Что такое патологический сигнал на мрт

Что такое патологический сигнал на мрт thumbnail
Токсоплазмоз на МРТ головного мозгаТоксоплазмоз на МРТ головного мозга

Магнитно-резонансная томография является безболезненным и информативным способом исследования головного мозга. Послойное МР-сканирование позволяет детально рассмотреть все участки органа, оценить их структуру. С помощью определенных последовательностей можно подробно изучить белое и серое вещество, сосуды, желудочковую систему.

МРТ считают эффективным методом выявления очаговых поражений мозга. К таковым относят ограниченные участки с нарушенной структурой внутри вещества органа. Подобные изменения часто сопровождаются масс-эффектом, отеком, деформацией окружающих областей. Очаги в головном мозге на МРТ выглядят как зоны изменения МР-сигнала. По специфическим признакам, локализации, размерам и степени влияния на окружающие структуры рентгенолог может сделать предположения о характере патологии. Пользуясь перечисленными сведениями, врач ставит диагноз, составляет для пациента прогноз и подбирает лечение.

Очаги на МРТ головного мозга: что значит?

Результатом магнитно-резонансной томографии является серия послойных снимков исследуемой области. На изображениях здоровые ткани выглядят как чередующиеся светлые и темные участки, что зависит от концентрации в них жидкости и применяемой импульсной последовательности. По срезам врач-рентгенолог оценивает:

  • развитость и положение отдельных структур;
  • соответствие интенсивности МР-сигнала норме;
  • состояние извилин и борозд;
  • размеры и строение желудочковой системы и подпаутинного пространства;
  • параметры слуховых проходов, глазниц, придаточных синусов;
  • структуру сосудистого русла;
  • строение черепных нервов и церебральных оболочек;
  • наличие признаков патологии (очаговые изменения, отек, воспаление, повреждения стенок артерий и вен).

Липома четверохолмной цистерны на МРТЛипома четверохолмной цистерны на МРТ (обведена кругом)

МРТ назначают, если у пациента наблюдаются неврологические отклонения, обусловленные поражением мозговой ткани. Симптомами могут быть:

  • головные боли;
  • нарушения координации движений;
  • дисфункции органов слуха или зрения;
  • нарушения концентрации внимания;
  • расстройства памяти;
  • проблемы со сном;
  • психоэмоциональные расстройства;
  • парезы/параличи конечностей и/или мышц лица;
  • чувствительные нарушения;
  • судороги и пр.

Магнитно-резонансная томография головы позволяет врачу точно определить локализацию очаговых изменений и выяснить природу плохого самочувствия у пациента. В ДЦ «Магнит» на вооружении специалистов новейшие аппараты для МР-сканирования, которые позволяют с высокой достоверностью провести исследование.

Виды очагов на МРТ головы

Цвет получаемого изображения нормальных мозговых структур и патологических изменений зависит от используемой программы. При сканировании в ангиорежиме, в том числе с применением контраста, на снимках появляется разветвленная сеть артерий и вен. Очаговые изменения бывают нескольких типов, по их характеристикам врач может предположить природу фокусов.

При патологии мозгового вещества нарушаются свойства пораженных фокусов, что проявляется резким изменением МР-сигнала по сравнению со здоровыми областями. Применение определенных последовательностей (диффузионно-взвешенных, FLAIR и пр.) или контрастирования позволяет более четко визуализировать локальные изменения. То есть, если рентгенолог видит на результатах МРТ единичный очаг, для более подробного его изучения будут применены разные режимы сканирования либо контрастирование.

При сравнении изменений со здоровыми участками мозга выделяют гипер-, гипо- и изоинтенсивные зоны (соответственно яркие, темные и такие же по своему цвету, как рядом расположенные структуры).

Абсцесс головного мозга на МРТАбсцесс головного мозга на МРТ (указан стрелкой)

Гиперинтенсивные очаги

Выявление гиперинтенсивных, т.е. ярко выделяющихся на МР-сканах, очагов заставляет специалиста подозревать опухоль головного мозга, в том числе метастатического происхождения, гематому (в определенный момент от начала кровоизлияния), ишемию, отек, патологии сосудов (каверномы, артерио-венозные мальформации и пр.), абсцессы, обменные нарушения и т.п.

Опухоль головного мозга на МРТОпухоль головного мозга на МРТ (указана стрелкой)

Субкортикальные очаги

Поражение белого вещества головного мозга обычно характеризуют, как изменения подкорковых структур. Выявленные при МРТ субкортикальные очаги говорят о локализации повреждения сразу под корой. Если обнаруживают множественные юкстакортикальные зоны поражения, есть смысл подозревать демиелинизирующий процесс (например, рассеянный склероз). При указанной патологии деструктивные изменения происходят в различных участках белого вещества, в том числе прямо под корой головного мозга. Перивентрикулярные и лакунарные очаги обычно выявляют при ишемических процессах.

Очаги глиоза

При повреждении мозговой ткани включаются компенсаторные механизмы. Разрушенные клетки замещаются структурами глии. Последняя обеспечивает передачу нервных импульсов и участвует в метаболических процессах. За счет описываемых структур мозг восстанавливается после травм.

Выявление глиозных очагов указывает на предшествующее разрушение церебрального вещества вследствие:

  • родовой травмы;
  • гипоксических процессов;
  • наследственных патологий;
  • гипертонии;
  • эпилепсии;
  • энцефалита;
  • интоксикации организма;
  • склеротических изменений и др.

По количеству и размерам измененных участков можно судить о масштабах повреждения мозга. Динамическое наблюдение позволяет оценить скорость прогрессирования патологии. Однако изучая зоны глиоза нельзя точно установить причину разрушения нервных клеток.

Очаги демиелинизации

Некоторые заболевания нервной системы сопровождаются повреждением глиальной оболочки длинных отростков нейронов. В результате патологических изменений нарушается проведение импульсов. Подобное состояние сопровождается неврологической симптоматикой различной степени интенсивности. Демиелинизация нервных волокон может быть вызвана:

  • мультифокальной лейкоэнцефалопатией;
  • рассеянным склерозом;
  • диссимулирующим энцефаломиелитом;
  • болезнью Марбурга, Девика и многими другими.

Обычно очаги демиелинизации выглядят как множественные мелкие участки гиперинтенсивного МР-сигнала, расположенные в одном или нескольких отделах головного мозга. По степени их распространенности, давности и одновременности возникновения врач судит о масштабах развития заболевания.

Очаг демиелинизации на МРТОчаг демиелинизации на МРТ

Очаг сосудистого генеза

Недостаточность мозгового кровообращения являются причиной ишемии церебрального вещества, что ведет к изменению структуры и потере функций последнего. Ранняя диагностика сосудистых патологий способна предотвратить инсульт. Очаговые изменения дисциркуляторного происхождения обнаруживают у большинства пациентов старше 50 лет. В последующем такие зоны могут стать причиной дистрофических процессов в мозговой ткани.

Читайте также:  Вред от мрт органов малого таза

Лакунарный инфаркт головного мозга на МРТЛакунарный инфаркт головного мозга на МРТ (указан стрелкой)

Заподозрить нарушения церебрального кровообращения можно по очаговым изменениям периваскулярных пространств Вирхова-Робина. Последние представляет собой небольшие полости вокруг мозговых сосудов, заполненные жидкостью, через которые осуществляется трофика тканей и иммунорегулирующие процессы (гематоэнцефалический барьер). Появление гиперинтенсивного МР-сигнала указывает на расширение периваскулярных пространств, поскольку в норме они не видны.

Иногда при МРТ мозга обнаруживаются множественные очаги в лобной доле или в глубоких отделах полушарий, что может указывать на поражение церебральных сосудов. Ситуацию часто проясняет МР-сканирование в ангиорежиме.

Очаги ишемии на МРТОчаги ишемии на МРТ

Очаги ишемии

Нарушения мозгового кровообращения приводят к кислородному голоданию тканей, что может спровоцировать их некроз (инфаркт). Ишемические очаги при Т2 взвешенных последовательностях выглядят как зоны с умеренно гиперинтенсивным сигналом неправильной формы. На более поздних сроках при проведении в Т2 ВИ или FLAIR режиме МРТ единичный очаг приобретает вид светлого пятна, что указывает на усугубление деструктивных процессов.

Что означают белые и черные пятна на снимках МРТ?

Зоны измененного МР-сигнала могут означать:

  • ишемию тканей;
  • отек;
  • некроз;
  • гнойное расплавление;
  • опухолевую трансформацию;
  • метастатическое поражение;
  • глиоз;
  • демиелинизацию;
  • дегенерацию и др.

Врач-рентгенолог описывает интенсивность сигнала, размеры и локализацию очага. С учетом полученных сведений, жалоб пациента и данных предыдущих обследований специалист может предположить природу патологических изменений.

Острый рассеянный энцефаломиелит на МРТОстрый рассеянный энцефаломиелит на МРТ

Причины возникновения очагов на МРТ головного мозга

Если при МРТ головного мозга выявлены очаги, их расценивают как симптомы патологии органа. Зоны гипер- или гипоинтенсивного МР-сигнала свидетельствуют о нарушении структуры определенного участка церебрального вещества. Очаговые изменения могут быть единичными или множественными, крупными, мелкими, диффузными и т.п.. Подобное наблюдается при:

  • атеросклерозе;
  • ангиопатии;
  • инсультах;
  • хронической недостаточности мозгового кровообращения;
  • рассеянном склерозе или иных демиелинизирующих заболеваниях;
  • болезни Альцгеймера, Пика, Паркинсона и т.п.;
  • энцефаломиелите и других заболеваниях.

Очаговые изменения могут быть результатом некроза, гнойных процессов, ишемии, воспаления тканей, разрушения нервных волокон и т.п. Фокальная патология на МР-сканах почти всегда свидетельствует о развитии серьезного заболевания, а в некоторых случаях указывает на опасность для жизни больного.

Источник

Если мне нужно сделать фотографию, я достаю из кармана мобильник, выбираю фотоприложение, навожу объектив на понравившийся объект и… щёлк! В 99% случаев я получаю снимок, который сносно отображает необходимый фрагмент реальности.

А ведь ещё несколько десятилетий назад фотографы вручную выставляли выдержку и диафрагму, выбирали фотоплёнку, устраивали проявочную лабораторию в ванной комнате. А снимки получались… ну, такие себе.

Магнитно резонансная томография — потрясающая методика. Для врача, который осознанно управляет параметрами сканирования, она предоставляет огромные возможности в визуализации тканей человеческого организма и патологических процессов.

В зависимости от настроек, одни и те же ткани могут совершенно по разному выглядеть на МР томограммах. Для относительной простоты интерпретации существует несколько более-менее стандартных «режимов» сканирования. Это сделано для того, чтобы МРТ, из категории методик, которыми владеют только одиночки-энтузиасты, пришла в широкую медицинскую практику. Как методика фотографии, которая упростилась настолько, что не только стала доступна каждому, но и порядком успела многим надоесть 😉

Здесь я расскажу о нескольких наиболее часто использующихся режимах сканирования. Поехали!

Т1 ВИ (читается «тэ один вэ и») — режим сканирования, который используется всегда и везде. Свободная безбелковая жидкость (например ликвор в желудочках мозга) на таких изображениях выглядит тёмной, мягкие ткани имеют различные по яркости оттенки серого, а вот жир ярок настолько, что кажется белым. Также на Т1 ВИ очень яркими выглядят парамагнитные контрастные вещества, что и позволяет использовать их для визуализации различных патологических процессов.

Слева — Т1 ВИ, а справа — Т1 ВИ после введения контраста. Опухоль накопила парамагнитный контраст. Просто и красиво!

А ещё на Т1 яркой будет выглядеть гематома на определённых стадиях деградации гемаглобина.

В МРТ «яркий» обозначается термином «гиперинтенсивный»,а «тёмный» — термином «гипоинтенсивный».

Т2 ВИ (читается «тэ два вэ и») — также используется повсеместно. Этот режим наиболее чувствителен к регистрации патологических процессов. Это значит, что большинство патологических очагов, например в головном мозге, будут гиперинтенсивными на Т2 ВИ. А вот определение какой именно патологический процесс мы видим требует применения других режимов сканирования. Помимо патологических процессов и тканей, яркой на Т2 будет свободная жидкость (тот же ликвор в желудочках).

Т2 ВИ — классика в визуализации головного мозга. И вообще, любимая картинка всех МРТшников.

Аббревиатура «ВИ» расшифровывается как «взвешенные изображения». Но боюсь, мне не удастся объяснить смысл этого заклинания без углубления в физику метода.

Pd ВИ (читается «пэ дэ вэ и») — изображения взвешенные по протонной плотности. Что-то среднее между Т1 и Т2 ВИ. Применяется достаточно редко, в связи с появлением более прогрессивных режимов сканирования. Контрастность между разными тканями и жидкостями на таких изображениях довольно низкая. Однако, при исследовании суставов этот режим продолжает пользоваться популярностью, особенно в комплексе с жироподавлением, о котором разговор отдельный.

Слева — Pd ВИ, справа — Т2 ВИ. Одному мне понятно, почему Pd теперь редко используют ?

Словосочетание «режим сканирования» конечно можно использовать, но правильнее использовать словосочетание «импульсная последовательность». Речь про набор радиочастотных и градиентных импульсов, которые используются во время сканирования.

FLAIR (произносится как «флаир» или «флэир») — это Т2 ВИ с ослаблением сигнала от свободной жидкости, например, спинномозговой жидкости. Очень полезная импульсная последовательность, применяется в основном при сканировании головного мозга. На таких изображениях многие патологические очаги видны лучше чем на Т2 ВИ, особенно если они прилежат к пространствам, которые содержат ликвор.

Здесь FLAIR — крайняя картинка справа. Именно на ней лучше всего видны патологические очаги, которые прилежат к желудочкам мозга и субарахноидальному пространству.

Читайте также:  Можно ли делать мрт головного мозга детям до года

Это режимы сканирования или импульсные последовательности, которые наиболее часто используются в ежедневной практике. Но есть ещё много других, которые применяются реже и дают более специфическую информацию.

P.S. Если вам интересно узнать, что такое жиродав и каим он бывает — обязательно поставьте лайк статье, подпишитесь на мой канал в ЯндексДзен или в telegram — так я буду знать, что вы требуете продолжения 😉

Источник

анонимно

Здравствуйте Андрей Анатольевич! У моей мамы ей 59 -уже 3 недели держится аномально высокое артериальное давление, ранее бывали единичные случаи подъема и то не до таких пределов как 210 на 130. Она у меня с одной почкой, увеличенной щитовидной железой, аллергетик, имеет грыжу межпозвоночных дисков шейного отдела и компрессионный перелом позвонка в поясничной области, ИБС и гипертрофия левого желудочка. Еще давно ставили диагноз энцефалопатия.Мы решили пройти обследование на предмет аномального давления. Вот результаты МРТ. Записались на прием к невропатологу, но к хорошему невропатологу очень большая очередь, нам долго ждать. Пожалуйста подскажите насколько все серьезно. И самое главное, что это за зоны патологического МР-сигнала.
На серии МР томограмм, взвешенных по Т1 и Т2 в трех проекциях визуализированы суб и супратенториальные структуры. Боковые желудочки мозга обычных размеров и конфигурации, умеренная физиологическая ассиметрия (S>D). 3 и 4 желудочки не расширены. супраселлярная цистерна выражено пролабирует в область турецкого седла, остальные базальные цистерны не изменены. Хиазмальная область без особенностей, ткань гипофиза имеет обычный сигнал.
На уровне заднего рога правого бокового желудочка субэпендимарно определяется патологического Мр-сигнала (слабо гипеинтенсивного по Т2 изоинтенсивного по Т1) округлой формы размерами 1,0 х 1,2 см с нечеткими и неровными контурами.
Субарахноидальное конвексиальное пространство умеренно расширено, преимущественно в области лобных и теменных долей. Отмечается умеренное расширение периваскулярных пространств Вихрова_Робина по ходу пенетрирующих сосудов в области лобных и теменных долей, базальных ядер. Срединные структуры не смещены. Миндалины мозжечка расположены на уровне большого затылочного отверстия.
Отмечается повышение интенсивности сигнала по Т2 и утолщение слизистой оболочки лобных, клиновидной, верхнечелюстных пазух, ячеек решетчатого лабиринта, вероятно, за счет отека воспалительного генеза.
В правой верхнечелюстной пазухе определяется участок округлой формы с гиперинтенсивным по Т2 и изоинтенсивным по Т1 сигналом, занимающая практически всю верхнечелюстную пазуху. С ровными, четкими коньтурами, размерами 12,7 х 2,0 см, наиболее вероятно киста.
Заключение: МР картина зоны патологического МР-сигнала на уровне заднего рога правого бокового желудочка. Наружная заместительная гидроцефалия. Формирующееся «пустое» турецкое седло. Риносинусопатия. Киста правой верхнечелюстной пазухи.
Выполнить исследование в условиях контрастного усиление не предоставляется возможным из-за наличия противопоказаний в анамнезе.

Скорее всего очаги дисциркуляторного ишемического характера. Как следствие длительного постоянно- высокого давления. (Судя и по расположению, и по размерам, и по форме, и по отсутствию окружающего отёка).

анонимно

Спасибо за быстрый ответ Андрей Анатольевич. Извините, но еще один вопрос. Это не опухоль? И может пока мы записаны на прием через » недели маме что начать принимать или это не представляет опасности для жизни?

Очень и очень сомнительно, что это опухоль. Конечно нужно видеть снимки. Без снимков по описанию говорить не совсем правильно. Но учитывая описание — «Боковые желудочки мозга обычных размеров и конфигурации….образование размерами 1,0 х 1,2 см с нечеткими и неровными контурами…..маме 59» то можно сделать нект выводы — Если бы опухоль в 59 лет она была большая, со смещением и изменением желудочков. если метастаз то он правильной формы и с большим отёком мозга. Этого ничего нет Ничего по поводу этого образования Вашей маме принимать не надо, это следствие высокого давления, занимайтесь АД. Опасности для жизни именно это образование не представляет. А вот высокое АД — да.

Источник

Любое магнитное поле может индуцировать в катушке электрический ток, но предпосылкой для этого является изменение силы поля. При пропускании через тело пациента вдоль оси y коротких ЭМ радиочастотных импульсов М поле радиоволн заставляет М моменты всех протонов вращаться по часовой стрелке вокруг этой оси. Для того чтобы это произошло, необходимо, чтобы частота радиоволн была равна ларморовской частоте протонов. Это явление и называют ядерным магнитным резонансом. Под резонансом понимают синхронные колебания, и в данном контексте это означает, что для изменения ориентации магнитных моментов протонов М поля протонов и радиоволн должны резонировать, т.е. иметь одинаковую частоту.

Читайте также:  В каких случаях делается мрт бесплатно

После передачи 90-градусного импульса вектор намагниченности ткани (М) индуцирует электрический ток (МР-сигнал) в приемной катушке. Приемная катушка размещается снаружи исследуемой анатомической области, ориентированном в направлении пациента, перпендикулярно В0. Когда М вращается в плоскостях х-у, он индуцирует в катушке Э ток, и этот ток называют МР-сигналом. Эти сигналы используют для реконструкции изображений МР-срезов.

При этом ткани с большими магнитными векторами будут индуцировать сильные сигналы и выглядеть на изображении яркими, а ткани с малыми магнитными векторами — слабые сигналы и будут на изображении темными.

Контрастность изображения: протонная плотность, Т1- и Т2-взвешенность. Контраст на МР-изображениях определяется различиями в магнитных свойствах тканей или, точнее различиями в магнитных векторах, вращающихся в плоскости х-у и индуцирующих токи в приемной катушке. Величина магнитного вектора ткани прежде всего определяется плотностью протонов. Анатомические области с малым количеством протонов, например воздух всегда индуцируют очень слабый МР-сигнал, и таким образом, всегда представляются на изображении темными. Вода и другие жидкости, с другой стороны, должны быть яркими на МР-изображениях как имеющие очень высокую плотность протонов. Однако это не так. В зависимости от используемого для получения изображения метода жидкости могут давать как яркие, так и темные изображения. Причина этого состоит в том, что контрастность изображения определяется не только плотностью протонов. Определенную роль играют несколько других параметров; два наиболее важных из них — Т1 и Т2.

Периоды релаксации

Рис. 2 — Периоды релаксации

Между MP-импульсами, поступающими, протоны проходят два релаксационных времени Т1 и Т2, в основе которых лежит потеря магнитного напряжения на плоскости х-у (Мху) и восстановления ее по оси z (Mz).

Максимальный тканевый магнетизм, ориентирован по оси z (Mz), зависит от плотности протонов, поэтому относительная сила MP сигналов, определенная непосредственно после подачи 90 ° импульса или после восстановления Mz, дает возможность построить изображение, взвешенное по протонной плотности. Т1 — релаксация отображает постепенное восстановление ядерного магнетизма и ориентации индивидуальных протонов водорода в направлении Во = > (оси z) в исходное положение, что было им присуще к предоставлению 90 ° импульса. Вследствие этого после выключения 90 ° импульса тканевый магнитный момент увеличивать ¬ ться вдоль оси z с нарастающим ускорением от 0 до максимального значения Mz, которое обусловлено протонной плотностью данной ткани. Т1 определяется как время, в течение которого М восстанавливает исходное значение на 63%. После того как пройдет 4-5 промежутков времени, равных Т1, Mz полностью восстанавливается. Что короче Т1, тем быстрее происходит восстановление. Физической основой Т1 — релаксации является обмен тепловой энергии между молекулами. Т1 — релаксационный время зависит от размеров молекул и их подвижности. В плотных тканях с большими неподвижными молекуламы протоны длительное время сохраняют свое положение, содержат энергию, возникает мало слабых импульсов, поэтому Т1 длинный. В жидкости происходит быстрее изменение положения протонов и быстрее отдача тепловой энергии, поэтому Т1 — релаксация в жидкости с малыми молекулами, быстро движется, короткая и сопровождается значительным количеством электромагнитных импульсов различной силы. В паренхиматозных тканях Т1 — релаксация составляет около 500 мс, широко варьируя в зависимости от особенностей их строения. В жировой ткани со средними по размерам и подвижностью молекулами Т1 короткий, а количество импульсов наибольшая. Изображение, контрастность которых построена с учетом разницы Т1 в смежных тканях, называются Т1 — взвешенных изображений.

Физической основой Т2 — релаксации является взаимодействие тканевого магнетизма с протонами. Т2 является показателем постепенного угасания тканевого магнетизма на плоскости х-у (мху) после исключения 90 ° импульса и определяется как время, в течение которого мху теряет 63% от своей максимальной напряжения. После того как проходит 4-5 промежутков времени, равных Т2, мху полностью исчезает. Промежуток времени Т2 варьирует в зависимости от физических и химических свойств тканей. Плотные ткани имеют стабильные внутренние магнитные поля, и поэтому прецессия протонов в них быстро затухает, а индукция энергии быстро снижается, посылая много электромагнитных волн различной частоты, поэтому Т2 является кратким. В жидкостях внутренние магнитные поля нестабильные и быстро становятся равными 0, в меньшей степени влияя на прецессию протонов. Поэтому частота протонов, находящихся в процессии в жидкости является большой, электромагнитные импульсы слабыми, а Т2 релаксация относительно длинной. В паренхиматозных тканях Т2 составляет около 50 мс, т.е. в 10 раз короче, чем ТЕ. Вариации времени Т2 сказываются на величине электромагнитных импульсов (MP). Поэтому изображение, построенное на их исчислении, называется Т2 — взвешенным изображением. Его выявлению мешают сигналы надходят от ТЕ, поэтому регистрация Т2 — взвешенного изображения достигается тем, что вводится интервал времени — эхо время (ТО) между 90 ° импульсом и измерением индуцированного им MP. Течение эхо времени мху постепенно снижается вследствие Т2 — релаксации. Путем регистрации амплитуды MP — сигнала в конце эхо времени определяется разница Т2 в различных тканях.

Источник