Цитокины и врожденный иммунитет
Цитокины — составная часть молекулярных механизмов как врожденного, так и адаптивного иммунитета.
Это белковые молекулы, которые продуцируются всеми клетками иммунной системы, причем не только гематопоэтического, но и стромального происхождения. Цитокины могут действовать на те же или на другие клетки через высокоаффинные рецепторы, запуская каскады внутриклеточной сигнализации, которые способны приводить к активации или репрессии, запуску дифференцировки или апоптоза и т. д. Цитокины могут действовать дистально и системно (как это делают гормоны, причем цитокины структурно родственны некоторым классам белковых гормонов), но могут действовать местно и даже только на те клетки, которые находятся в непосредственном контакте с клеткой-продуцентом, а также аутокринно. Одни цитокины секретируются, а другие заякорены на мембране клетки-продуцента, и только при определенных условиях могут быть высвобождены.
Мы более подробно рассмотрим цитокины, важные именно для системы врожденного иммунитета, хотя многие цитокины мультифункциональны (плейотропны) и такой упрощенной классификации не подчиняются.
Так, система цитокина ИЛ 1 (в действительности, три лиганда — два разных цитокина: ИЛ-1 альфа и — гораздо более важный — ИЛ-1 бета и «блокирующий» лиганд, называемый антагонистом рецептора, ИЛ-1 РА) вкупе с рецепторами семейства ИЛ-1, а также системы ИЛ-18 и ИЛ — 33, имеют прямое сходство с механизмами передачи сигнала в одной из центральных ветвей врожденного иммунитета — в Toll-подобных рецепторах. Подмножеством важных регуляторных и эффекторных генов, активируемых при врожденном иммунном ответе, оказались гены цитокинов, например провоспалительных (таких, как ФИО, ИЛ-6 или тот же ИЛ-1) или хемотактичсских (таких, как ИЛ-8 или МСР1). После продукции цитокины действуют на те же или другие клетки (аутокринно, паракринно или системно) через высокоаффинные рецепторы.
Напомним общие принципы передачи сигнала от цитокинов через цитокиновые рецепторы. Именно по типу передаваемого сигнала (что прямо связано со структурой внутриклеточной части рецептора) и следует классифицировать многочисленные семейства клеточных рецепторов цитокинов. Повторим, что многие структурные и биохимические парадигмы, лежащие в основе механизмов передачи внутриклеточного сигнала, справедливы и для нецитокиновых рецепторов (например, они справедливы и для рецепторов NK-клеток, рассмотренных выше).
У большинства цитокиновых рецепторов (кроме хемокиновых, об этом — дальше) передача сигнала основана на серии высокоаффинных белок-белковых взаимодействий в цитоплазме с участием адаптерных белков (в некоторых случаях адаптерные белки обладают белок-киназными активностями). В результате конформационных изменений в молекуле рецептора под действием связавшегося цитокина происходит одно из следующих событий:
(а) сближаются цитоплазматические домены рецепторов, которые обычно состоят из 2 или 3 отдельных полипептидных цепей (субъединиц). В результате образуется новая трехмерная молекулярная поверхность (иногда используют термин «молекулярная платформа»), на которую с большим сродством присоединяются специфичные для данного вида сигнализации адаптерные белки. В некоторых случаях адаптерные белки уже предассоциированы с рецептором, но связывание цитокина сближает их так же, как сближает сами субъединицы рецептора, с образованием новых платформ, на которые могут быть рекрутированы адаптерные белки «второй волны» или белок-киназы;
(б) адаптерный белок может иметь киназную активность (обычно — способность фосфорилировать другие белки по тирозину), и после сближения эта активность индуцируется, что приводит с специфическому фосфорилированию цитоплазматических частей рецептора или адаптерных молекул, или того и другого. Наличие заряженной и достаточно крупной фосфатной группы приводит к изменениям молекулярных поверхностей белкового комплекса, у которых появляется сродство к следующему белку сигнального каскада (это может быть адаптерный белок «второй волны», киназа или предшественник транскрипционного фактора).
При изучении сигнализации рецепторов иммунной системы (как клеточно-мембранных, так и цитоплазматических) были открыты белковые модули, которым свойственна гомотипичсская олигомеризация (по принципу «подобное липнет к подобному»), причем такая олигомеризация, во-первых, приводит с образованию новых молекулярных платформ, а, во-вторых, если адаптерный белок имеет 2 таких (но разных!) модуля, он может одним модулем связываться с предсуществующим комплексом, а другим — рекрутировать в комплекс следующие белки сигнального каскада.
Некоторые такие модули (которые получили «звонкие» названия, например упоминавшиеся раньше «домены смерти»), они участвуют как в передаче сигнала для активации транскрипционных факторов, так и в активации каспаз, особого вида протеаз. Последние способны запускать каскады программируемой клеточной смерти, хотя в случае каспазы-1 важным для механизмов врожденного иммунитета событием является расщепление предшественника ИЛ-1 бета, который после секреции через свой рецептор запускает провоспалительный каскад.
Кроме того, одним из относительно недавно понятых общих механизмов внутриклеточной регуляции (это полностью справедливо и для клеток иммунной системы) является регулируемая деградация белков, причем одним из «поцелуев смерти» для белка является присоединение убиквитина (об этом речь шла при рассмотрении сигналов от TLR). В большинстве сигнальных путей имеются белки-регуляторы, которые по умолчанию ингибируют дальнейшую передачу сигнала. Соответственно, их деградация в результате регулируемого убиквитинирования может приводить к активации сигнального каскада.
В других случаях рецепторы могут обходиться без дополнительных адаптерных белков и непосредственно привлекать и связывать киназы (например, JAK-киназы) на своих цитоплазматических доменах. Наконец, существует несколько семейств рецепторов, которые содержат киназные активности (тирозиновую или серин-трсониновую) прямо внутри своих цитоплазматических доменов. Механизмы дальнейшей передачи сигнала у таких рецепторов, как правило, отличаются от приведенной выше парадигмы.
Теперь рассмотрим примеры конкретных семейств рецепторов и особенности их сигналлинга.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 9 июля 2019;
проверки требуют 3 правки.
Цитокины — небольшие пептидные информационные молекулы.
Цитокины имеют молекулярную массу, не превышающую 30 кD.
Цитокин выделяется на поверхность клетки А и взаимодействует с рецептором находящейся рядом клетки В. Таким образом, от клетки А к клетке В передается сигнал, который запускает в клетке В дальнейшие реакции.
Их основными продуцентами являются лимфоциты.
Кроме лимфоцитов их секретируют макрофаги, гранулоциты, ретикулярные фибробласты, эндотелиальные клетки и другие типы клеток.
Они регулируют межклеточные и межсистемные взаимодействия, определяют выживаемость клеток, стимуляцию или подавление их роста, дифференциацию, функциональную активность и апоптоз, а также обеспечивают согласованность действия иммунной, эндокринной и нервной систем в нормальных условиях и в ответ на патологические воздействия.
Термин предложен Стэнли Коэном (англ. S. Cohen) в 1974 г.[1]
Цитокины активны в очень малых концентрациях. Их биологический эффект на клетки реализуется через взаимодействие со специфическим рецептором, локализованным на клеточной цитоплазматической мембране. Образование и секреция цитокинов происходит кратковременно и строго регулируется.
Все цитокины, а их в настоящее время известно более 30, по структурным особенностям и биологическому действию делятся на несколько самостоятельных групп. Группировка цитокинов по механизму действия позволяет разделить цитокины на следующие группы:
- провоспалительные, обеспечивающие мобилизацию воспалительного ответа (интерлейкины 1,2,6,8, ФНОα, интерферон γ);
- противовоспалительные, ограничивающие развитие воспаления (интерлейкины 4,10, TGFβ);
- регуляторы клеточного и гуморального иммунитета — (естественного или специфического), обладающие собственными эффекторными функциями (противовирусными, цитотоксическими).
Спектры биологических активностей цитокинов в значительной степени перекрываются: один и тот же процесс может стимулироваться в клетке более чем одним цитокином. Во многих случаях в действиях цитокинов наблюдается синергизм. Цитокины — антигеннеспецифические факторы, поэтому специфическая диагностика инфекционных, аутоиммунных и аллергических заболеваний с помощью определения уровня цитокинов невозможна. Но определение их концентрации в крови даёт информацию о функциональной активности различных типов иммунокомпетентных клеток; о тяжести воспалительного процесса, его переходе на системный уровень и о прогнозе заболевания.
Цитокины регулируют активность гормональной оси гипоталамус-гипофиз-надпочечники:[2] например, Интерлейкин 1, воздействуя на гипоталамус, усиливает синтез кортиколиберина, что, в свою очередь, повышает выработку АКТГ.
См. также[править | править код]
- Фактор некроза опухоли (ФНО, англ. TNF)
- Остеопонтин
Примечания[править | править код]
Ссылки[править | править код]
- Научно-практический журнал «Цитокины и Воспаление»
- Цитокины — причина парадонтита (недоступная ссылка)
- Все о цитокинах — Иммунинфо
Иммунная система регулируется растворимыми медиаторами, которые называются цитокинами. Эти белки низкой молекулярной массы продуцируются фактически всеми клетками врожденной и адаптивной иммунной систем и в особенности CD4+-Т-клетками, которые регулируют многие эффекторные механизмы. Важным функциональным свойством цитокинов является регуляция развития и поведения клеток-эффекторов иммунной системы.
Некоторые цитокины непосредственно влияют на синтез и работу других цитокинов. Чтобы проще представить, как работают цитокины, сравним их с гормонами — химическими посредниками эндокринной системы. Цитокины служат химическими медиаторами в пределах иммунной системы, хотя также взаимодействуют с определенными клетками других систем, включая нервную. Таким образом, они участвуют в поддержании гомеостаза.
При этом они играют значительную роль в управлении гиперчувствительностью и воспалительным ответом и в некоторых случаях могут способствовать развитию острого или хронического повреждения тканей и органов.
Регулируемые определенным цитокином, должны экспрессировать рецептор к этому фактору. Позитивная и/или негативная регуляция клеточной активности зависит от количества и типа цитокинов, к которым чувствительна клетка, а также от повышения или снижения экспрессии цитокиновых рецепторов. В норме в регуляции врожденных и приобретенных иммунных ответов задействован комплекс этих методов.
История цитокинов
Активность цитокинов открыли в конце 1960 г. Первоначально предполагали, что они служат факторами амплификации, действующими антигензависимо, повышая пролиферативные ответы Т-клеток И.Джери (l.Gery) и соавторы впервые показали, что макрофаги высвобождали митогенный фактор тимоцитов, названный ими лимфоцитактивирующим фактором (LAF). Этот взгляд радикально изменился, когда обнаружили, что надосадочная жидкость мононуклеаров периферической крови, стимулированных митогеном, вызывает длительную пролиферацию Т-клеток в отсутствие антигенов и митогенов.
Вскоре после этого выяснилось, что для изоляции и клональной экспансии линий функциональных Т-клеток может использоваться фактор, продуцируемый самими Т-клетками. Этому фактору, полученному из Т-клеток, разные исследователи давали разные названия; наиболее известное среди них — Т-клеточный фактор роста (TCGF). Цитокины, продуцируемые лимфоцитами, назвали лимфокинами, а продуцируемые моноцитами и макрофагами — монокинами.
Результаты исследования клеточного источника лимфокинов и монокинов, в конечном счете, выявили, что эти факторы не были продуктами исключительно лимфоцитов или моноцитов/макрофагов, что осложнило понимание вопроса. Таким образом, как общее название этих гликопротеиновых медиаторов был принят термин «цитокин».
В связи с необходимостью выработки соглашения, регулирующего определение факторов, полученных из макрофагов и Т-клеток, в 1979 г. была создана международная рабочая группа, которая занималась разработкой их номенклатуры. Поскольку цитокины передавали сигнал от лейкоцита к лейкоциту, был предложен термин «интерлейкин» (IL). Макрофагальному фактору LAF и Т-клеточному фактору роста дали названия ин-терлейкин-1 (IL-1) и интерлейкин-2 (IL-2) соответственно. На сегодняшний день исследовано 29 интерлейкинов, и число их будет, несомненно, возрастать, поскольку продолжаются попытки идентифицировать новых представителей этого семейства цитокинов.
По мере приобретения новых знаний о функциональных свойствах цитокинов в термины, первоначально предназначенные для определения их функций, стали вкладывать более широкий смысл. Об этом свидетельствует и то, что терминология, принятая в 1979 г., устаревает. Хорошо известно, что многие интерлейкины оказывают важные биологические эффекты на клетки, не принадлежащие иммунной системе. Например, IL-2 не только активирует Т-клеточную пролиферацию, но и стимулирует остеобласты — клетки, формирующие кость.
Трансформирующий фактор роста β (TGFβ) также действует на клетки разных типов, в том числе фибробласты соединительной ткани, Т- и В-лимфоциты. Таким образом, цитокины в основном обладают плейотропными свойствами, поскольку они могут влиять на активность множества разных клеточных типов. Кроме того, среди цитокинов выражена избыточность функций, что доказывается, например, способностью активировать рост, выживаемость и дифференцировку В- и Т-клеток более чем одним цитокином (например, и IL-2, и IL-4 могут функционировать как Т-клеточные факторы роста). Этот избыток частично объясняется использованием общих сигнальных субъединиц цитокинового рецептора определенными группами цитокинов.
В конечном счете, цитокины редко, если вообще когда-нибудь, действуют в организме в одиночку. Таким образом, клетки-мишени восприимчивы к окружению, содержащему цитокины, которые часто проявляют аддитивные, синергитические или антагонистические свойства. В случае синергизма совместное действие двух цитокинов вызывает более выраженный эффект, чем сумма эффектов отдельных цитокинов. И наоборот, когда один цитокин ингибирует биологическую активность другого, говорят об их антагонизме.
С 1970 г. знания о цитокинах быстро увеличиваются благодаря их идентификации, определению функциональных характеристик и молекулярному клонированию. Удобная номенклатура, разработанная ранее на основании клеточных источников или функциональной активности определенных цитокинов, не была широко поддержана. Тем не менее время от времени по мере нахождения общих функциональных черт нескольких гликопротеинов вводятся дополнительные термины, определяющие это семейство цитокинов.
В частности, термин «хемокины», принятый в 1992 г., определяет семейство близкородственных хемотаксических цитокинов, имеющих консервативные последовательности и являющихся мощными аттрактантами для разных популяций лейкоцитов, таких как лимфоциты, нейтрофилы и моноциты. Для студентов-иммунологов изучение быстро расширяющегося списка цитокинов с разнообразными функциональными характеристиками может представлять значительные трудности. Однако достаточно сосредоточиться на отдельных заслуживающих особого внимания цитокинах, что будет интересной и посильной задачей.
Общие свойства цитокинов
Общие функциональные свойства
Цитокины обладают некоторыми общими функциональными чертами. Некоторые, такие как интерферон-у (IFNy) и IL-2, синтезируются клетками и быстро секретируются. Другие, такие как фактор некроза опухоли a (TNFα) и TNFβ, могут секретироваться или экспрессироваться как белки, связанные с мембранами. У большинства цитокинов очень короткий период полураспада; следовательно, синтез цитокинов и их функционирование обычно происходят импульсивно.
Рис. 11.1. Аутокринные, паракринные и эндокринные свойства цитокинов. Например, головной мозг отвечает на воздействие цитокинов как на эндокринное воздействие
Подобно полипептидным гормонам цитокины обеспечивают взаимосвязь между клетками в очень низких концентрациях (обычно от 10-10 до 10-15 М). Цитокины могут действовать локально и на ту клетку, которая их секретировала (аутокринно), и на другие близко расположенные клетки (паракринно); более того, они могут действовать системно, как гормоны (эндокринно) (рис. 11.1). Так же, как и другие полипептидные гормоны, цитокины проявляют свои функции, связываясь со специфичными рецепторами на клетках-мишенях. При этом клетки, регулируемые определенными цитокинами, должны экспрессировать рецептор для данного фактора.
Таким образом, активность отвечающих клеток может регулироваться количеством и типом цитокинов, к которым они чувствительны, или повышением/понижением экспрессии цитокиновых рецепторов, которые сами могут регулироваться другими цитокинами. Хорошим примером последнего положения служит способность IL-1 повышать экспрессию рецепторов для IL-2 на Т-клетках. Как отмечено ранее, это иллюстрирует одну общую черту цитокинов, а именно, их способность совместно действовать, создавая эффект синергизма, что усиливает их воздействие на единичную клетку.
При этом некоторые цитокины находятся в антагонистических отношениях с одним или более цитокином и таким образом ингибируют действие друг друга на данную клетку. Например, цитокины, секретируемые Т-хелперами (Тн1)-секретируют IFNy, который активирует макрофаги, ингибирует В-клетки и непосредственно токсичен для определенных клеток. Тн2-клетки секретируют IL- 4 и IL-5, которые активируют В-клетки и IL-10, который в свою очередь ингибирует активацию макрофагов (рис. 11.2).
Рис. 11.2. Цитокины, продуцируемые Тн1- иТн2-клетками
Когда клетки продуцируют цитокины или хемокины в ответ на различные стимулы (т.е. инфекционные агенты), те создают градиент концентрации, который позволяет контролировать или направлять клеточную миграцию, также называемую хемотаксисом (рис. 11.3). Клеточная миграция (т.е. хемотаксис нейтрофилов) необходима для развития воспалительных реакций, возникающих вследствие локального проникновения микроорганизмов или другой травмы.
Рис. 11.3. Стадии хемотаксиса нейтрофилов (обратимое связывание, последующая активация, адгезия) и трансэндотелиальная миграция (продвижение между эндотелиальными клетками, формирующими стенку кровеносного сосуда, экстравазация)
Хемокины играют ключевую роль в обеспечении сигналов, которые повышают экспрессию адгезионных молекул, экспрессируемых на эндотелиальных клетках для обеспечения хемотаксиса нейтрофилов и трансэндотелиальной миграции.
Общая системная активность
Цитокины могут действовать непосредственно в месте секреции и отдаленно, вплоть до системных эффектов. Таким образом, они играют решающую роль в усилении иммунного ответа, поскольку высвобождение цитокинов из всего лишь нескольких клеток, активированных антигеном, приводит к активации множества клеток различных типов, которые необязательно являются антигенспецифичными или находятся непосредственно в данной области. Особенно ярко это проявляется в реакциях ГЗТ, при которых активация редких антигенспецифичных Т-клеток сопровождается высвобождением цитокинов. Как следствие действия цитокинов в эту зону моноциты привлекаются в большом количестве, значительно превышающем изначально активированную Т-клеточную популяцию.
Также необходимо отметить, что продукция высоких концентраций цитокинов под влиянием мощных стимулов может запускать разрушительные системные эффекты, такие как синдром токсического шока, обсуждаемый далее в этой главе. Применение рекомбинантных цитокинов или антагонистов цитокинов, способных воздействовать на разные физиологические системы, обеспечивает возможность терапевтической коррекции иммунной системы, основанной на спектре биологической активности, которая связана с данным цитокином.
Общие клеточные источники и каскадность событий
Определенная клетка может продуцировать множество различных цитокинов. Более того, одна клетка может быть мишенью для многих цитокинов, каждый из которых связывается со своими специфичными рецепторами на клеточной поверхности. Следовательно, один цитокин может влиять на действие другого, что может привести к аддитивному, синергетическому или антагонистическому действию на клетку-мишень.
Взаимодействия множества цитокинов, выделяемых при типичном иммунном ответе, обычно называют цитокиновым каскадом. В основном именно этот каскад определяет, будет ли ответ на антиген преимущественно антитело-опосредованным (и если так, какие классы антител будут синтезироваться) или клеточноопосредованным (и если так, то какие клетки будут активироваться — обладающие цитотоксическим действием или участвующие в ГЗТ). Механизмы контроля, также опосредованные цитокинами, которые помогают определить набор цитокинов, выделяющихся после активации СD4+-Т-клеток.
Похоже, что в инициации цитокинового ответа этих клеток ведущую роль играет стимуляция антигеном. Таким образом, в зависимости от природы антигенного сигнала и набора цитокинов, связанных с активацией Т-клетки, наивная эффекторная СD4+-Т-клетка будет приобретать определенный цитокиновый профиль, который однозначно определит тип формируемого иммунного ответа (опосредованный антителами или клетками). Цитокиновый каскад, связанный с типами иммунного ответа, также определяет, какие еще системы активируются или угнетаются, а также выраженность и продолжительность иммунного ответа.
Общие рецепторные молекулы
Цитокины обычно обладают перекрывающимися, избыточными функциями: например, и IL-1, и IL-6 вызывают лихорадку и еще несколько общих биологических феноменов. Вместе с тем эти цитокины обладают и уникальными свойствами. Как будет обсуждаться далее, некоторые цитокины для распространения своего действия на клетки-мишени используют рецепторы, состоящие из нескольких полипептидных цепей, причем некоторые из этих рецепторов обладают по меньшей мере одной общей рецепторной молекулой, которую называют общей у-цепью (рис. 11.4). Общая у-цепь является внутриклеточной сигнальной молекулой. Эти данные помогают объяснить наличие перекрывающихся функций у разных цитокинов.
Рис. 11.4. Структурные характеристики членов семейства цитокиновых рецепторов I класса. Одинаковая у всех ү-цепь (зеленая) передает сигнал внутрь клетки
Р.Койко, Д.Саншайн, Э.Бенджамини
Опубликовал Константин Моканов