Что такое клеточный иммунитет биология

Иммунитет  (лат. immunitas — освобождение) — защита организма от генетически чужеродных организмов и веществ, к которым относятся микроорганизмы, вирусы, черви, различные белки, клетки, в том числе и собственные изменённые клетки организма. 

Иммунология — наука, изучающая иммунитет.

Иммунный ответ — это реакция организма на внедрение чужеродных агентов. 

Антиген — любое чужеродное вещество или организм.

Антитело — вещество организма, распознающее антигены.

Антитела (иммуноглобулины) — особый класс гликопротеинов, присутствующих на поверхности B-лимфоцитов в виде рецепторов (рис. 1). Реагируя на присутствие антигена, они отделяются от мембраны В-лимфоцита и присутствуют в сыворотке крови и тканевой жидкости в виде растворимых молекул (антител). Антитела способны избирательно связываться с конкретными видами чужеродных молекул, которые в связи с этим называют антигенами. 

Что такое клеточный иммунитет биология

Рис. 1. В-лимфоцит с мембрансвязанными рецепторами

Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов — например, бактерий и вирусов.

Антигены, как правило, являются белками или полисахаридами и представляют собой части бактериальных клеток, вирусов и других микроорганизмов. 

К антигенам немикробного происхождения относятся белки пыльцы растений, яичный белок и белки трансплантатов тканей и органов, а также поверхностные белки клеток крови при переливании крови.

Аллергены — это антигены, вызывающие аллергические реакции.

История изучения иммунитета

Фундамент иммунологии был заложен изобретением микроскопа, благодаря чему удалось обнаружить первую группу микроорганизмов — болезнетворные бактерии.

В конце XVIII в. английский сельский врач Эдвард Дженнер сообщил о первой удачной попытке предотвратить заболевание посредством иммунизации. Его подход вырос из наблюдений за одним интересным явлением: доярки часто заражались коровьей оспой и впоследствии не болели натуральной оспой. Дженнер ввёл маленькому мальчику гной, взятый из пустулы (нарыва) коровьей оспы, и убедился в том, что мальчик оказался иммунным к натуральной оспе. 

Работа Дженнера дала начало изучению теории микробного происхождения заболеваний в XIX в. Пастером во Франции и Кохом в Германии. Они отыскали антибактериальные факторы в крови животных, иммунизированных микробными клетками.

Луи Пастер успешно выращивал различные микробы в лабораторных условиях. Как часто бывает в науке, открытие было сделано случайно при культивировании возбудителей холеры кур. Во время работы одна из чашек с микробами была забыта на лабораторном столе. Было лето. Микробы в чашке несколько раз нагревались под солнечными лучами, высохли и потеряли способность вызывать заболевание. Однако куры, получившие эти неполноценные клетки, оказались защищёнными против свежей культуры холерных бактерий. Ослабленные бактерии не только не вызывали заболевание, а, напротив, давали иммунитет. 

В 1881 г. Луи Пастер разработал принципы создания вакцин из ослабленных микроорганизмов с целью предупреждения развития инфекционных заболеваний.

В 1908 г. Илья Ильич Мечников и Пауль Эрлих были удостоены Нобелевской премии за работы по теории иммунитета. 

И. И. Мечников создал клеточную (фагоцитарную) теорию иммунитета, согласно которой решающая роль в антибактериальном иммунитете принадлежит фагоцитозу.

Сначала И. И. Мечников как зоолог экспериментально изучал морских беспозвоночных фауны Чёрного моря в Одессе и обратил внимание на то, что определённые клетки (целомоциты) этих животных поглощают все инородные частицы (в т. ч. бактерии), проникающие во внутреннюю среду. Затем он увидел аналогию между этим явлением и поглощением белыми клетками крови позвоночных животных микробных телец. И. И. Мечников осознал, что это явление не питание данной единичной клетки, а защитный процесс в интересах целого организма. Учёный назвал действующие таким образом защитные клетки фагоцитами — «пожирающими клетками». И. И. Мечников первым рассматривал воспаление как защитное, а не разрушительное явление.

Против теории И. И. Мечникова в начале XX в. выступали большинство патологов, так как они считали лейкоциты (гной) болезнетворными клетками, а фагоциты — разносчиками инфекции по организму. Однако работы И. И. Мечникова поддержал Луи Пастер. Он пригласил И. И. Мечникова работать в свой институт в Париже.

Пауль Эрлих открыл антитела и создал гуморальную теорию иммунитета, установив, что антитела передаются ребёнку с грудным молоком, создавая пассивный иммунитет. Эрлих разработал метод изготовления дифтерийного антитоксина, благодаря чему были спасены миллионы детских жизней.

Теория иммунитета Эрлиха говорит о том, что на поверхности клеток есть специальные рецепторы, распознающие чужеродные вещества (антигенспецифические рецепторы). Сталкиваясь с чужеродными частицами (антигенами), эти рецепторы отсоединяются от клеток и в качестве свободных молекул выходят в кровь. В своей статье П. Эрлих назвал противомикробные вещества крови термином «антитело», так как бактерий в то время называли «микроско­пические тельца».

П. Эрлих предполагал, что ещё до контакта с конкретным микробом в организме уже есть антитела в виде, который он назвал «боковыми цепями». Теперь известно, что он имел в виду рецепторы лимфоцитов для антигенов.

В 1908 г. Паулю Эрлиху вручили Нобелевскую премию за гуморальную теорию иммунитета.

Чуть раньше Карл Ландштейнер впервые доказал наличие иммунологических различий индивидуумов в пределах одного вида.

Питер Медавар доказал удивительную точность распознавания иммунными клетками чужеродных белков: они способны отличить чужеродную клетку всего по одному изменённому нуклеотиду. 

Френк Бёрнет постулировал положение (аксиома Бёрнета), что центральным биологическим механизмом иммунитета является распознавание своего и чужого. 

В 1960 г. Нобелевскую премию по физиологии и медицине получили Питер Медавар и Френк Бёрнет за открытие иммунологической толерантности (лат. tolerantia — терпение) — это распознавание и специфическая терпимость к некоторым антигенам.

Уничтожение генетически изменённых клеток

Одна из функций иммунной системы — это уничтожение генетически изменённых (мутантных) клеток организма. В процессе клеточного деления постоянно происходят ошибки, и одна из миллиона образовавшихся клеток становится мутантной, т. е. генетически чужеродной. В организме человека благодаря мутациям в каждый конкретный момент должно быть более 10 миллионов мутантных клеток. Мутации приводят к изменению функций клетки. Большинство мутантных клеток не способны выполнять свои функции, а многие выходят из-под контроля организма (например, при нарушении апоптоза) и становятся раковыми клетками. Появление таких клеток может привести к возникновению серьёзных заболеваний и гибели организма. 

Читайте также:  Детям настойка прополиса для иммунитета как принимать

Один из механизмов иммунитета, осуществляемый лимфоцитами (НК-лимфоцитами), направлен на уничтожение именно раковых клеток.

Виды иммунитета

Иммунитет можно разделить на клеточный и гуморальный (рис. 2)

Рис. 2. Клеточный и гуморальный иммунитет

Все разнообразные формы иммунного ответа можно разделить на два типа: врождённый иммунитет и приобретённый иммунитет (рис. 3).

Рис. 3. Классификация иммунитета

Приобретённый иммунитет — это специфический индивидуальный иммунитет, т. е. это иммунитет, который имеется конкретно у определённых индивидуумов и к определённым возбудителям или агентам.

Главными характеристиками приобретённого иммунитета являются специфичность и иммунологическая память. Чем чаще организм встречается с патогеном, тем быстрее и активнее вырабатываются антитела, следовательно — сильнее защита.

Врождённый иммунитет с самого рождения (ещё до первой встречи с антигеном) защищает организм против всего чужеродного, т. е. он не специфичен. 

Таким образом, повторная встреча с тем или иным патогенным микроорганизмом не приводит к изменениям врождённого иммунитета, но повышает уровень приобретённого.

Врождённый иммунитет активируется при первом появлении патогена быстрее, но распознаёт патоген с меньшей точностью. Он реагирует не на конкретные специфические антигены, а на определённые классы антигенов, характерные для патогенных организмов (белки вирусного капсида, продукты метаболизма глистов и т. п.).

Врождённый иммунитет может быть наследственным (видовым) и индивидуальным.

Наследственный (видовой) иммунитет — это невосприимчивость всех представителей данного вида к определённому антигену, приобретённая в процессе эволюции: 

  • болезни, которыми болеет человек, но не болеют животные и птицы (корь, натуральная оспа, проказа, вирусный гепатит, холера, гонорея, дизентерия, брюшной тиф и др.);

  • болезни, которыми болеют животные, но не болеет человек (чума крупного рогатого скота, пироплазмоз собак); 

  • болезни, которыми болеют птицы, но не болеет человек (куриная холера);

  • болезни, которыми болеют животные и человек, но не болеют птицы (сибирская язва, бешенство и др.).

Индивидуальный врождённый иммунитет определяется теми особенностями, которые передаются организму с родительскими генами и в процессе эмбрионального развития. 

В процессе эмбрионального развития через плаценту плоду передаются антитела матери, которые противостоят инфекциям. Передача антител от мамы к ребёнку происходит в основном в последнем триместре беременности. 

Иммунитет подразделяется на естественный и искусственный.

Естественный иммунитет возникает самостоятельно в процессе жизни организма.

Естественный иммунитет делится на активный (после перенесённых заболеваний) и пассивный (например, с молоком матери).

До 6 месяцев малыша защищают антитела, передающиеся от матери с грудным молоком. Поэтому важным является исключительно грудное вскармливание. Иммунитет матери защищает ребёнка. Дети, которые находятся на искусственном вскармливании, слабо защищены, т. к. собственных антител у них мало. Только к 6 месяцам организм самостоятельно начинает вырабатывать антитела. Собственный иммунитет ребёнка формируется только к концу первого года жизни.

Искусственный иммунитет организм приобретает в результате применения медицинских препаратов (вакцин и сывороток).

Вакцина — медицинский препарат, содержащий ослабленные или убитые микроорганизмы.

Вакцина вводится абсолютно (!) здоровому человеку для предотвращения заболевания в будущем.

Сыворотка — медицинский препарат плазмы крови без фибриногена, содержащий готовые антитела к определённому патогену (заражающему микроорганизму). Сыворотку получают из крови заражённого данным заболеванием животного (коровы, лошади и т. п.).

Сыворотка с чужими антителами вводится заболевшему человеку в случае, когда организм не способен произвести достаточное количество антител.

Источник

Статья профессионального репетитора по биологии Т. М. Кулаковой

Иммунитет — способность организма распознавать вторжение чужеродного материала и мобилизовать клетки и образуемые ими вещества на более быстрое и эффективное удаление этого материала.

Фрэнк Бёрнет, лауреат Нобелевской премии по физиологии и медицине.

Словарь основных терминов

Иммунитет – способность организма защищать себя от бактерий, вирусов, чужеродных тел, избавляться от них и благодаря этому сохранять постоянство внутренней среды организма.

Фагоцитоз – процесс «заглатывания» лейкоцитами микроорганизмов, а также остатков мёртвых клеток и других частиц, например, пыли в лёгких.

Фагоциты – некоторые лейкоциты, осуществляющие процесс фагоцитоза. Фагоциты способны к амёбоидному движению, благодаря образованию ложноножек.

Антитела – белки, вырабатывающиеся В-лимфоцитами в ответ на присутствие чужеродного вещества – антигена. Антитела строго специфичны. Человеческий организм способен образовать примерно 100 миллионов различных антител, распознающих практически любые чужеродные вещества.

Антиген – чужеродная молекула, вызывающая образование антител. Антигенами могут быть микробы, вирусы, любые клетки, состав которых отличается от состава собственных клеток организма.

Антитоксин – специальное защитное вещество. Антитоксины нейтрализуют циркулирующие в крови яды микробов.

Вакцина – препарат, содержащий убитых или ослабленных возбудителей заболевания, т.е. препарат, содержащий небольшое количество антигенов.

Лечебная сыворотка – препарат, содержащий готовые антитела. Сыворотка готовится из крови животных, которые раньше специально заражались возбудителем заболевания. Иногда сыворотка готовится из крови человека, переболевшего заболеванием, например гриппом.

Макрофаги – крупные клетки способные к фагоцитозу, находящиеся в тканях. Выполняют санитарную и защитную функции.

Органы иммунной системы

1. Тимус (вилочковая железа) расположена позади грудины. Функционирует только у детей. Играет важную роль в развитии иммунной системы. В тимусе образуются и созревают Т–лимфоциты.

2. Костный мозг содержится в трубчатых костях. В нем образуются клетки крови — эритроциты, лейкоциты, тромбоциты, макрофаги. Рождающиеся здесь лимфоциты мигрируют в тимус. Дозревая там, они образуют Т-лимфоциты.

3. Лимфоузлы – узлы, расположенные по ходу лимфатических сосудов. Они содержат лимфоциты. Фильтруют лимфу, очищая её от вирусов, бактерий, раковых клеток.

4. Селезёнка – орган, в котором формируются лимфоциты. Является биологическим фильтром — удаляет состарившиеся, повреждённые клетки крови, растворяет и поглощает бактерии и другие чужеродные вещества. Выполняет роль депо крови.

Неспецифическая сопротивляемость обеспечивается:

1. Непроницаемостью здоровой кожи и слизистых оболочек для микроорганизмов;
2. Наличием защитных органов: печени, лимфоузлов, селезёнки;
3. Наличием бактерицидных веществ в жидкостях: в слюне, слезах, крови, лимфе, тканевой жидкости.
4. Выделения потовых и сальных желёз, а также соляная кислота выполняют защиту от микроорганизмов.

Наш организм имеет несколько форм защиты от чужеродных тел и соединений.

Читайте также:  Для укрепления иммунитета детям и взрослым

Неспецифический иммунитет – самая древняя форма иммунитета, осуществляется лейкоцитами путём фагоцитоза. Специфический иммунитет – это способность организма распознавать вещества, отличные от его клеток и тканей, и уничтожать только эти антигены.

Что такое клеточный иммунитет биологияДавайте вспомним, кто такие лимфоциты. Эти клетки составляют 20 – 40 % белых кровяных телец. Лимфоциты, в отличие от всех других лейкоцитов, способны не только проникать в ткани, но и возвращаться обратно в кровь. Лимфоциты представляют центральное звено иммунной системы организма.

В организме имеются два типа лимфоцитов – Т-клетки и В-клетки.

Т-лимфоциты возникают в костном мозге, проходят этап созревания в тимусе и затем расселяются в лимфатических узлах, селезёнке или в крови, где на их долю приходится 40 – 70 % всех лимфоцитов. Т-лимфоциты способны распознавать антигены.
В-лимфоциты образуются в костном мозге, дозревают в лимфоидной ткани червеобразного отростка, миндалинах. В-лимфоциты, получив информацию об антигене от Т-лимфоцита, начинают стремительно размножаться и синтезируют антитела.

Клеточный и гуморальный механизмы иммунитета

Клеточный иммунитет: Т-лимфоциты распознают микроорганизмы, вирусы, трансплантированные органы и ткани, злокачественные клетки. В реакции участвует вся иммунная клетка, свободные антитела при этом не выделяются.

Гуморальный иммунитет: В-лимфоциты выделяют антитела в плазму крови, тканевую жидкость и лимфу. Одни антитела склеивают микроорганизмы, другие осаждают склеенные частицы, а третьи разрушают, растворяют их.

Типы иммунитета:

Естественный Искусственный
 Пассивный Материнские антитела проникают через плаценту в кровь плода и обеспечивают защиту младенца. В первые дни жизни младенец через молоко получает антитела , которые всасываются  в кишечнике без расщепления. Введение антител обеспечивает немедленную защиту от инфекции.однако такая защита действует недолго, поскольку количество антител постепенно снижается.
 Активный Организм сам производит антитела в результате инфекции. Корь, ветрянная оспа, коклюш, свинка обычно оставляют стойкий иммунитет.Введение вакцин вызывают появление антител в плазме привитого человека.
В настоящее время разработаны приёмы создания антител при помощи современных методов биотехнологии.

Воспалительный процесс.

При ранении участка тела возникает местная реакция, проявляющаяся в отёке и болезненности. Такое состояние называют воспалением. Воспаление сопровождается следующими признаками:

1. Происходит местное расширение капилляров, в результате чего усиливается приток крови к данному участку. Происходит покраснение и повышение температуры.
2. Вследствие усиления проницаемости капилляров, плазма и лейкоциты выходят в окружающие ткани. Возникает отёк.
3. Лейкоциты направляются к бактериям, происходит фагоцитоз. Если фагоцит поглощает больше микробов, чем он может переварить, то он гибнет. Смесь погибших и живых фагоцитов и бактерий называется гноем.
4. Возникающие признаки приводят к раздражению рецепторов, вызывающее ощущение боли.

Подготовка к ЕГЭ по биологии и поступлению в медицинский вуз.

Мы используем файлы cookie, чтобы персонализировать контент, адаптировать и оценивать результативность рекламы, а также обеспечить безопасность. Перейдя на сайт, вы соглашаетесь с использованием файлов cookie.

Источник

Как устроен иммунитет: Объясняем по пунктам

Наш организм непрерывно меняется, но при этом очень «любит» постоянство и может нормально работать только при определенных параметрах своей внутренней среды. Например, нормальная температура тела колеблется между 36 и 37 градусами по Цельсию. Вспомните последнюю простуду и то, как плохо вы себя чувствовали, стоило температуре подняться всего на полградуса. Такая же ситуация и с другими показателями: артериальным давлением, рН крови, уровнем кислорода и глюкозы в крови и другими. Постоянство значений этих параметров называется гомеостазом, а поддержкой его стабильного уровня занимаются практически все органы и системы организма: сердце и сосуды поддерживают постоянное артериальное давление, легкие — уровень кислорода в крови, печень — уровень глюкозы и так далее.

Иммунная же система отвечает за генетический гомеостаз. Она помогает поддерживать постоянство генетического состава организма. То есть ее задача — уничтожать не только все чужеродные организмы и продукты их жизнедеятельности, проникающие извне (бактерии, вирусы, грибки, токсины и прочее), но также и клетки собственного организма, если «что-то пошло не так» и, например, они превратились в злокачественную опухоль, то есть стали генетически чужеродными.

Как клетки иммунной системы уничтожают «врагов»?

Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.

Иммунитет бывает врожденным (он же неспецифический) и приобретенным (он же адаптивный, или специфический). Врожденный иммунитет одинаков у всех людей и идентичным образом реагирует на любых «врагов». Реакция начинается немедленно после проникновения микроба в организм и не формирует иммунологическую память. То есть, если такой же микроб проникнет в организм снова, система неспецифического иммунитета его «не узнает» и будет реагировать «как обычно». Неспецифический иммунитет очень важен — он первым сигнализирует об опасности и немедленно начинает давать отпор проникшим микробам.

Однако эти реакции не могут защитить организм от серьезных инфекций, поэтому после неспецифического иммунитета в дело вступает приобретенный иммунитет. Здесь уже реакция организма индивидуальна для каждого «врага», поэтому «арсенал» специфического иммунитета у разных людей различается и зависит от того, с какими инфекциями человек сталкивался в жизни и какие прививки делал.

Специфическому иммунитету нужно время, чтобы изучить проникшую в организм инфекцию, поэтому реакции при первом контакте с инфекцией развиваются медленнее, зато работают гораздо эффективнее. Но самое главное, что, один раз уничтожив микроба, иммунная система «запоминает» его и в следующий раз при столкновении с таким же реагирует гораздо быстрее, часто уничтожая его еще до появления первых симптомов заболевания. Именно так работают прививки: когда в организм вводят ослабленных или убитых микробов, которые уже не могут вызвать заболевание, у иммунной системы есть время изучить их и запомнить, сформировать иммунологическую память. Поэтому, когда человек после вакцинации сталкивается с реальной инфекцией, иммунная система уже полностью готова дать отпор, и заболевание не начинается вообще или протекает гораздо легче.

Кто отвечает за работу различных видов иммунитета?

  • Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
  • Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
  • Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
  • Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.
Читайте также:  Пауль эрлих гуморальная теория иммунитета

Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.

  • Т-лимфоциты. Названы так, потому что после образования в костном мозге дозревают в вилочковой железе — тимусе. Разные подвиды Т-лимфоцитов отвечают за разные функции. Например, Т-киллеры могут убивать зараженные вирусами клетки, чтобы остановить развитие инфекции, Т-хелперы помогают иммунной системе распознавать конкретные виды микробов, а Т-супрессоры регулируют силу и продолжительность иммунной реакции.
  • B-лимфоциты. Название их происходит от Bursa fabricii (сумка Фабрициуса) — особого органа у птиц, в котором впервые обнаружили эти клетки. В-лимфоциты умеют синтезировать антитела (иммуноглобулины). Это специальные белки, которые «прилипают» к микробам и вызывают их гибель. Также антитела могут нейтрализовывать некоторые токсины.
  • Натуральные киллеры. Эти клетки находят и убивают раковые клетки и клетки, пораженные вирусами.
  • Нейтрофилы и макрофаги умеют ловить и переваривать микробов — осуществлять фагоцитоз. Кроме того, макрофаги выполняют важнейшую роль в процессе презентации антигена, когда макрофаг знакомит другие клетки иммунной системы с кусочками переваренного микроба, что позволяет организму лучше бороться с инфекцией.
  • Эозинофилы защищают наш организм от паразитов — обеспечивают антигельминтный иммунитет.
  • Базофилы — выполняют главным образом сигнальную функцию, выделяя большое количество сигнальных веществ (цитокинов) и привлекая этим другие иммунные клетки в очаг воспаления.

Как клетки иммунной системы отличают «своих» от «чужих» и понимают, с кем нужно бороться?

В этом им помогает главный комплекс гистосовместимости первого типа (MHC-I). Это группа белков, которая располагается на поверхности каждой клетки нашего организма и уникальна для каждого человека. Это своего рода «паспорт» клетки, который позволяет иммунной системе понимать, что перед ней «свои». Если с клеткой организма происходит что-то нехорошее, например, она поражается вирусом или перерождается в опухолевую клетку, то конфигурация MHC-I меняется или же он исчезает вовсе. Натуральные киллеры и Т-киллеры умеют распознавать MHC-I рецептор, и как только они находят клетку с измененным или отсутствующим MHC-I, они ее убивают. Так работает клеточный иммунитет.

Но у нас есть еще один вид иммунитета — гуморальный. Основными защитниками в этом случае являются антитела — специальные белки, синтезируемые B-лимфоцитами, которые связываются с чужеродными объектами (антигенами), будь то бактерия, вирусная частица или токсин, и нейтрализуют их. Для каждого вида антигена наш организм умеет синтезировать специальные, подходящие именно для этого антигена антитела. Молекулу каждого антитела, также их называют иммуноглобулинами, можно условно разделить на две части: Fc-участок, который одинаков у всех иммуноглобулинов, и Fab-участок, который уникален для каждого вида антител. Именно с помощью Fab-участка антитело «прилипает» к антигену, поэтому строение этого участка молекулы зависит от строения антигена.

Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?

Рассмотрим этот процесс на примере развития бактериальной инфекции. Например, вы поцарапали палец. При повреждении кожи в рану чаще всего попадают бактерии. При повреждении любой ткани организма сразу же запускается воспалительная реакция.  Поврежденные клетки выделяют большое количество разных веществ — цитокинов, к которым очень чувствительны нейтрофилы и макрофаги. Реагируя на цитокины, они проникают через стенки капилляров, «приплывают» к месту повреждения и начинают поглощать и переваривать попавших в рану бактерий — так запускается неспецифический иммунитет, но до синтеза антител дело пока еще не дошло.

Расправляясь с бактериями, макрофаги выводят на свою поверхность разные их кусочки, чтобы познакомить Т-хелперов и B-лимфоцитов со строением этих бактерий. Этот процесс называется презентацией антигена. Т-хелпер и B-лимфоцит изучают кусочки переваренной бактерии и подбирают соответствующую структуру антитела так, чтобы потом оно хорошо «прилипало» к таким же бактериям. Так запускается специфический гуморальный иммунитет. Это довольно длительный процесс, поэтому при первом контакте с инфекцией организму может понадобиться до двух недель, чтобы подобрать структуру и начать синтезировать нужные антитела.

После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.

Есть ли еще какие-то механизмы?

Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.

Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.

Источник