Физические основы ямр или мрт

Физические основы ямр или мрт thumbnail

Основу ЯМР принято рассматривать на примере водорода. Ядро наиболее распространенного изотопа водорода состоит из одного протона, который имеет свой спин, то есть вращается вокруг своей оси с круговой частотой, как показано условно на рис. 1.

Физические основы ямр или мрт

a b

Рисунок 1 — К явлению ЯМР.

В отсутствии внешнего магнитного поля, ось вращения протона может располагаться произвольно. Протон — положительно заряженная частица, а любое движение заряженной частицы приводит к появлению магнитного поля. Поэтому у вращающегося ядра водорода появляется магнитный момент m, вектор которого по направлению совпадает с осью вращения. Если теперь ядро водорода поместить во внешнее магнитное поле H0 (см. рис. 1b), то естественно ось вращения протона будет стремиться принять направление вектора магнитного поля H0. Поэтому ядра водорода, оказавшись во внешнем магнитном поле, ориентируются своими осями вращения по направлению вектора внешнего магнитного поля. Магнитный момент протона характеризуют величиной

Физические основы ямр или мрт

где L — момент вращения, гиромагнитное отношение (заряд электрона, масса протона).

Обратимся вначале к гипотезе объяснения физики ЯМР на основе классической механики на макроскопическом уровне. Если, учитывая вращение протона в магнитном поле, каким-либо образом толкнуть ось вращения протона воздействием p (см. рис. 1b), то ось вращения начинает прецессировать, то есть вращаться вокруг оси своего исходного положения, наподобие, как это делает волчок, если его толкнуть. Частота вращения ? оси вращения носит название частоты Лармора и однозначно связана с напряженностью внешнего магнитного поля H0 выражением:

Эта частота является как бы собственной частотой колебания протона. Множество протонов, сориентированных в магнитном поле, формирует суммарную намагниченность протонов. Организуем внешнее воздействие p переменным магнитным полем на протоны с некоторой частотой. Если менять частоту воздействия p, то при совпадении частоты воздействия с частотой Лармора, ось вращения суммарной намагниченности получит максимальный размах отклонения. Это и есть ядерный магнитный резонанс. Снимем воздействие на протоны. Протоны будут продолжать некоторое время прецессировать с затухающей амплитудой до полной остановки оси вращения снова до направления внешнего магнитного поля. Время от снятия воздействия до полной остановки прецессии называется временем релаксации.

В квантовом объяснении физики ЯМР на микроскопическом уровне ориентацию спина протона во внешнем магнитном поле представляют двумя состояниями: первое — низкоэнергетическое, когда магнитный момент протона, по образу магнитика, ориентируется своим северным полюсом к южному полюсу внешнего поля, второе высокоэнергетическое, когда магнитный момент протона ориентируется своим северным полюсом к северному полюсу внешнего поля.

Разность между числом протонов низкоэнергетического уровня и высокоэнергетического небольшое (шесть протонов на миллион для поля в 1 Тл), но она определяет величину суммарной намагниченности протонов.

Ядро может подвергаться переходу между этими двумя энергетическими уровнями. Находясь на низкоэнергетическом уровне, ядро может поглощать фотон электромагнитной энергии и переходить на высокоэнергетический уровень. Энергия такого фотона должна точно соответствовать разнице энергий между этими двумя состояниями. Энергия протона Е связана с его частотой ? через постоянную Планка (h = 6.626×10-34 Дж с).

В ЯМР величина ? и является резонансной или частотой Лармора. Так как и , то для того, чтобы вызвать переход между двумя спиновыми состояниями, фотон должен обладать энергией:

Когда энергия фотона соответствует разнице между двумя состояниями спина, происходит поглощение энергии и переход протона из низкоэнергетического в высокоэнергетическое состояние. Если теперь после накачки протонов фотонами и перехода определенной части протонов на высокоэнергетический уровень, снять энергию накачки, то возникает обратный переход, называемые релаксацией.

Здесь различают два независимых процесса: спин спиновая релаксация (ССР) и спин-решетчатая релаксация (СРР), показанные на рис. 2 кадрами во времени.

Физические основы ямр или мрт

A b c d

Рисунок 2 — Релаксация в ЯМР.

Процесс ССР характеризуется тем, что если в первый момент после снятия возбуждения протоны прецессируют в одной фазе, формируя единый прецессирующий вектор намагниченности M (см рис. 2а), то постепенно фазы их прецессий расходятся (см. рис. 2b), до полной расфазировки (см. рис. 2c) Этот процесс характеризуется постоянной времени, которую обычно обозначают Т2. Скорость расфазировки прецессий протонов существенно зависит от того, в какой среде они находятся. Амплитуда прецессии во времени релаксации и время Т2, то есть параметры ССР являются параметрами восприятия в методах использования ЯМР.

Спин-решетчатая релаксация (СРР) — тот же затухающий процесс, который продолжается до полной остановки прецессий всех протонов (см. рис. 2c) и характеризуется своей амплитудой и постоянной времени, обозначаемой обычно через Т1. Параметры СРР также являются основными при восприятии для анализа в ЯМР экспериментах.

Спином обладает не только ядро водорода. Спин имеют и многие более тяжелые ядра других элементов. В принципе спином обладают все электроны, протоны и нейтроны. Частицы с противоположным знаком спина в ядре могут образовывать пары, которые взаимно нивелируют заметные проявления спина. Примером является гелий. Поэтому в ядерном магнитном резонансе значение имеют непарные ядерные спины. В табл. 1 приведены некоторые из элементов с вращающимися ядрами, характерные для живого организма.

Наиболее ярким представителем среди них остается изотоп водорода с одним протоном в ядре. Остальные 0,02% распределения характеризует изотопы дейтерия (протон и нейтрон в ядре) и трития (протон и два нейтрона в ядре). Водород, как известно, входит в состав воды (Н2О), из которой более чем на 80% состоит живой организм.

Таблица 1 — Некоторые элементы с вращающимися ядрами.

Ядра

Относительное распределение изотопа

Гиромагнитное отношение МГц/Тл

Гиромагнитное отношение Рад/с/Тл

H

99,98%

42,58

2.68 ·108

C

1,11%

10,71

0.67 ·108

F

100%

40,08

2.5 ·108

Na

100%

11,26

0.70 ·108

P

100%

17,25

1.07 ·108

N

100%

3,08

0.19 ·108

Посмотрим, с какими частотами приходится иметь дело в ЯМР. Так, согласно приведенной таблице, для ядра водорода, находящегося в магнитном поле напряженностью 0,5 Тл, резонансная частота ЯМР равна (МГц), что укладывается в радиочастотный диапазон частот, реализуемый широко распространенными методами. Попутно отметим, что геомагнитное поле Земли, которое существует независимо от нас, напряженностью около 50 мкТл, в принципе дает возможность для водородов организовать ЯМР на частоте около 2 кГц, однако проявление его на сегодня оказывается за пределами возможности восприятия.

Выше приведенный анализ физики ЯМР позволяет выделить три важных положения, сформулированных ниже.

  • 1. Частота прецессии ядра водорода в магнитном поле пропорциональна напряженности магнитного поля. Данное положение основано на выражении (2).
  • 2. Протон не излучает, пока находится в состоянии равновесия и его спин направлен вдоль магнитного поля. Сигнал излучения появляется в том случае, когда протон выводится из состояния равновесия (начинает прецессировать) так, чтобы его спин образовал некоторый угол б с направлением магнитного поля.
Читайте также:  Зачем мрт головного мозга с контрастом

Для иллюстрации этого положения обратимся к рис. 2a,b, где показан прецессирующий магнитный момент M , имеющий проекцию на ось х, перпендикулярную направлению магнитного поля H0. Из рисунка видно, что в результате прецессии по оси х появляется переменное магнитное поле с частотой прецессии .

Это поле может быть воспринято соответствующей приемной катушкой, конечно не с одного протона, а со множества, прецессирующих синхронно и синфазно, что возникает именно при ЯМР. Постепенная расфазировка прецессий из-за неоднородности поля является одним из факторов убыстрения затухания процесса релаксации.

3. Если в магнитное поле H0 ввести неоднородность по пространству некоторым управляемым образом, то в соответствии с положением 1 и выражением (2) в различных местах пространства с различными напряженностями магнитного поля протоны будут прецессировать с разными частотами.

Сформулированные положения лежат в основе использования ЯМР для анализа вещества и в ЯМР-томографии.

Источник

Магнитно-резонансная томография (МРТ, MRT, MRI) — томографический метод исследования внутренних органов и тканей с использованием физического явления ядерного магнитного резонанса — метод основан на измерении электромагнитного отклика ядер атомов водорода на возбуждение их определённой комбинацией электромагнитных волн в постоянном магнитном поле высокой напряжённости.

Метод ядерного магнитного резонанса позволяет изучать организм человека на основе насыщенности тканей организма водородом и особенностей их магнитных свойств, связанных с нахождением в окружении разных атомов и молекул. Ядро водорода состоит из одного протона, который имеет магнитный момент (спин) и меняет свою пространственную ориентацию в мощном магнитном поле, а также при воздействии дополнительных полей, называемых градиентными, и внешних радиочастотных импульсов, подаваемых на специфической для протона при данном магнитном поле резонансной частоте. На основе параметров протона (спинов) и их векторном направлении, которые могут находиться только в двух противоположных фазах, а также их привязанности к магнитному моменту протона можно установить, в каких именно тканях находится тот или иной атом водорода.

Если поместить протон во внешнее магнитное поле, то его магнитный момент будет либо сонаправлен, либо противоположно направлен магнитному моменту поля, причём во втором случае его энергия будет выше. При воздействии на исследуемую область электромагнитным излучением определённой частоты, часть протонов поменяют свой магнитный момент на противоположный, а потом вернутся в исходное положение. При этом системой сбора данных томографа регистрируется выделение энергии во время «расслабления», или релаксации предварительно возбужденных протонов.

Первые томографы имели индукцию магнитного поля 0,005 Тл, однако качество изображений, полученных на них, было низким. Современные томографы имеют мощные источники сильного магнитного поля. В качестве таких источников применяются как электромагниты (до 9,4 Тл), так и постоянные магниты (до 0,7 Тл). При этом, так как поле должно быть весьма сильным, применяются сверхпроводящиие электромагниты, работающие в жидком гелии, а постоянные магниты пригодны только очень мощные, неодимовые. Магнитно-резонансный «отклик» тканей в МР-томографах на постоянных магнитах слабее, чем у электромагнитных, поэтому область применения постоянных магнитов ограничена. Однако, постоянные магниты могут быть так называемой «открытой» конфигурации, что позволяет проводить исследования в движении, в положении стоя, а также осуществлять доступ врачей к пациенту во время исследования и проведение манипуляций (диагностических, лечебных) под контролем МРТ— так называемая интервенционная МРТ.

Для определения расположения сигнала в пространстве, помимо постоянного магнита в МР-томографе, которым может быть электромагнит, либо постоянный магнит, используются градиентные катушки, добавляющие к общему однородному магнитному полю градиентное магнитное возмущение. Это обеспечивает локализацию сигнала ядерного магнитного резонанса и точное соотношение исследуемой области и полученных данных. Действие градиента, обеспечивающего выбор среза, обеспечивает селективное возбуждение протонов именно в нужной области. Мощность и скорость действия градиентных усилителей относится к одним из наиболее важных показателей магнитно-резонансного томографа. От них во многом зависит быстродействие, разрешающая способность и соотношение сигнал/шум.

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA
, если не указано иное.

Источник

Я́дерный магни́тный резона́нс (ЯМР) — резонансное поглощение или излучение электромагнитной энергии веществом, содержащим ядра с ненулевым спином во внешнем магнитном поле, на частоте ν (называемой частотой ЯМР), обусловленное переориентацией магнитных моментов ядер.

Явление ядерного магнитного резонанса было открыто в 1938 году Исидором Раби в молекулярных пучках, за что он был удостоен Нобелевской премии 1944 года[1]. В 1946 году Феликс Блох и Эдвард Миллз Парселл получили ядерный магнитный резонанс в жидкостях и твёрдых телах (Нобелевская премия 1952 года)[2][3].

Одни и те же ядра атомов в различных окружениях в молекуле показывают различные сигналы ЯМР. Отличие такого сигнала ЯМР от сигнала стандартного вещества позволяет определить так называемый химический сдвиг, который обусловлен химическим строением изучаемого вещества. В методиках ЯМР есть много возможностей определять химическое строение веществ, конформации молекул, эффекты взаимного влияния, внутримолекулярные превращения.

Физика ЯМР[править | править код]

Расщепление энергетических уровней ядра с I = 1/2 в магнитном поле

В основе явления ядерного магнитного резонанса лежат магнитные свойства атомных ядер с ненулевым спином (собственным вращательным моментом).

Все ядра несут электрический заряд. В большинстве разновидностей ядер этот заряд «вращается» относительно оси ядра, и это вращение ядерного заряда генерирует магнитный дипольный момент, который способен взаимодействовать с внешним магнитным полем. Среди всех ядер лишь ядра, содержащие одновременно чётное число нейтронов и чётное число протонов (чётно-чётные ядра), в основном состоянии не обладают вращательным моментом, а следовательно, и дипольным магнитным моментом. Остальные ядра обладают в основном состоянии ненулевым вращательным моментом , связанным с магнитным моментом соотношением

,

где  — постоянная Планка,  — спиновое квантовое число,  — гиромагнитное отношение.

Угловой момент и магнитный момент ядра квантованы, и собственные значения проекции и углового и магнитного моментов на ось z произвольно выбранной системы координат определяются соотношением

и ,

где  — магнитное квантовое число собственного состояния ядра. Значения определяются спиновым квантовым числом ядра

,

то есть ядро может находиться в состояниях.

Так, у протона (или другого ядра с I = 1/2 — 13C, 19F, 31P и т. п.) может находиться только в двух состояниях

Читайте также:  Мскт или мрт что лучше для органов малого таза

Такое ядро можно представить как магнитный диполь, z-компонента которого может быть ориентирована параллельно либо антипараллельно положительному направлению оси z произвольной системы координат.

У ядра 6Li (или другого ядра с I = 1 — 14N, 32P и т. п.) может находиться в трёх состояниях

Следует отметить, что в отсутствие внешнего магнитного поля все состояния с различными имеют одинаковую энергию, то есть являются вырожденными. Вырождение снимается во внешнем магнитном поле, при этом расщепление относительно вырожденного состояния пропорционально величине внешнего магнитного поля и магнитного момента состояния и для ядра со спиновым квантовым числом I во внешнем магнитном поле появляется система из 2I + 1 энергетических уровней , то есть ядерный магнитный резонанс имеет ту же природу, что и эффект Зеемана расщепления электронных уровней в магнитном поле.

В простейшем случае для ядра со спином с I = 1/2 — например, для протона, — расщепление

и разность энергии спиновых состояний

Это выражение просто утверждает, что разность энергий пропорциональна , поскольку остальные величины — константы. Для магнитного поля порядка 1 Тл и типичного ядерного магнитного момента расщепление уровней находится в диапазоне энергий, соответствующем частотам электромагнитного поля, лежащим в радиодиапазоне.

Как только возникла система двух уровней, можно вводить энергию в виде радиочастотного излучения с частотой (), чтобы возбудить переходы между этими уровнями энергии в постоянном магнитном поле . Фундаментальное уравнение ЯМР, связывающее прикладываемую частоту () с величиной напряжённости магнитного поля, записывается в виде

поскольку

Частота облучения находится в мегагерцевом диапазоне (МГц). Для протонов при величине поля , равной 2,35 Тл, частота облучения равна 100 МГц. При увеличении поля в n раз во столько же возрастает и частота резонанса. При соотношении частоты и поля, равном , система находится в резонансе; протон поглощает энергию, переходит на более высокий энергетический уровень, и можно записать спектр. Отсюда и возникает название спектроскопия ядерного магнитного резонанса. Постоянная называется гиромагнитным отношением и является фундаментальной ядерной постоянной. Это коэффициент пропорциональности между магнитным моментом и спином ядра :

.

Радиочастотная энергия может вводится либо в режиме непрерывной развёртки в некотором диапазоне частот (continuous-wave (CW) или непрерывный режим), либо в виде короткого радиочастотного импульса, содержащего весь набор частот (импульсный режим). Эти два способа соответствуют двум разным типам спектрометров ЯМР.

Ансамбль эквивалентных протонов, прецессирующих со случайной фазой вокруг оси z (т.е. вокруг направления постоянного магнитного поля ), порождает суммарную макроскопическую намагниченность в направлении оси z, но не в плоскости xy.

Задача состоит в том, каким образом приложить радиочастотную электромагнитную энергию к протонам, ориентированным в постоянном магнитном поле, и как затем измерить энергию, поглощённую протонами при переходе в более высокое спиновое состояние. Это можно выяснить в терминах классической механики, если представить протон как частицу, вращающуюся во внешнем магнитном поле. Магнитная ось протона прецессирует вокруг оси z постоянного магнитного поля подобно тому как прецессирует под действием гравитации волчок, ось вращения которого отклонена от перпендикуляра.

Когда частота прикладываемого высокочастотного поля () равна частоте прецессии эквивалентных протонов (называемой в классической физике ларморовой частотой , в МГц), достигается состояние ядерного магнитного резонанса, и основное уравнение ЯМР может быть записано в виде

Это уравнение применимо к ансамблю изолированных протонов.

Наблюдение ЯМР облегчается тем, что в большинстве веществ атомы не обладают постоянными магнитными моментами электронов атомных оболочек вследствие явления замораживания орбитального момента.

Резонансные частоты ЯМР в металлах выше, чем в диамагнетиках (найтовский сдвиг).

Химическая поляризация ядер[править | править код]

При протекании некоторых химических реакций в магнитном поле в спектрах ЯМР продуктов реакции обнаруживается либо аномально большое поглощение, либо радиоизлучение. Этот факт свидетельствует о неравновесном заселении ядерных зеемановских уровней в молекулах продуктов реакции. Избыточная заселённость нижнего уровня сопровождается аномальным поглощением. Инверсная заселённость (верхний уровень заселён больше нижнего) приводит к радиоизлучению. Данное явление называется химической поляризацией ядер.

Ларморовские частоты некоторых атомных ядер[править | править код]

Ларморовская частота МГц в поле
ядро0,5 Тесла1 Тесла7,05 Тесла
1H (Водород)21,2942,58300,18
2D (Дейтерий)3,276,5346,08
13C (Углерод)5,3610,7175,51
23Na (Натрий)5,6311,2679,40
39K (Калий)1,001,99

Частота для резонанса протонов находится в диапазоне коротких волн (длина волн около 7 м)[4].

Применение ЯМР[править | править код]

Спектроскопия[править | править код]

Приборы[править | править код]

Сердцем спектрометра ЯМР является мощный магнит. В эксперименте, впервые осуществлённом на практике Парселлом, образец, помещённый в стеклянную ампулу диаметром около 5 мм, заключается между полюсами сильного электромагнита. Затем, для улучшения однородности магнитного поля, ампула начинает вращаться, а магнитное поле, действующее на неё, постепенно усиливают. В качестве источника излучения используется радиочастотный генератор высокой добротности. Под действием усиливающегося магнитного поля начинают резонировать ядра, на которые настроен спектрометр. При этом экранированные ядра резонируют на частоте, чуть меньшей, чем ядра, лишённые электронных оболочек.
Поглощение энергии фиксируется радиочастотным мостом и затем записывается самописцем. Частоту увеличивают до тех пор, пока она не достигнет некого предела, выше которого резонанс невозможен.

Так как идущие от моста токи весьма малы, снятием одного спектра не ограничиваются, а делают несколько десятков проходов. Все полученные сигналы суммируются на итоговом графике, качество которого зависит от отношения сигнал/шум прибора.

В данном методе образец подвергается радиочастотному облучению неизменной частоты, в то время как сила магнитного поля изменяется, поэтому его ещё называют методом непрерывного облучения (CW, continous wave).

Традиционный метод ЯМР-спектроскопии имеет множество недостатков. Во-первых, он требует большого количества времени для построения каждого спектра. Во-вторых, он очень требователен к отсутствию внешних помех, и как правило, получаемые спектры имеют значительные шумы. В-третьих, он непригоден для создания спектрометров высоких частот (300, 400, 500 и более МГц). Поэтому в современных приборах ЯМР используется метод так называемой импульсной спектроскопии (PW), основанной на фурье-преобразованиях полученного сигнала. В настоящее время все ЯМР-спектрометры строятся на основе мощных сверхпроводящих магнитов с постоянной величиной магнитного поля.

В отличие от CW-метода, в импульсном варианте возбуждение ядер осуществляют не «постоянной волной», а с помощью короткого импульса, продолжительностью несколько микросекунд. Амплитуды частотных компонент импульса уменьшаются с увеличением расстояния от ν0. Но так как желательно, чтобы все ядра облучались одинаково, необходимо использовать «жесткие импульсы», то есть короткие импульсы большой мощности. Продолжительность импульса выбирают так, чтобы ширина частотной полосы была больше ширины спектра на один-два порядка. Мощность достигает нескольких тысяч ватт.

Читайте также:  Как часто можно проходить процедуру мрт

В результате импульсной спектроскопии получают не обычный спектр с видимыми пиками резонанса, а изображение затухающих резонансных колебаний, в котором смешаны все сигналы от всех резонирующих ядер — так называемый «спад свободной индукции» (FID, free induction decay). Для преобразования данного спектра используют математические методы, так называемое фурье-преобразование, по которому любая функция может быть представлена в виде суммы множества гармонических колебаний.

Спектры ЯМР[править | править код]

Спектр 1H 4-этоксибензальдегида. В слабом поле (синглет ~9,25 м д.) сигнал протона альдегидной группы, в сильном (триплет ~1,85-2 м д.) — протонов метила этоксильной группы.

Для качественного анализа c помощью ЯМР используют анализ спектров, основанный на таких замечательных свойствах данного метода:

  • сигналы ядер атомов, входящих в определённые функциональные группы, лежат в строго определённых участках спектра;
  • интегральная площадь, ограниченная пиком, строго пропорциональна количеству резонирующих атомов;
  • ядра, лежащие через 1—4 связи, способны давать мультиплетные сигналы в результате т. н. расщепления друг на друге.

Положение сигнала в спектрах ЯМР характеризуют химическим сдвигом их относительно эталонного сигнала. В качестве последнего в ЯМР 1Н и 13С применяют тетраметилсилан Si(CH3)4 (ТМС). Единицей химического сдвига является миллионная доля (м.д.) частоты прибора. Если принять сигнал ТМС за 0, а смещение сигнала в слабое поле считать положительным химическим сдвигом, то мы получим так называемую шкалу δ. Если резонанс тетраметилсилана приравнять 10 м.д. и обратить знаки на противоположные, то результирующая шкала будет шкалой τ, практически не используемой в настоящее время.
Если спектр вещества слишком сложен для интерпретирования, можно воспользоваться квантовохимическими методами расчёта констант экранирования и на их основании соотнести сигналы.

ЯМР-интроскопия[править | править код]

Явление ядерного магнитного резонанса можно применять не только в физике и химии, но и в медицине: организм человека — это совокупность все тех же органических и неорганических молекул.

Чтобы наблюдать это явление, объект помещают в постоянное магнитное поле и подвергают действию радиочастотных и градиентных магнитных полей. В катушке индуктивности, окружающей исследуемый объект, возникает переменная электродвижущая сила (ЭДС), амплитудно-частотный спектр которой и переходные во времени характеристики несут информацию о пространственной плотности резонирующих атомных ядер, а также о других параметрах, специфических только для ядерного магнитного резонанса. Компьютерная обработка этой информации формирует объёмное изображение, которое характеризует плотность химически эквивалентных ядер, времена релаксации ядерного магнитного резонанса, распределение скоростей потока жидкости, диффузию молекул и биохимические процессы обмена веществ в живых тканях.

Сущность ЯМР-интроскопии (или магнитно-резонансной томографии) состоит, по сути дела, в реализации особого рода количественного анализа по амплитуде сигнала ядерного магнитного резонанса. В обычной ЯМР-спектроскопии стремятся реализовать, по возможности, наилучшее разрешение спектральных линий. Для этого магнитные системы регулируются таким образом, чтобы в пределах образца создать как можно лучшую однородность поля. В методах ЯМР-интроскопии, напротив, магнитное поле создаётся заведомо неоднородным. Тогда есть основание ожидать, что частота ядерного магнитного резонанса в каждой точке образца имеет своё собственное значение, отличающееся от значений в других частях. Задав какой-либо код для градаций амплитуды ЯМР-сигналов (яркость или цвет на экране монитора), можно получить условное изображение (томограмму) срезов внутренней структуры объекта.

Споры об авторстве изобретения[править | править код]

По утверждению ряда источников, ЯМР-интроскопия, ЯМР-томография впервые в мире изобретены в 1960 г. В. А. Ивановым[5][6]. Заявку на изобретение (способ и устройство) некомпетентный эксперт отклонил «… ввиду явной бесполезности предлагаемого решения», поэтому авторское свидетельство на это было выдано лишь более чем через 10 лет. Таким образом, официально признано, что автором ЯМР-томографии является не коллектив нижеуказанных нобелевских лауреатов, а российский учёный. Невзирая на этот юридический факт, Нобелевская премия была присуждена за ЯМР-томографию вовсе не В. А. Иванову.

Нобелевские премии[править | править код]

Нобелевская премия по физике за 1952 г. была присуждена Феликсу Блоху и Эдварду Миллс Парселлу «За развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия».

Нобелевская премия по химии за 1991 г. была присуждена Рихарду Эрнсту
«За вклад в развитие методологии ядерной магнитной резонансной спектроскопии высокого разрешения».

Нобелевская премия по химии за 2002 г. (1/2 часть) была присуждена Курту Вютриху «За разработку применения ЯМР-спектроскопии для определения трёхмерной структуры биологических макромолекул в растворе».

Нобелевская премия по физиологии и медицине за 2003 г. была присуждена Полу Лотербуру, Питеру Мэнсфилду «За изобретение метода магнитно-резонансной томографии».

Примечания[править | править код]

Литература[править | править код]

  1. Абрагам А. Ядерный магнетизм. — М.: Издательство иностр. лит., 1963.
  2. Сликтер Ч. Основы теории магнитного резонанса. — М.: Мир, 1981.
  3. Эрнст Р., Боденхаузен Дж., Вокаун А. ЯМР в одном и двух измерениях: Пер. с англ. под ред. К. М. Салихова, М.: Мир, 1990.
  4. Гюнтер Х. Введение в курс спектроскопии ЯМР: Пер. с англ. — М.: Мир, 1984. — 478 с.
  5. Дероум А. Современные методы ЯМР для химических исследований.
  6. Калабин Г.А. Количественная спектроскопия ЯМР природного органического сырья и продуктов его переработки. — М.: Химия, 2000. — 408 с..
  7. Чижик В. И. Квантовая радиофизика. Магнитный резонанс и его приложения. — С-Петерб. университета, 2004 (2009), — 700с.
  8. Аминова Р. М. Квантовохимические методы вычисления констант ядерного магнитного экранирования — в журн. Химия и компьютерное моделирование. Бутлеровские сообщения. 2002. № 6. С. 11.
  9. Габуда С. П., Плетнёв Р. Н.,Федотов М. А. Ядерный магнитный резонанс в неорганической химии. — М: Наука, 1988. — 214 с.
  10. Габуда С. П., Ржавин А. Ф. Ядерный магнитный резонанс в кристаллогидратах и гидратированных белках. — Из-во: Наука. Новосибирск. 1978. —160с.
  11. Ионин Б.И., Ершов Б.А., Кольцов А.И., ЯМР-спектроскопия в органической химии: научное издание. – 2-е изд., Из-во: ЛГу, Химия, Ленингр. отд-ние.– 1983. – 269 с.
  12. Ершов Б.А., Спектроскопия ЯМР в органической химии. – Учебное пособие для вузов. – Из-во: СПбГу – 1995. – 263с.
  13. Robert M. Silverstein, Fancis X. Webster, David J. Kiemle — Spectrometric identification of organic compounds (seven edition)

Источник