритроцитов — переносу кислорода от легких к клеткам организма.

В отличие от других представителей типа хордовых эритроциты млекопитающих — это безъядерные клетки. Утрата ядра привела к увеличению количества дыхательного фермента — гемоглобина. Водном эритроците находится около 400 млн молекул гемоглобина. Лишение ядра привело к тому, что сам эритроцит потребляет в 200 раз меньше кислорода, чем его ядерные представители (эритробласты и нормобласты).

В крови у мужчин содержится в среднем 5 • 10 12 /л эритроцитов (5 000 000 в 1 мкл), у женщин — около 4,5 • 10 12 /л эритроцитов (4 500 000 в 1 мкл).

В норме число эритроцитов подвержено незначительным колебаниям. При различных заболеваниях количество эритроцитов может уменьшаться. Подобное состояние носит название эритропения и часто сопутствует малокровию или анемии. Увеличение числа эритроцитов называется эритроцитозом.

Гемолиз и его причины

Гемолизом называется разрыв оболочки эритроцита и выход гемоглобина в плазму, благодаря чему кровь приобретает лаковый оттенок. В искусственных условиях гемолиз эритроцитов может быть вызван помещением их в гипотонический раствор — осмотическии гемолиз. Для здоровых людей минимальная граница осмотической стойкости соответствует раствору, содержащему 0,42-0,48% NaCl, полный же гемолиз (максимальная граница стойкости) происходит при концентрации 0,30-0,34% NaCl.

Гемолиз может быть вызван химическими агентами (хлороформ, эфир и др.), разрушающими мембрану эритроцитов, — химический гемолиз. Нередко встречается гемолиз при отравлении уксусной кислотой. Гемолизирующим свойством обладают яды некоторых змей — биологический гемолиз.

При сильном встряхивании ампулы с кровью также наблюдается разрушение мембраны эритроцитов-механический гемолиз. Он может проявляться у больных с протезированием клапанного аппарата сердца и сосудов, а иногда возникает при ходьбе (маршевая гемоглобинурия) из-за травмирования эритроцитов в капиллярах стоп.

Если эритроциты заморозить, а потом отогреть, то возникает гемолиз, получивший наименование термического. Наконец, при переливании несовместимой крови и наличии аутоантител к эритроцитам развивается иммунный гемолиз. Последний является причиной возникновения анемий и нередко сопровождается выделением гемоглобина и его производных с мочой (гемоглобинурия).

Скорость оседания эритроцитов (СОЭ)

Если кровь поместить в пробирку, предварительно добавив в нее вещества, препятствующие свертыванию, то через некоторое время кровь разделится на два слоя: верхний состоит из плазмы, а нижний представляет собой форменные элементы, главным образом эритроциты. Исходя из этих свойств.

Фарреус предложил изучать суспензионную устойчивость эритроцитов, определяя скорость их оседания в крови, свертываемость которой устранялась предварительным добавлением цитрата натрия. Этот показатель получил название «скорость оседания эритроцитов (СОЭ)» или «реакция оседания эритроцитов (РОЭ)».

Величина СОЭ зависит от возраста и пола. В норме у мужчин этот показатель равен 6- 12 мм в час, у женщин — 8-15 мм в час, у пожилых людей обоего пола — 15-20 мм в час.

Наибольшее влияние на величину СОЭ оказывает содержание белков фибриногена и глобулинов: при увеличении их концентрации СОЭ повышается, так как уменьшается электрический заряд мембраны клеток и они легче «склеиваются» между собой по типу монетных столбиков. СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме возрастает. Это физиологическое повышение; предполагают, что оно обеспечивает защитную функцию организма во время вынашивания плода. Повышение СОЭ наблюдается при воспалительных, инфекционных и онкологических заболеваниях, а также при значительном уменьшении числа эритроцитов (анемия). Уменьшение СОЭ у взрослых людей и детей старше 1 года является неблагоприятным признаком.

Лейкоциты

Лейкоциты — белые кровяные клетки. Они содержат ядро, не имеют постоянной формы, обладают амебоидной подвижностью и секреторной активностью.

У животных содержание лейкоцитов в крови примерно в 1000 раз меньше, чем эритроцитов. В 1 л крови крупного рогатого скота содержится примерно (6-10) • 10 9 лейкоцитов, улошади — (7-12)-10 9 , свиньи — (8-16)-10 9 лейкоцитов. Число лейкоцитов в естественных условиях колеблется в больших пределах и может повышаться после приема корма, тяжелой мышечной работы, при сильных раздражениях, болевых ощущениях и др. Увеличение числа лейкоцитов в крови называется лейкоцитозом, а уменьшение — лейкопенией.

Различают несколько типов лейкоцитов в зависимости от размеров, наличия или отсутствия зернистости в протоплазме, формы ядра и др. По наличию в цитоплазме зернистости лейкоциты подразделяются на гранулоциты (зернистые) и агранулоциты (незернистые).

Гранулоциты составляют большую часть лейкоцитов, и к ним относятся нейтрофилы (окрашиваются кислыми и основными красителями), эозинофилы (окрашиваются кислыми красителями) и ба- зофилы (окрашиваются основными красителями).

Неитрофилы способны к амебовидному движению, проходят через эндотелий капилляров, активно перемещаются к месту повреждения или воспаления. Они фагоцитируют живые и мертвые микроорганизмы, а затем переваривают их при помощи ферментов. Нейтрофилы секретируют лизосомные белки и продуцируют интерферон.

Эозинофилы обезвреживают и разрушают токсины белкового происхождения, чужеродные белки, комплексы антиген — антитело. Они продуцируют фермент гистаминазу, поглощают и разрушают гистамин. Их число возрастает при поступлении в организм различных токсинов.

Базофилы принимают участие в аллергических реакциях, выделяя после встречи с аллергеном гепарин и гистамин, которые препятствуют свертыванию крови, расширяют капилляры и способствуют рассасыванию при воспалениях. Число их возрастает при травмах и воспалительных процессах.

Агранулоциты подразделяются на моноциты и лимфоциты.

Моноциты обладают выраженной фагоцитарной и бактерицидной активностью в кислой среде. Участвуют в формировании иммунного ответа. Число их возрастает при воспалительных процессах.

Лимфоциты осуществляют реакции клеточного и гуморального иммунитета. Способны проникать в ткани и возвращаться обратно в кровь, живут несколько лет. Они отвечают за формирование специфического иммунитета и осуществляют иммунный надзор в организме, сохраняют генетическое постоянство внутренней среды. На плазматической мембране лимфоцитов есть специфические участки — рецепторы, благодаря чему они активируются при контакте с чужеродными микроорганизмами и белками. Они синтезируют защитные антитела, лизируют чужеродные клетки, обеспечивают реакцию отторжения трансплантата и иммунную память организма. Их число возрастает при проникновении в организм микроорганизмов. В отличие от других лейкоцитов, лимфоциты созревают в красном костном мозге, но в дальнейшем они проходят дифференциацию в лимфоидных органах и тканях. Часть лимфоцитов дифференцируется в тимусе (вилочковая железа) и поэтому они называются Т-лимфоцитами.

Т-лимфоциты образуются в костном мозге, поступают и проходят дифференцировку в тимусе, а затем расселяются в лимфатические узлы, селезенку и циркулируют в крови. Различают несколько форм Т-лимфоцитов: Т-хелперы (помощники), которые взаимодействуют с В-лимфоцитами, превращая их в плазматические клетки, синтезирующие антитела и гамма-глобулины; Т-супрессоры (угнетатели), угнетающие чрезмерные реакции В-лимфоцитов и поддерживающие определенное соотношение разных форм лимфоцитов, и Т-киллсры (убийцы), которые взаимодействуют с чужеродными клетками и разрушают их, формируя реакции клеточного иммунитета.

Читайте также:  Препараты хель для повышения иммунитета

В-лимфоциты образуются в костном мозге, но у млекопитающих проходят дифференцировку в лимфоидной ткани кишечника, нёбных и глоточных миндалинах. При встрече с антигеном В-лимфоциты активируются, мигрируют в селезенку, лимфатические узлы, где размножаются и трансформируются в плазматические клетки, продуцирующие антитела и гамма-глобулины.

Нулевые лимфоциты не проходят дифференцировку в органах иммунной системы, но при необходимости способны превращаться в В- и Т-лимфоциты.

Число лимфоцитов возрастает при проникновении в организм микроорганизмов.

Процентное соотношение отдельных форм лейкоцитов крови называется лейкоцитарной формулой, или леикограммои.

Поддержание постоянства лейкоцитарной формулы периферической крови осуществляется благодаря взаимодействию непрерывно происходящих процессов созревания и разрушения лейкоцитов.

Срок жизни лейкоцитов разных типов составляет от нескольких часов до нескольких суток, за исключением лимфоцитов, часть которых живет несколько лет.

Тромбоциты

Тромбоциты — мелкие кровяные пластинки. После образования в красном костном мозге они попадают в кровоток. Тромбоциты обладают подвижностью, фагоцитарной активностью, задействованы в иммунных реакциях. Разрушаясь, тромбоциты выделяют компоненты системы свертывания крови, участвуют в свертывании крови, ретракции сгустка и лизисе образующегося при этом фибрина. Они регулируют также ангиотрофическую функцию благодаря находящемуся в них фактору роста. Под влиянием этого фактора усиливается пролиферация эндотелиальных и гладкомышечных клеток кровеносных сосудов. Тромбоциты обладают способностью к адгезии (прилипание) и агрегации (способность склеиваться друг с другом).

Тромбоциты образуются и развиваются в красном костном мозге. Продолжительность их жизни составляет в среднем 8 сут, и затем они разрушаются в селезенке. Число этих клеток возрастает при травмах и повреждении сосудов.

В 1 л крови у лошади содержится до 500 • 10 9 тромбоцитов, у крупного рогатого скота — 600 • 10 9 , у свиней — 300 • 10 9 тромбоцитов.

Константы крови

Основные константы крови

Кровь как жидкая ткань организма характеризуется множеством констант, которые можно разделить на мягкие и жесткие.

Мягкие (пластичные) константы могут изменять свою величину от константного уровня в широких пределах без существенных изменений жизнедеятельности клеток и функций организма. К мягким константам крови относятся: количество циркулирующей крови, соотношение объемов плазмы и форменных элементов, количество форменных элементов, количество гемоглобина, скорость оседания эритроцитов, вязкость крови, относительная плотность крови и др.

Количество крови, циркулирующей по сосудам

Общее количество крови в организме составляет 6-8% от массы тела (4-6 л), из них в состоянии покоя организма циркулирует около половины, другая половина — 45-50% находится в депо (в печени — 20%, в селезенке — 16%, в кожных сосудах — 10%).

Соотношение объемов плазмы крови и форменных элементов определяется путем центрифугирования крови в анализаторе гематокрита. В нормальных условиях это соотношение составляет 45% форменных элементов и 55% плазмы. Эта величина у здорового человека может претерпевать существенные и длительные изменения лишь при адаптации к большим высотам. Жидкая часть крови (плазма), лишенная фибриногена, называется сывороткой.

Скорость оседания эритроцитов

У мужчин -2-10 мм/ч, у женщин — 2-15 мм/ч. Скорость оседания эритроцитов зависит от многих факторов: количества эритроцитов, их морфологических особенностей, величины заряда, способности к агломерации (агрегации), белкового состава плазмы. На скорость оседания эритроцитов влияет физиологическое состояние организма. Так, например, при беременности, воспалительных процессах, эмоциональных напряжениях и других состояниях скорость оседания эритроцитов увеличивается.

Вязкость крови

Обусловлена наличием белков и эритроцитов. Вязкость цельной крови равна 5, если вязкость воды принять за 1, а плазмы — 1,7-2,2.

Удельный вес (относительная плотность) крови

Зависит от содержания форменных элементов, белков и липидов. Удельный вес цельной крови равен 1,050, плазмы — 1,025-1,034.

Жесткие константы

Их колебание допустимо в очень небольших диапазонах, так как отклонение на незначительные величины приводит к нарушению жизнедеятельности клеток или функций целого организма. К жестким константам относятся постоянство ионного состава крови, количество белков в плазме, осмотическое давление крови, количество глюкозы крови, количество кислорода и углекислого газа крови, кислотно-основное равновесие.

Постоянство ионного состава крови

Общее количество неорганических веществ плазмы крови составляет около 0,9%. К этим веществам относятся: катионы (натрия, калия, кальция, магния) и анионы (хлора, HPO4, HCO3 — ). Содержание катионов является более жесткой величиной, чем содержание анионов.

Количество белков в плазме

  • создают онкотическое давление крови, от которого зависит обмен воды между кровью и межклеточной жидкостью;
  • определяют вязкость крови, что оказывает влияние на гидростатическое давление крови;
  • принимают участие в процессе свертывания крови фибриноген и глобулины;
  • соотношение альбуминов и глобулинов влияет на величину СОЭ;
  • являются важными компонентами защитной функции крови (гамма-глобулины);
  • принимают участие в транспорте продуктов обмена, жиров, гормонов, витаминов, солей тяжелых металлов;
  • являются незаменимым резервом для построения тканевых белков;
  • участвуют в поддержании кислотно-основного равновесия, выполняя буферные функции.

Общее количество белков в плазме составляет 7-8%. Белки плазмы различают по строению и функциональным свойствам. Их делят на три группы: альбумины (4,5%), глобулины (1,7-3,5%) и фибриноген (0,2-0,4%).

Осмотическое давление крови

Под осмотическим давлением понимают силу, с которой растворенное вещество удерживает или притягивает растворитель. Эта сила, обусловливающая движение растворителя через полупроницаемую мембрану из менее концентрированного раствора в более концентрированный.

Осмотическое давление крови равно 7,6 атм. Оно зависит от содержания солей и воды в плазме крови и обеспечивает поддержание его на физиологически необходимом уровне концентрации различных веществ, растворенных в жидких средах организма. Осмотическое давление способствует распределению воды между тканями, клетками и кровью.

Растворы, осмотическое давление которых равно осмотическому давлению клеток, называются изотоническими, и они не вызывают изменения объема клеток. Растворы, осмотическое давление которых выше осмотического давления клеток, называются гипертоническими. Они вызывают сморщивание клеток в результате перехода части воды из клеток в раствор. Растворы с более низким осмотическим давлением называются гипотоническими. Они вызывают увеличение в объеме клеток в результате перехода воды из раствора в клетку.

Незначительные изменения солевого состава плазмы крови могут оказаться губительными для клеток организма и прежде всего клеток самой крови из-за изменения осмотического давления.

Часть осмотического давления, создаваемого белками плазмы, составляет онкотическое давление, величина которого равна 0,03- 0,04 атм., или 25-30 мм рт.ст. Онкотическое давление является фактором, способствующим переходу воды из тканей в кровяное русло. При снижении величины онкотического давления крови происходит выход воды из сосудов в интерстициальное пространство и приводит к отеку тканей.

Количество глюкозы в крови в норме — 3,3-5,5 ммоль/л.

Содержание кислорода и углекислого газа в крови

Артериальная кровь содержит 18-20 объемных процентов кислорода и 50-52 об.% углекислого газа, в венозной крови кислорода 12 об.% и углекислого газа-55-58 об.%.

рН крови

Активная регуляция крови обусловлена соотношением водородных и гидроксильных ионов и является жесткой константой. Для оценки активной реакции крови используют водородный показатель рН, равный 7,36 (в артериальной крови 7,4,в венозной — 7,35). Увеличение концентрации водородных ионов приводит к сдвигу реакции крови в кислую сторону, и называется ацидозом. Увеличение концентрации водородных ионов и увеличение концентрации гидроксильных ионов (ОН) приводит к сдвигу реакции в щелочную сторону, и называется алкалозом.

Удержание констант крови на определенном уровне осуществляется по принципу саморегуляции, что достигается формированием соответствующих функциональных систем.

источник

Источник