Что такое tof в мрт

Что такое tof в мрт thumbnail

Содержание: 

Магнитно-резонансная ангиография (МРА) сосудов головного мозга

Введение

MРA означает магнитно-резонансная  ангиография. МРА сосудов головного мозга проводится для оценки нарушений в системе притока артериальной крови к головному мозгу.

Трехмерная (3D) времяпролетная ангиография time-of-flight (TOF) МRА является наиболее распространенным методом, используемым для оценки системы артериального кровоснабжения головного мозга.

МРА 3D TOF обеспечивает более высокий сигнал-шум (signal-to-noise) и короткое время обработки изображений. MРA головного мозга проста в выполнении  и не требует контрастного усиления.

Времяпролетная ангиография  (time-of-flight, TOF)

Это методика получения контрастности между неподвижными тканями и током крови, путем воздействия на величину намагниченности.

Величина намагниченности от движущихся спинов очень велика по сравнению с таковой от неподвижных  спинов. Это приводит к образованию  высокого сигнала от перемещения спинов крови и сниженного сигнала от неподвижных спинов тканей. Для работы с изображениями времяпролетная ангиография (TOF) использует продольный вектор намагниченности. 3D последовательность позволяет получать более тонкие срезы с меньшим размером воксела (0,6-1,0 мм).

Показания для МРА сосудов головного мозга:

  • Аневризма, инсульт, вазоспазм, васкулит;
  • Окклюзия и стеноз внутренней сонной артерии;
  • Окклюзия и стеноз мозговой артерии;
  • Окклюзия и стеноз базилярной артерии;
  • Артериовенозная мальформация (АВМ);
  • Атеросклероз сосудов

Противопоказания:

  • Любой электрический, магнитный или механический активированный имплантат (например, кардиостимулятор, биостимулятор инсулиновой помпы, нейростимулятор, кохлеарный имплант, и слуховые аппараты);
  • Внутричерепные (интракраниальные) аневризмальные клипсы (кроме титановых);
  • Беременность (в случае если риск превышает пользу);
  • Наличие ферромагнитных хирургических зажимов или скоб;
  • Наличие металлического инородного тела глазу;
  • Наличие в организме металлического шрапнеля, пули.

Подготовка пациента к МР-исследованию головного мозга

  • Перед процедурой сканирования необходимо получить письменное согласие пациента на проведение исследования;
  • Попросить пациента вытащить все металлические предметы, включая ключи, мелочь, колешек, пластиковые карты с магнитными полосами, ювелирные изделия, слуховые аппараты и шпильки;
  • При необходимости обеспечить сопровождающего, для пациентов страдающих клаустрофобией (например, родственника или сотрудника);
  • Предложить пациенту беруши, или наушники с музыкой для дополнительного комфорта;
  • Необходимо разъяснить пациенту суть процедуры и порядок ее проведения;
  • Предупредить пациента сохранять спокойствие во время процедуры;
  • Отметить вес пациента.

Положение при проведении МРА сосудов головного мозга

  • Лежа на спине головой вперед (по направлению к магниту);
  • Расположите голову в головной катушке и иммобилизуйте ее подушками;
  • Для дополнительного комфорта подложите под ноги пациента валики;
  • Центр лазерного луча фокусируется над переносицей.

Что такое tof в мрт

Рекомендуемые протоколы, параметры и планирование

Локалайзер

Первично при планировании последовательности должны быть выполнены снимки в 3 плоскостях. Выдержка снимков менее 25 сек, с получением Т1-взешенных изображений низкого разрешения. 

Что такое tof в мрт

Серия Т2 турбо спин-эхо, аксиальный срез

Планирование аксиальных срезов на сагиттальной плоскости; угловое расположение блока должно быть параллельно колену и валику мозолистого тела. Эти срезы должны полностью покрывать головной мозг от темени до уровня большого затылочного отверстия. Проверьте расположение блока на 2-х других плоскостях. Соответствующий угол должен быть получен в коронарной плоскости при наклонном положении головы (перпендикулярно линии, соединяющей третий желудочек и ствол головного мозга).

Что такое tof в мрт

Параметры

TR

TE

SLICE

FLIP

PHASE

MATRIX

FOV

GAP

NXA(AVRAGE)

3000-4000

100-120

5мм

130-150

R˃L

320X320

210-230

10%

2

Времяпролетная ангиография  3D (time-of-flight, TOF)

Планирование аксиальных 3D – блоков  на сагиттальной плоскости; угловое расположение блока должно быть параллельно колену и валику мозолистого тела. Эти срезы должны полностью покрывать Виллизиев Круг от уровня мозолистого тела до уровня большого затылочного отверстия. Проверьте расположение блока на 2-х других плоскостях. Соответствующий угол должен быть получен в коронарной плоскости при наклонном положении головы (перпендикулярно линии, соединяющей третий желудочек и ствол головного мозга). Применение полос насыщения над аксиальным блоком снизит артефакты от венозных сосудов на изображениях.

Что такое tof в мрт

Методика переноса намагниченности (Magnetization Transfer Contrast (MTC) technique) широко используется в TOF МРА сосудов головного мозга как средство управления контрастом изображения.  При TOF МР ангиографии контрастность между нормальной неподвижной тканью и током крови обеспечивается посредством серии Т1 насыщения гидрофильных тканей, за счет повторяющихся импульсов возбуждения. Дополнительная супрессия неподвижных гидрофильных тканей с использованием импульсов переноса намагниченности, обеспечивает визуализацию сосудов малых размеров.

Параметры

3D — time-of-flight (TOF)

TR

TE

FLIP

NXA

SLICE

MATRIX

FOV

PHASE

GAP

MTC

30-40

5-9

25

1

0,7 мм

256X256

250

R˃L

-33%

ON

Проекция максимальной интенсивности (MIP)

MIP является наиболее часто используемым методом обработки записи МР исследований сосудов. MIP позволяет реконструировать проекции 2D-изображения с помощью 3D-данных, используя алгоритм трассировки лучей, который создает изображение белых пикселей, в качестве сигналов максимальной интенсивности исследуемой области.

MIP is the most commonly used post processing technique in MRI vascular studies. MIP reconstructs a 2D projection image from 3D data by a ray tracing algorithm, which produces an image of white pixels representing the highest intensity signal in that location within the examined volume.

Читайте также:  Мрт аппараты открытого типа купить

Что такое tof в мрт

НАЖМИТЕ ПОСЛЕДОВАТЕЛЬНО НА ПУНКТЫ, ПРЕДСТАВЛЕННЫЕ НИЖЕ ДЛЯ ПРОВЕРКИ СКАНИРОВАНИЯ

Что такое tof в мрт

Что такое tof в мрт

Что такое tof в мрт

Источник

МРТ очень чувствительна к кровотоку. На эффектах кровотока основана МР ангиография, кроме того, его следует учитывать ввиду возможности появления артефактов.

Эффекты кровотока в последовательности спин – эхо.

При МРТ с коротким интервалом TR полного восстановления продольной намагниченности происходить не будет, и  каждый последующий 90° импульс приходится на частично насыщенную систему. В результате яркость сигнала от тканей снижается. В отличие от неподвижных тканей, многократно подвергающихся действию 90° импульса в срезе, кровь втекает в МРТ срез ненасыщенной. Поэтому протоны крови, медленно текущей перпендикулярно срезу, дают сигнал ярче, чем окружающие ткани. Это явление называется эффектом «втекания»

эффекы тофЗависимость сигнала в последовательности SE от её параметров и скорости кровотока

Обязательными условиями эффекта «втекания» являются при МРТ короткий интервал TR, приводящий к частичному насыщению неподвижных протонов, и толщина среза, обеспечивающая достаточное число попадающих с кровью протонов для появления по сравнению с неподвижными тканями избыточного сигнала. Исходя из этого, скорость кровотока, дающая наибольший сигнал, равна результату деления толщины среза на TR. Очевидно, МРТ будут Т1-взвешенного типа, а скорость кровотока порядка 1 см/с. Типичным проявлением эффекта «втекания» при МТ служит феномен «открывающего среза». На МРТ Т1-взвешенного типа на первом из серии срезов изображение сосуда поперечного срезу ярче, чем на последующих. Уменьшение сигнала связано с постепенным насыщением протонов.

В МРТ последовательности SE в срезе каждое ядро водорода получает два импульса  90° возбуждающий и затем через интервал, равный половине ТЕ, 180° рефазирующий (рефокусирующий). Когда время нахождения протона в МРТ срезе равно по меньшей мере половине длительности интервала TE, он также как и окружающие неподвижные ткани будет получать оба импульса. Скорость кровотока в крупных сосудах довольно высока. Тогда ядра, находящиеся в срезе, могут оказаться лишенными одного из импульсов. На МРТ это проявляется в виде потери сигнала, называемого эффектом  “вымывания” (wash-out). Чем больше скорость кровотока, тем явственнее эффект  “вымывания” на МРТ.

время прохождения

Феномен времени прохождения. Сигнал появляется только тогда, когда ядро в срезе возбуждено и рефазировано (действуют оба импульса)

Кроме скорости кровотока при МРТ на эффект  “вымывания” влияют длительность интервала ТЕ и толщина среза. Удлинение ТЕ в МРТ импульсных последовательностях приводит к тому, что число ядер, неуспевающих рефазироваться, возрастает, так как они  “вымываются” из среза еще до действия 180°- импульса. Уменьшение толщины среза МРТ усиливает эффект  “вымывание” по тому же принципу. В участках стеноза кровоток становится вихревым, что отображается яркой зоной на  “темнокровных” МР – ангиограммах.

Кроме радиочастотных импульсов на протоны действуют градиенты. Сдвиг фазы неподвижных протонов пропорционален силе градиента, приложенного к протону. В случае движущегося протона, сдвиг ещё пропорционален скорости кровотока. При небольших скоростях кровотока влияние сдвига фазы не сказывается на МРТ изображении. Однако если высокая скорость кровотока приведёт к сдвигу фазы на 180° и более, векторы намагниченности в плоскости X-Y окажутся в противофазах. Это приведёт к уменьшению суммарного вектора намагниченности и, следовательно, потере сигнала. При МРТ  с последовательностью SE эффект сдвига фазы дополняет эффект «вымывания»

Ангиография, основанная на эффекте  “втекания” (TOF).

В МРТ последовательностях с градиентным формированием эха рефазировка происходит не в отдельном избранном слое, а во всем объеме сразу, что соответствует приложению градиента на все тело. Следовательно рефазировка не зависит от положения возбужденного ядра и эффект  “вымывания” невозможен. Тогда в отличии от МРТ с последовательностью SE эффект «втекания» всё время усиливается с уменьшением TR. Однако уменьшение TR ограничивается толщиной МРТ среза, меньше которой уже  будет недостаточно протонов для эффекта «втекания». Методика ангиографии, основанная на эффекте  “втекания ”, получила название time-of-flight, сокращенно TOF. Поскольку по мере прохождения вдоль слоя идёт насыщение крови и затухание сигнала, методика наиболее чувствительна к кровотоку, перпендикулярному срезу.

Если в градиентной МРТ импульсной последовательности выбрать очень короткое TR, как это делается в 3D TOF, неподвижные ядра будут многократно подвергаться действию возбуждающего импульса и насыщаться. Это означает, что на МРТ при TR короче Т1 ткани после каждого возбуждающего импульса остается остаточная продольная намагниченность. Последняя нарастает с каждым импульсом вплоть до равновесного состояния, когда существуют постоянные продольная и поперечная намагниченности.

принцип устойчивого состояния

Принцип получения устойчивого состояния.

В результате при МРТ сигнал от неподвижных тканей снижается, а ненасыщенные ядра водорода крови дают яркий сигнал. Однако при прохождении крови вдоль возбужденного МРТ слоя под действием многократных 90° импульсов сигнал от сосудов также постепенно затухает. Поэтому постоянная продольная намагниченность нежелательна.  Для нарушения устойчивого состояния продольной намагниченности угол возбуждения (угол Эрнста) можно постепенно увеличивать в процессе сбора данных (т.е. вдоль к-пространства), такая методика обозначается TONE.

Читайте также:  Мрт в ставрополе для детей

Яркий сигнал от жира может симулировать сигнал от кровотока. При МРТ его удается подавить сочетанием TOF с методикой FatSat. Также яркий сигнал исходит от метгемоглобина, из которого состоит гематома после распада эритроцитов. Подавить методами МРТ такой сигнал не представляется возможным.

TOF – ангиография может быть получена в 2D или 3D вариантах.

2D TOF ангиография представляет собой последовательность поперечных тонких МРТ срезов, подлежащих реконструкции. 2D TOF методика наиболее приспособлена для МР венографии, так как при МРТ ТR выбираются относительно длительными и поэтому сигнал от медленного кровотока относительно ярче.

3D TOF ангиография состоит из одного МРТ слоя, разделяемого дополнительным набором фазовых градиентов на 32 или 64 среза. Поле видения выбирается прямоугольным, в 2 раза меньше в направлении кодировки фазы. Это позволяет уменьшить матрицу МРТ до 128 х 256 или 256 х 512. Поперечные МРТ срезы получаются лучше, чем сагиттальные или корональные, так как кровь не успевает насытиться при прохождении поперек МРТ слоя. Методика 3D TOF наиболее приспособлена для изучения быстрого кровотока. Для подавления сигнала от венозного кровотока обязательно устанавливается полоса (блок) насыщения, примыкающая к  слою МРТ срезов с направления венозного тока. Так, для изучения сонных артерий полоса насыщения ставится над слоем МРТ срезов. Полоса насыщения представляет собой 90° импульсы, уменьшающие в толще полосы продольную намагниченность. Так как интервал от насыщающего 90° импульса до 90° импульса последовательности короткий (нет зазора между полосой насыщения и слоем срезов) втекающие протоны остаются насыщенными и не дают сигнала. Толщина полосы насыщения при МРА должна быть не меньше произведения скорости кровотока в подавляемых сосудах на длительность интервала TR.

Вариантом 3D TOF  является MOTSA – ангиография с множественными переслаивающими тонкими МРТ слоями, каждый из которых делиться на 16 или 32 среза. Переслоение составляет 25% с каждой стороны. В отличие от обычной 3D TOF в этом варианте меньше насыщение поперек поля видения и меньше падение интенсивности сигнала по краям. Однако в связи с переслоением увеличивается время сканирования. Современные методики TOF МРА включают сегментацию к-пространства.

Эффект сдвига фазы на градиентных томограммах приводит к потере сигнала в постстенотической зоне в связи с турбулентным кровотоком. Поэтому нередко отмечается преувеличение степени стеноза. Избежать эффекта сдвига помогает зануление фазы, приложением считывающих градиентов с чередующейся противоположной направленностью.

Фазово-контрастная ангиография (PC).

Фазово-контрастная ангиография основана на эффекте сдвига фазы у движущихся протонов. В ходе анализа МРТ данных вокселы с нулевой фазой воспринимаются как содержащие неподвижные протоны. Ненулевая фаза воспринимается при МРТ как кровоток.

Классическим методом получения изображения на основе сдвига фазы, обозначаемым FEER, служит использование биполярного градиента. Сперва подаётся МРТ импульсная последовательность с градиентом, зануляющим фазу. Полученные данные необходимы для последующего их вычитания из фазных данных. Затем подаётся импульсная МРТ последовательность, в которой сразу после действия радиочастотного импульса, когда спины сфазированы, прикладывается биполярный градиент. Первая его половина будет приводить к дефазировке, то есть изменению частоты прецессии спинов по направлению градиента. Вторая половина, точно соответствующая первой, но с обратной полярностью, будет их полностью рефазировать. Поперечная намагниченность неподвижных спинов опять станет нулевой. Однако на движущиеся спины градиенты воздействуют иным образом. Первая половина биполярного градиента увеличивает частоту прецессии в соответствии с его амплитудой. За время действия положительной половины градиента протоны перемещаются в пространстве. Тогда вторая половина, отрицательной полярности, прикладывается к тем же протонам уже в иной точке пространства и следовательно с иной амплитудой. В итоге при МРТ, в отличие от неподвижных спинов, движущиеся не будут полностью сфазироваться. Иначе их частота вращения не будет замедляться до Ларморовской. Изменение фазы будет пропорционально скорости кровотока в направлении биполярного градиента. Для получения ангиографического МРТ изображения биполярный градиент подается дважды в противоположных направлениях и вся процедура повторяется, в каждом из трех измерений.

В зависимости от изучаемых сосудов при PC МРА выбирается параметр скорости кровотока (Venc.). Он контролирует амплитуду и силу биполярного градиента. Значение Venc. должно быть близким, но не превышать скорость изучаемого кровотока. Тогда сдвиг фазы будет  наибольшим и ангиографическое изображение наилучшим. Если Venc. превышает скорость кровотока, будет потеря сигнала, а при двухкратном превышении сигнала от воксела не будет совсем. Важным следствием является возможность раздельной визуализации быстрого и медленного кровотока, а также определение направления кровотока. В варианте 2D ангиография получается за короткое время и в едином слое (до 100 мм) без разделения на срезы. Дальнейшие преобразования (MIP или другие) не требуются. Поэтому ее хорошо использовать предварительно 3D методике с целью определения оптимального значения Venc. Вариант 3D дает наилучшее качество МРА изображения, но занимает больше времени.

Построение ангиографического изображения.

По методикам TOF и 3D РС получают множество тонких МРТ срезов. Они имеют низкую контрастность, высокую зашумленность и непригодны для диагностики. Ангиографическую картину получают путем математической обработки, называемой  “проекцией с наибольшей интенсивностью пикселов” (MIP). Смысл ее состоит в том, что пакет МРТ срезов преобразуется в одно плоскостное изображение. Причем отбирается по всем МРТ срезам только пиксел с наибольшей интенсивностью по соответствующим координатам. “Проекционный луч” подается под разными углами, что дает возможность делать повороты изображения.

Читайте также:  Где хорошо делают мрт сосудов головного мозга

MIP реконструированное 3D PC МРА изображение отражает сумму сигналов во всех трёх плоскостях. Метод фазовоконтрастной ангиографии позволяет также получать изображение кровотока в каждом из направлений раздельно: кранио-каудальном, передне-заднем и слева-направо. Если стоит задача количественной характеристики кровотока, реконструируют фазные изображения в каждом из направлений.

Среди  всех методов лучевого исследования сосудов МРА по праву занимает одно из ведущих мест. МРТ и МРА в СПб – две неотъемлимые составляющие МРТ головного мозга, особенно при головных болях. МР-венография также заняла достойное место при исследовании венозных синусов, а также венозной системы малого таза. МРА лучше получается в высоких полях, МРВ практически одинаково хорошо и в открытом МРТ.

Все статьи, размещенные на сайте, написаны лично профессором Холиным А.В. В качестве ссылки можно привести одну из последних монографий, где есть глава, посвященная физике МРТ. Холин А.В.МРТ заболеваний и травм центральной нервной системы//М: “МЕДпресс-информ”, 2017, 256, с.

Источник

Магнитно-резонансная ангиография (МР-ангиография, МРА) — метод получения изображения кровеносных сосудов при помощи магнитно-резонансного томографа. Исследование проводится на томографах с напряжённостью магнитного поля не менее 0.3 Тл. Метод позволяет оценивать как анатомические, так и функциональные особенности кровотока.

Суть метода[править | править код]

Под воздействием сильного магнитного поля спины протонов ядер водорода изменяют своё положение и располагаются вдоль оси магнитного поля. Воздействие магнитного поля и радиочастотного излучения на протоны не постоянно, с заданными силой, частотой и временем, а протоны после воздействия на них радиочастотного сигнала вновь возвращаются в исходное положение — так называемое «время релаксации» (T1 и T2). Воздействие магнитного поля и радиочастотного импульса на протоны ядер водорода заставляет их вращаться относительно новых осей в течение очень короткого периода времени, что сопровождается выделением и поглощением энергии, формированием своего магнитного поля. Регистрация этих энергетических изменений и является основой МРТ-изображения. Способность подобного смещения зависит от гидрофильности тканей, их химического состава и структуры. Она практически отсутствует в костной ткани и наибольшая в жидкостных структурах. Метод магнитно-резонансной ангиографии позволяет получать изображения сосудов без использования каких-либо рентгеноконтрастных средств, хотя для получения еще более четкого изображения применяются особые контрастные вещества на основе гадолиния.

Варианты МР-ангиографии в зависимости от импульсных последовательностей[править | править код]

Времяпролетная ангиография — (Time of Flight, ToF)[править | править код]

При проведении времяпролетной ангиографии используется импульсная последовательность «градиентное эхо» с коротким TR (временем спин-релаксации). Срезы формируются перпендикулярно направлению тока крови. Высокий сигнал текущей крови — это результат втекания в срез спинов(векторов), не подавленных между радиочастотными (РЧ) возбуждениями. Подавленные неподвижные спины подвергаются неполной релаксации между РЧ-возбуждениями, давая меньший сигнал.

Фазово-контрастная ангиография (Phase-contrast, PC)[править | править код]

Фазоконтрастная ангиография позволяет визуально оценить скорость кровотока; сигнал содержит как амплитудную, так и фазовую информацию. Фазоконтрастная ангиография в 4 раза медленнее TOF.

4D-ангиография[править | править код]

Позволяет разделять артериальную и венозную фазы кровотока с визуализацией его динамики. Этот метод применяется для диагностики нарушений гемодиамики, таких как мальформации и фистулы. Время исследования значительно меньше в сравнении с другими методами МРА.

Виды проводимых МР-ангиографических исследований[править | править код]

Ангиография артерий головного мозга (времяпролетная ангиография)

Ангиография артерий шеи (времяпролетная ангиография)

Ангиография вен головного мозга (фазово-контрастная ангиография)

Применение[править | править код]

Магнитно-резонансная ангиография применяется для диагностики следующих заболеваний:

  • аневризма — локальное расширение стенки сосуда
  • расслоение аневризмы
  • врождённые пороки сердца
  • стеноз сосудов
  • воспаление сосудистой стенки (васкулит)
  • атеросклероз артерий

Противопоказания[править | править код]

Существуют как относительные противопоказания, при которых проведение исследования возможно при определённых условиях, так и абсолютные, при которых исследование недопустимо.

Абсолютные противопоказания[править | править код]

  • установленный кардиостимулятор (изменения магнитного поля могут имитировать сердечный ритм).
  • ферромагнитные или электронные имплантаты среднего уха.
  • большие металлические имплантаты, ферромагнитные осколки.
  • кровоостанавливающие клипсы сосудов головного мозга (риск развития внутримозгового или субарахноидального кровотечения).

Относительные противопоказания[править | править код]

  • инсулиновые насосы
  • нервные стимуляторы
  • неферромагнитные имплантаты внутреннего уха,
  • протезы клапанов сердца (в высоких полях, при подозрении на дисфункцию)
  • кровоостанавливающие клипсы (кроме сосудов мозга),
  • декомпенсированная сердечная недостаточность,
  • беременность (на данный момент собрано недостаточное количество доказательств отсутствия тератогенного эффекта магнитного поля)
  • клаустрофобия (панические приступы во время нахождения в тоннеле аппарата могут не позволить провести исследование)
  • необходимость в физиологическом мониторинге

См. также[править | править код]

  • Ангиография
  • КТ-ангиография

Источник