Есть ли иммунитет против вирусов
Высокая вариабельность вирусных антигенов усложняет распознавание этих микроорганизмов, иммунитет против вирусов не формируется в полной мере. Успешность ответа иммунной системы на вторжение инфекции зависит в большей степени от факторов немедленного реагирования иммунитета.
Устройство вируса
Наиболее изучен вирус гриппа, рассмотрим на его примере особенности формирования ответа иммунной системы на заражение. В центре вириона (внеклеточной формы существования вируса) гриппа находится компактно свернутая двухцепочечная спираль РНК, неструктурированные белки, окруженные матриксным М-белком.
От внешней среды генетический материал отделен оболочкой, на поверхности которой находятся 2 поверхностных белка — фермент нейраминидаза и белок гемагглютинин.
Исключительная способность гриппа мутировать с образованием новых штаммов обусловлена изменчивостью этих поверхностных белков. Особенно высокой изменчивостью (вариабельностью) отличается поверхностный белок гемагглютинин.
Мутирование гемагглютинина приводит к образованию нового серотипа гриппа и провоцирует болезнь при повторном заражении, так как организм не формирует долгосрочный иммунитет в полной мере.
Сложность формирования иммунной защиты против вирусов состоит и в том, что деятельность этих микроорганизмов происходит преимущественно внутри клеток, где они недоступны гуморальным факторам иммунной защиты и специфическому иммунитету.
Как формируется иммунитет
Иммунная система подавляет действие вируса в течение от нескольких дней до 3-4 недель. Количество вирионов в продолжение этого периода сначала резко возрастает в тысячи раз, а затем снижается вплоть до полного исчезновения, но при некоторых заболеваниях вирусы переходят в латентную форму существования.
Они образуют неактивные формы внутри зараженной клетки и существуют в подобном виде до следующего этапа повышенной активности жизненного цикла.
Формирование иммунитета к вирусам происходит в несколько этапов.
- Ответ на внедрение вириона – первые часы после заражения.
- Фаза индукции – первые 3 дня после инфицирования.
- Сформировавшийся иммунитет – после 3-4 недель от заражения.
- Иммунологическая память.
Стадия внедрения вируса
Быстрое реагирование иммунной системы осуществляется за счет неспецифических реакций фагоцитоза, активации естественных циркулирующих антител IgM, IgG, системы комплемента. В слизистых оболочках циркулируют секреторные иммуноглобулины IgA, которые являются частью местной иммунной защиты слизистой и также участвуют в первичном разворачивании иммунного ответа.
Антитела и комплемент обладают способностью адсорбироваться на поверхности вирусов, что облегчает распознавание таких опсонизированных вирусов NK-клетками и их уничтожение. Естественные неспецифические антитела распознают вирусные антигены, в том числе, по дисахариду галактоза, который присутствует в поверхностных антигенах. Связываясь с этими молекулами, антитела обезвреживают вирион.
На стадии внедрения патогенов серьезным барьером для размножения болезнетворных микроорганизмов служит усиление синтеза интерферонов. Сама двухцепочечная РНК вириона гриппа, если вернуться к рассмотренному примеру, служит индуктором синтеза интерферонов.
Фаза индукции
В фазе индукции при формировании иммунитета изменения на клеточном уровне, вызванные внедрением микроорганизмов, проявляются на уровне всего организма. Во время внеклеточного существования вирионов, до момента внедрения в клетку-мишень, иммунная система реагирует на вторжение чужака, как на внедрение любого внеклеточного паразитического микроорганизма.
В очаге инфекции активизируются фагоцитирующие клетки, запускается синтез воспалительных факторов, под действием которых:
- повышается проницаемость кровеносных капилляров;
- возникает и усиливается миграция лейкоцитов в очаг инфицирования;
- стимулируются процессы дифференцирования лейкоцитов и лимфоцитов, повышается концентрация нейтрофилов, моноцитов.
К факторам иммунной защиты от внутриклеточных паразитических микроорганизмов относится на этом этапе система интерферонов. К 3 дню к неспецифической защите подключается специфический иммунитет.
Сформированный иммунитет
Через 3-4 недели после инфицирования в крови появляются антитела к вирусу, специфические CD4 Т-хелперы, цитотоксические Т – лимфоциты CD8 киллеры. Интенсивность ответа в этот период нарастает, в очаге воспаления появляются специфические иммуноглобулины IgA, обладающие активностью против антигенов внедрившегося инфекционного агента.
Начавшаяся в первые 3 недели выработка специфических антител IgA к поверхностным белкам-антигенам вирусов, продолжается еще в течение нескольких месяцев, постепенно снижаясь. Продолжается также выработка специфических Т-лимфоцитов CD4 и CD8.
Иммунологическая память
В незначительных количествах, как клетки памяти, CD8 Т-лимфоциты, продуцированные против вируса, продолжают циркулировать в крови долгое время. Количество этих цитотоксических Т-лимфоцитов достигает наибольшей концентрации к 3 неделе после заражения и постепенно спадает. Но полностью Т-лимфоциты CD8 не исчезают, они циркулируют в крови всю жизнь, выступая как клетки памяти.
В случае вторичного заражения этим же вирусом клетки памяти активизируются, стимулируя выработку специфических антител против вируса. Тем не менее, при повторном заражении неспецифический иммунитет обеспечивает более эффективную защиту и разворачивается быстрее, чем действуют факторы специфической защиты.
Чем ближе по времени вторичное вирусное заражение от первичного, тем быстрее действуют факторы специфического иммунитета. Если повторное заражение вирусом произошло через много лет, ответ факторов специфической иммунной системы будет минимальным.
Как защищаются вирусы
В процессе эволюции вирусы выработали способы защиты от иммунной системы. Они способны блокировать работу NK-киллеров, интерферона, Т-лимфоцитов. Вирионы герпеса и цитомегаловирус способны блокировать стадию представления антигена антигенпредставляющими клетками, к которым относятся макрофаги, В-лимфоциты.
Особенностью вирусной инфекции является способность вирионов переходить в латентную фазу внутри клетки-хозяина. Вирус прекращает активность, его антигены не экспрессируются на поверхностной мембране клетки-жертвы. В таком состоянии он недоступен для иммунной системы.
Теория опухолей
Подобный способ уклоняться от сформировавшегося специфического иммунитета против поверхностных антигенов характерен для ряда вирусов, в том числе герпеса, цитомегаловируса, гепатита. Существует предположение, что ряд онкологических заболеваний вызывается именно такой скрытой хронической вирусной инфекцией.
Предположительно рак шейки матки, носоглотки вызваны постоянным присутствием в клетках хозяина вирусной ДНК.
Аутоиммунные болезни
Сложность формирования иммунной защиты против вирусов объясняется способностью их обмениваться участками антигенов с поверхностными антигенами клеток хозяина. Результатом такой особенности может стать перекрестное взаимодействие антигенов и развитие аутоиммунного заболевания.
Обнаружены одинаковые или сходные по строению участки вирусных антигенов и структурных белков человека, из-за которых возникает перекрестная реактивность вирусов:
- бешенства и рецептора инсулина;
- полиомиелита и ацетилхолина;
- папилломавируса и рецептора инсулина;
- ВИЧ и константной области иммуноглобулина.
Подобное сходство служит основанием для развития аутоиммунного ответа при повторном заражении. Развивается аутоиммунное заболевание не в каждом случае, но риск подобного развития болезни при вторичном инфицировании повышается.
Из всех вскрывшихся в результате пандемии COVID-19 проблем одна из самых масштабных – непонимание большинством пациентов, как работает иммунная система. Напуганные, уставшие сидеть дома люди пытаются выяснить, как повысить иммунитет против коронавируса SARS-CoV-2 и других инфекций. Что им сделать, чтобы эта проблема перестала их беспокоить?
Задача настоящего материала – обосновать, почему не стоит раззадоривать иммунитет (а то ведь может и получиться) и чем в действительности следует заниматься в период самоизоляции и после отмены ограничений для наилучшей иммунной защиты.
Вниманию коллег предлагаем некоторые данные, которые позволят дополнить профессиональный взгляд на проблему в следующих аспектах:
- механизмы противовирусного иммунитета,
- механизмы вирусных «уловок» против иммунитета,
- основные причины блокировки нормальной иммунной защиты.
Статья подготовлена по материалам ведущего российского иммунолога, невролога К. А. Шляпникова и сооснователя Академии UniProf врача-педиатра, нутрициолога, рефлексотерапевта И. Б. Юзуп.
Механизмы противовирусного иммунитета
Отличие вируса от большинства видов организмов в том, что он не способен к размножению вне чужой живой клетки. Вирусов известно много: Rabies Virus, Adenovirus, Ebola Virus, HIV, Hepatitis B и C, Papillomaviridae, Herpes Viridae, Influenza Virus и мн. др.
Они предпочитают разные клетки, атакуют нас по-разному, но всем им присуще нечто общее – структура жизненного цикла:
01Проникновение в клетку с помощью присоединения к какому-либо типу рецепторов,
02Транскрипция вирусной ДНК / РНК (в зависимости от вида вируса),
03Встраивание в клеточный аппарат репликации генома,
04Репликация вируса и его распространение за пределы клетки.
Врождённый иммунитет человека, формирующийся ещё до рождения, знает этот механизм. Ещё до первых контактов с патогенами мы имеем представление, как с ними бороться, и врождённые инструменты борьбы.
Как неспецифический иммунитет борется с инфекциями?
В распоряжении неспецифического иммунитета имеются естественные клетки-киллеры, запрограммированные уничтожать всё, что не отвечает критерию биологической идентичности геному организма хозяина.
В течение жизни эти клетки занимаются проверкой каждой клетки, каждого микроорганизма, который они встречают. Чтобы пройти контроль, клетки предъявляют молекулярный «паспорт» – главный комплекс гистосовместимости (ГКГС). Считывая его, как штрихкод, киллер отпускает здоровую клеточку – на свободу с извинениями.
Такие проверяющие клетки не умеют определять, инфицирована клетка или нет. Но когда вирус проникает в клетку и встраивает чужеродный геном в её реплицирующий комплекс, ГКГС нарушается и клетка не проходит контроль. Киллер впрыскивает в неё ферменты клеточного «пищеварения» и разрушает, а её остатки, как и остатки вирусов, подъедают фагоциты.
При этом имеет место и иммунологическая толерантность, например, к компонентам нормального микробиома человека – при условии, что он найден в соответствующем месте. Так, кишечной палочке ничего не угрожает со стороны иммунитета хозяина в кишечнике, но, обнаружив её где-то ещё, клетка-киллер уничтожит эту бактерию как условный патоген. И будет права.
Как работает специфический иммунитет человека?
Специфический, или адаптивный, иммунитет человека работает на распознавание инфекций. В том числе новых. Ещё до первого контакта с возбудителем, до появления первых заражённых клеток и запуска соответствующего сигналинга иммунные клетки могут распознать патоген по т. н. паттернам патогенности – молекулярным (чаще всего белковым) комплексам, которые свойственны в принципе – вирусам, в принципе – бактериям, в принципе – грибам и т. д.
Когда патоген проник и развернул атаку, специфический иммунитет приступает к сложному мероприятию по его улавливанию и обезвреживанию. В его распоряжении имеются альфа-, бета- и гамма-интерфероны, которые:
- тормозят репликацию ДНК и РНК в клетке, не давая вирусу размножаться,
- запускают апоптоз – самоубийство заражённой клетки на благо организма.
В момент проникновения вируса клетка распознаёт инфицирование и успевает вывесить на мембране «флажки», которые привлекут внимание Т-хелперов, Т-киллеров, В-лимфоцитов и другие войска специфического иммунитета.
Т-хелперы обеспечат исследование и запоминание патогена, В-лимфоциты займутся выработкой антител, которые обклеят (опсонизируют) вирусные фрагменты, сделав их неспособными к репликации. А фагоциты соберут остатки патогена и погибшей клетки. Затем «осколки» вируса затем попадут через кровь в лимфу, где отфильтруются в лимфоузлах и будут тщательно изучены. Затем молодым, т. н. наивным клеткам-лимфоцитам будут предъявлены антигены, и они смогут распознавать угрозы, которые «лично» никогда не встречали. Таким образом тренируется иммунная память.
Что ещё делает интерфероновый сигналинг? Интерфероны присоединяются к оболочкам здоровых клеток, не давая вирусу присоединиться и проникнуть сквозь клеточную мембрану.
Они же разрешают общие провоспалительные реакции, которые сопровождаются хорошо знакомыми клиническими симптомами усталости, разбитого состояния, высокой температуры, ломоты в суставах, сонливости, мышечной боли и т. п.
Всё это говорит о том, что красный костный мозг получил чёткий, конкретный сигнал – продуцировать больше специальных, «профессиональных» клеток: моноцитов, дендритных клеток, лимфоцитов, лейкоцитов и др.
Повышенные лимфо- и лейкоциты мы увидим в общем анализе крови – если, конечно, сам вирус не вызывает лейкоцито— или лимфоцитопению, поразив органы и клетки иммунной системы.
Таким образом, интерфероны оказывают аутокринный, паракринный и эндокринный эффект. И это, с одной стороны, хорошо, а с другой не очень, потому что военную мощь нашего иммунитета вирусы учатся обманывать и даже обращать против нас. И со стимуляцией иммунного ответа следует быть очень аккуратными.
Вирусные уловки против иммунитета человека: как вирусы обходят иммунную защиту?
На каждом этапе противовирусной защиты человека вирусы находят лазейки, чтобы эту защиту обойти. Как они это делают?
Основных принципов борьбы с возбудителями вирусной инфекции у человеческого иммунитета два: это проверка гистосовместимости и целенаправленный поиск инфекций. Первое соответствует специфическому (врождённому) иммунитету, второе – неспецифическому (адаптивному).
К каждому из этих подходов вирусы пытаются найти ключик. В первом случае вирусы учатся отменять проверку ГКГС, чтобы заражённая клетка не попала под уничтожающий залп естественного киллера. На это, в частности, способны вирусы гепатита B и C, и именно поэтому их так трудно подавить.
Во втором случае вирусы проявляют больше фантазии:
- блокируют выработку интерферонов, препятствуя эффективному иммунному ответу,
- мутируют быстрее, чем Т-хелперы успевают собирать антигены и менять «ориентировки» В-лимфоцитов и Т-киллеров,
- подавляют функцию костного мозга – выработку лимфоцитов, моноцитов и др. иммунных клеток,
- провоцируют реакции иммунной гиперчувствительности.
О последнем хотелось бы остановиться чуть подробнее, поскольку именно с этим механизмом связано явление цитокинового шторма, который ассоциируют и с коронавирусом SARS-CoV-2 в том числе.
Всего типов реакций иммунной гиперчувствительности четыре: анафилактический, цитотоксический, иммунокомплексный и замедленного типа. Вирусы, как правило, вызывают реакции II и III типа, вплоть до тяжёлых жизнеугрожающих состояний.
Когда вирус предъявляет клеткам антигены, похожие на собственные антигены организма, то под перекрёстный огонь иммунитета, подогретого вирусной атакой, начинают попадать ни в чём не повинные клетки организма хозяина.
Наши же собственные клетки связываются противовирусными антигенами и уничтожаются в ходе дальнейшей реакции иммунного ответа. Это может стать дебютом хронического аутоиммунного процесса.
А может положить начало порочному кругу цитокинового шторма. Запустилось воспаление,→ произошёл выброс цитокинов, → те усилили воспаление, → оно спровоцировало ещё больший выброс цитокинов, и так либо до момента, пока не будет применена контролируемая иммуносупрессия, либо без лечения всё кончится летальным исходом.
При этом пациент погибает не от вирусной инфекции как таковой, а от разбушевавшегося иммунитета, который вышел из-под контроля и применил к организму тактику выжженной земли.
Также встречается антирецепторный вариант реакции иммунной гиперчувствительности II типа, когда антитела присоединяются к рецепторам клеток и блокируют определённые нейроэндокринные реакции.
Например, такую картину мы наблюдаем при тиреотоксикозе, когда антитела не дают тиреотропному гормону ингибировать функцию щитовидной железы, и начинается её неконтролируемый разгон. Сходная картина наблюдается при миастении.
Реакция III типа характеризуется присоединением больших иммунокомплексов IgG и IgM не к иммунным клеткам, а, например, к клеткам сосудов, после чего элиминируются с повреждением наших собственных тканей.
Чтобы подобных вещей не происходило, пациентам, конечно же, не следует заниматься попытками раззадорить и подбодрить иммунитет без наблюдения врача.
Даже пониженная функция иммунной системы не всегда указывает на необходимость иммуностимуляции. Порой с иммунитета просто нужно снять тормоза, навешанные нездоровым образом жизни пациента, чтобы система заработала нормально.
Для этого давайте разберёмся, на что уходят ресурсы иммунной системы. Чем она оказывается занята и какой ценой ей даётся приведение организма в порядок после наших отнюдь не человеколюбивых экспериментов над собой.
Блокировка иммунной защиты: что мешает иммунитету человека работать нормально?
Каждый мыслящий врач подтвердит: нет такого понятия, как сильный или слабый иммунитет. Есть норма и ненорма. Второе всегда плохо, как мы увидели на примере бесконтрольной реакции иммунного ответа, называемой гиперцитокинемией, или цитокиновым штормом.
Стремясь оптимизировать естественный противовирусный иммунитет, мы должны заниматься его нормализацией и проверять, нет ли в образе жизни – нашем или пациента – факторов, которые отвлекают иммунитет от его реальных задач: борьбы с генетически чужеродными элементами (инфекциями, раковыми клетками и т. д.).
Какие факторы чаще всего снижают и блокируют естественную иммунную защиту?
- Дефицит ночного сна и/или его низкое качество
- Избыток низкомолекулярных углеводов
- Антигенная перегрузка
- Продолжительные стрессы
- Алкогольная и иная интоксикация
Сразу оговорим: список не исчерпывающий, в него не включены врождённые иммунодефициты, иммуносупрессии, вызванные врачебным вмешательством и т. п. Это топ-5 самых распространённых причин истощения иммунной системы и некорректного иммунного ответа.
Почему дефицит глубокого ночного сна на первом месте? Потому что фаза глубокого сна в альфа-ритме – это то единственное время в сутках, когда иммунная система работает активнее. Связано это с аденозиновым сигналингом, который мы привыкли воспринимать в контексте энергетического обмена, но который также связан с иммунной системой.
Об этом факте пока не слишком хорошо известно в широких медицинских кругах, но тем не менее, аденозин активно нарабатывается в течение светового дня, и его уровень резко падает, когда мы переходим в фазу глубокого сна. Это сигнал к активации иммунных процессов. Если по какой-то причине уровень аденозина не опускается, иммунная система такого сигнала не получает. Это одна из причин, почему у людей, страдающих бессонницей, апноэ, расстройствами инициации засыпания
и другими инсомническими нарушениями, иммунитет серьёзно снижен.
Почему избыток низкомолекулярных, или «быстрых», углеводов блокирует иммунитет человека?
Потому что они провоцируют активный рост дрожжевой микрофлоры в различных средах организма, и существенный объём иммунных клеток оказывается брошен на подавление микробиома, вышедшей из под контроля.
Антигенная перегрузка – при продолжительном контакте с аллергенами, при хронических воспалениях, при использовании иммуностимуляторов (!) может возникнуть чрезмерная выработка антигенов B-лимфоцитами. И куда их, спрашивается, организму девать? Патоген уехал, маркеры остались: хорошо это или плохо?
Если слишком много, то плохо: запускается реакция иммунной гиперчувствительности III типа, опасность которой состоит ещё и в том, что она часто носит бессимптомный, скрытый для пациента характер.
Такую нагрузку вызывают не только вирусы, но и пища. В частности, это касается белков коровьего молока и бобов, глютена, кофеина, танинов, содержащихся в чае и кофе – целых кластеров привычных нам пищевых продуктов, которые нагружают иммунную систему, а пациент об этом не подозревает.
Несмотря на распространённое мнение, что алкоголь поддерживает иммунитет, это не так. Алкоголь препятствует переходу в фазу глубокого сна, поскольку вместо выработки иммунная система оказывается занята борьбой с метаболитами алкоголя – свободными радикалами, которые вызывают повреждения клеток и тот самый похмельный синдром по утрам.
Продолжительные стрессы как фактор снижения иммунитета непосредственно связаны с дефицитом глубокого сна. При этом по часам сон пациента может быть вполне нормальным, но его качество будет далёким от идеала.
Эволюционно поверхностный сон был необходим: если бы мы спали глубоко в условиях опасности, мы бы не выжили. Однако состояние тревожности, вызванное не смертельной угрозой, а какими-то иными причинами, ко времени сна необходимо стараться нейтрализовывать.
В этом помогут физические упражнения, позволяющие отработать гормоны стресса, выброшенные в кровь. Поможет фитотерапия, дыхательные практики, техники точечного массажа против бессонницы и другие мягкие методы терапевтического воздействия.
Получить полное практикоориентированное представление о том, как пациенту подружиться с иммунитетом, а врачу – эффективно использовать иммунологические знания в любом направлении клинической практики, можно в рамках интенсива «Коронный иммунитет».
Лекции читают ведущие российский иммунологи и спикеры Академии UniProf. Регистрируйтесь на обучение, получайте актуальные и необходимые экспертные знания, чтобы вести пациентов на принципиально новом профессиональном уровне.