Гуморальные факторы врожденного и адаптивного иммунитета
Приложение 1
Занятие2. Врожденный иммунитет
1. Определение понятия врожденного иммунитета и его отличительные свойства.
2. Клеточные факторы врожденного иммунитета: макрофаги, нейтрофилы, дендритные клетки, NK клетки, тучные клетки.
3. Гуморальные факторы врожденного иммунитета: комплемент, интерфероны, цитокины, хемокины, катионные противомикробные пептиды.
4. Понятие о паттерн-распознающих рецепторах и их роли в физиологических и патологических реакциях врожденного иммунитета.
5. Фагоцитоз, дыхательный взрыв, миграция, хемотаксис.
6. NK-клетки и их мишени.
Врожденный иммунитет – наследственно закрепленная система защиты организма от патогенных и непатогенных микроорганизмов, а также эндогенных продуктов тканевой деструкции.
Система врожденного иммунитета реализует свои функции через:
1. разнообразные клетки – макрофаги, дендритные клетки, нейтрофилы, тучные клетки, эозинофилы, базофилы, а также естественные киллеры или NK-клетки;
2. гуморальные факторы – естественные антитела, цитокины, комплемент, белки острой фазы воспаления, катионные противомикробные пептиды, лизоцим.
Механизмы врожденного иммунитета развиваются очень быстро, в течение нескольких минут и часов после проникновения патогенов. Их действие продолжается вовремя всего периода борьбы с инфекцией. Однако наиболее эффективно они работают в первые 96 ч. после внедрения микроба, затем уступают место факторам адаптивного иммунитета.Активация врожденного иммунитета не формирует продолжительной иммунной памяти.
Уровни врожденного иммунитета
1 уровень.Механический(покровные барьеры – кожа и слизистые). Неповрежденная кожа и слизистые оболочки непроницаемы для большинства микробных агентов. Молочная и жирная кислоты, синтезируемы сальными железами, обеспечивают низкие значения pH кожи.
Уровень.Бактерицидные факторы секретов
ü соляная кислота в желудочном соке
ü спермин и цинк в сперме
ü лактоферрин в материнском молоке
ü лизоцим в слезах, слюне, выделениях из носа, мокроте
ü дефенсины, кателицидины
Уровень. Колонизационная резистентность
Уровень.Система комплемента, интерферона
Уровень.Первичный фагоцитоз микробов фагоцитами
Уровень.Система НК-клеток
Распознающие рецепторы врожденного иммунитета
Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.
Таблица Распознавание в системе врожденного иммунитета
Мембранные рецепторы(передают сигнал внутрь клетки) | Toll – подобные (TRL1-10) C-лектиновые Рецепторы-мусорщики (Skavender-рецепторы) Интегриновые |
Внутриклеточные(цитозольные) | NOD RID DAI |
Секретируемые | Пентаксины Коллектины Компоненты системы комплемента Фиколины |
Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (paternrecognitionrecepror – PRR). К ним относятся Toll, NOD, RID –рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.
Toll –рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10 Toll – подобных рецепторов.
Рис. Toll-like рецепторы человека и их лиганды
Таблица. Toll-подобные рецепторы(TLR)человека и их лиганды
TLR | Лиганды | Патогены |
TLR1 | Липопептиды | Грамотрицательные бакетрии, микобактерии |
TLR2 | Пептидогликан, липотейхоевые кислоты | Грамположительные бактерии, грибы |
TLR3 | Двухцепочные РНК | Вирусы |
TLR4 | Липополисахарид | Грамотрицательные бактерии |
TLR5 | Флагеллин | Бактерии |
TLR6 | Диациллипопептиды, липотейхоевые кислоты | Микобактерии, грамположительные бактерии, грибы |
TLR7 | Одноцепочечные РНК | Вирусы |
Таблица. Toll-подобные рецепторы, расположенные на клетках иммунной системы
Клетки иммунной системы | Toll — рецепторы |
Нейтрофилы | TLR1,2,4,5,6,7,8,9,10 |
Моноциты/макрофаги | TLR1,2,4,5,6,7,8 |
Дендритные клетки | TLR1,2,4,5,6,8,10 |
В-лимфоциты | TLR1,3,6,7,9,10 |
Т-лимфоциты (Th1/Th2) | TLR2,3,5,9 |
Т-лимфоциты (регуляторные) | TLR2,5,8 |
Экспрессия Toll – рецепторовобеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.
NOD – рецепторыраспознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторыимеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.
Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc-фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.
Гуморальные факторы врожденного иммунитета
Гуморальные факторы врожденного иммунитета – это белки, присутствующие в сыворотке крови, секретах слизистых оболочек, которые синтезируются клетками иммунной системы и могут оказывать бактерицидное, опсонизирующее и т.д. действие на организмы.
Система комплемента
Комплемент – система сывороточных белов крови, каскадная активация которых приводит к лизису бактерий, собственных клеток, инфицированных внутриклеточными паразитами, разрушению иммунных комплексов.
Состоит более, чем из 20 инертных белков сыворотки, 9 из которых являются основными и обозначаются как С1, С2 и т.д. — С9. Формирование комплемента в единое целое или его активация происходит при внедрении в организм чужеродных антигенов.
Комплемент может активироваться двумя путями: классическим и альтернативным.
Гуморальные факторы системы врожденного иммунитета — это группа белков и полипептидов, секретируемых различными клетками организма. Они могут быть разделены на крупномолекулярные белки, наделенные ферментативной активностью (лизоцим, компоненты комплемента), вещества, связывающие необходимые для бактерий нутриенты — антинутриенты (лактоферрин, трансферрин, церулоплазмин), вещества, направленные против определенных составляющих микробов или их продуктов (коллектины [маннозосвязывающий протеин], пентраксины [С-реактивный белок], сывороточные предшественники амилоида), а также сравнительно мелкомолекулярные полипептиды (менее 100 аминокислотных остатков), к которым относятся дефензины (пептиды-антибиотики). Ниже приведено описание основных гуморальных факторов системы врожденного иммунитета организма человека.
Лизоцим (мурамидаза) — фермент, синтезируемый и секретируемый нейтрофилами, моноцитами и макрофагами. Он содержится во всех биологических жидкостях организма (слюне, слезах, ликворе, плазме крови) и обуславливает их бактерицидные свойства, расщепляя мурей н, входящий в состав клеточной стенки бактерий. Это и приводит к лизису микроорганизмов.
см. Система комплемента
Калликреин-кининовая система
см. Калликреин-кининовая система
см. Белки острой фазы воспаления
Естественные антитела синтезируются постоянно, даже при отсутствии антигенной стимуляции, и принадлежат к первичному звену зашиты от патогена. Есть мнение, что синтез естественных антител осуществляют В-лимфоциты. За счет деятельности этих клеток образуется пул иммуноглобулинов, содержащий антитела практически к любому типичному антигену патогенных микроорганизмов еще до момента антигенной стимуляции (априорно). Такие антитела принадлежат к классу IgM и являются полиреактивными. Исходя из указанных свойств, естественные антитела обладают довольно низким сродством к антигенам. Их функция состоит в немедленном связывании некоторого количества поступившего в организм антигена еще до образования специфических антител. При этом естественные антитела выступают в роли опсонинов или активируют комплемент по классическому пути.
см. Цитокины
Существует как минимум 14 вариантов α-интерферонов (продуктов лейкоцитов), несколько разновидностей β-интерферонов (продуктов фибробластов) и γ -интерферон (продукт Т-хелперов 1-го типа и естественных киллеров).
Основное предназначение α- и β-интерферонов состоит в осуществлении защиты от вирусов. При вирусной инфекции пораженные клетки синтезируют эти интерфероны, которые поступают в межклеточное пространство и связываются с рецепторами соседних не пораженных вирусом клеток. После этого они влияют на гены, ответственные за синтез протеинкиназ, снижающих трансляцию мРНК и соответственно синтез белков капсида вируса Также эти интерфероны инициируют синтез протеинов, угнетающих транскрипцию вирусных генов, и активируют латентную эндонуклеазу, приводящую к деградации РНК (как вируса, так и клетки-хозяина). Таким образом, интерфероны α и β действуют на всех трех уровнях синтеза белка — на собственно вирусную РНК как источник генетической информации, на процессы транскрипции и трансляции. Результат действия таких интерферонов состоит в образовании вокруг очага поражения барьера из клеток, не способных обеспечить репродукцию вируса. Материал с сайта https://wiki-med.com
γ -Интерферон выполняет функции специализированного иммунорегуляторного цитокина и не имеет прямой противовирусной активности. Однако он способен активировать естественные киллеры, цитотоксические Т-лимфоциты и макрофаги, принимающие непосредственное участие в разрушении вирус-инфицированных клеток.
Установлены противоопухолевый, а также антибактериальный эффекты интерферонов.
В человеческом организме синтезируются полипептиды, обладающие свойствами антибиотиков. Наиболее изученными являются дефензины, разделяемые на две группы (α и β). α -Дефензины содержатся в гранулах нейтрофилов, а β-дефензины синтезируются эпителиоцитами дыхательных путей и желудочно-кишечного тракта. По химической природе дефензины разделяются на липофильные и гидрофильные. Принцип действия этих антимикробных полипептидов состоит во встраивании в клеточные мембраны бактерий или оболочки сложных вирусов, что приводит к нарушению целостности поверхностных структур атакованных патогенов.
см. Эйкозаноиды
На этой странице материал по темам:
интерферон гуморальный иммунитет
гуморальные факторы врожденного иммунитета: опсонины. виды опсонинов и их функция.
рецепторы врожденного иммунитета
гуморальные+фауторы+вроддённого+иммунитета
гуморальные факторы неспецифической иммунитета
Глава 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ
Иммунитет — особое биологическое свойство многоклеточных организмов, направленное на защиту от генетически чужеродных факторов: микроорганизмов (бактерий, вирусов, простейших, грибов), инородных молекул и др. Иммунитет также обеспечивает невосприимчивость организма к инфекции при повторной встрече с патогеном. В медицинском смысле этот термин употребляли ещё до нашей эры в значениях: неприкосновенный, чистый, не затронутый заболеванием, невредимый, находящийся под хорошей защитой, устойчивый к заразной болезни.
Совокупность органных, тканевых, клеточных и молекулярных компонентов, функцией которых является осуществление иммунной защиты, называется иммунной системой. Иммунология — наука о строении и функциях иммунной системы как в норме, так и при различных патологических состояниях, в том числе и при нарушениях самой иммунной системы — иммунопатологиях.
Иммунную защиту обеспечивают два механизма: врождённый и адаптивный.
Врождённый иммунитет является присущей каждому организму с рождения, генетически закреплённой способностью противостоять инфекции. Это передовая линия обороны организма против патогенов, пытающихся проникнуть или уже проникших в покровные ткани или внутреннюю среду. Врождённый иммунитет срабатывает мгновенно или в течение первых нескольких часов после контакта с патогеном (возбудители, выделяемые ими токсины и другие чужеродные молекулы). Он включает четыре основных уровня защиты: анатомический, физиологический, фагоцитарный и воспалительный — покровные ткани, фагоциты, микробоцидные гуморальные вещества (протеазы, сильные окислители и свободные радикалы, продуцируемые фагоцитами, эндогенные противомикробные пептиды и др.), сосудистые реакции. Первичные рецепторы врождённого иммунитета — это молекулы многоклеточных, позволяющие «считывать» эволюционную память — информацию о том, чем отличаются микроорганизмы от собственных клеток.
Эти рецепторы способны распознавать консервативные молекулярные структуры — РАМР (Pathogen-Associated Molecular Patterns), характерные для групп сходных микроорганизмов. В настоящее время постоянно открывают новые патогенраспознающие рецепторы врождённого иммунитета. К ним относят мембраносвязанные паттернраспознающие рецепторы (Pattern Recognition Receptors, PRR), а также растворимые рецепторы — ряд белков сыворотки крови: C-реактивный белок (СРБ), маннозосвязывающий лектин (MBL — Mannose-Binding Lectin), компоненты комплемента.
Собственные возможности клеток врождённого иммунитета санировать организм от проникшего патогена часто недостаточны. Множество патогенов приспособилось выживать в присутствии факторов врождённой резистентности к инфекциям. Именно поэтому в процессе эволюции, начиная с челюстных рыб, к врождённому иммунитету добавился адаптивный иммунитет — специфический. Материальные носители адаптивного иммунитета — лимфоциты. Уникальное и отличительное свойство лимфоцитов как множества клеток — способность распознавать почти неограниченное (1018) разнообразие молекулярных объектов — антигенов. Лимфоциты характеризуются экспрессией Т-клеточных (TCR) или В-клеточных (BCR) рецепторов, распознающих только одну антигенную детерминанту либо небольшое число структурно очень близких детерминант, и поэтому, в отличие от PRR, обладающих высокой специфичностью (рис. 1-1).
Адаптивный (приобретённый) иммунитет формируется в течение жизни индивидуума. Активно приобретённый иммунитет — состояние невосприимчивости к инфекции после перенесённого инфекционного заболевания или после вакцинации (сам организм вырабатывает соответствующие антитела). Пассивно приобретённый иммунитет — состояние невосприимчивости к инфекции в результате поступления в организм уже готовых антител от матери или в результате инъекции (сам организм эти антитела не вырабатывает).
ИММУННЫЙ ОТВЕТ
Врождённая и адаптивная системы защиты организма включают клеточный и гуморальный компоненты и активно взаимодействуют друг с другом в процессе иммунного ответа. Иммунный ответ — многоэтапный процесс, заключающийся в распознавании и деструкции патогена и повреждённых им тканей. В его основе лежит уникальное свойство иммун-
Рис. 1-1. Сравнение врождённого и адаптивного иммунитета
ной системы отличать «свое» («sef») от «чужого» («nonself») и применять по отношению к «чужому» механизмы нейтрализации и уничтожения, а именно — иммунные реакции. Распознавание множества чужеродных антигенов происходит благодаря наличию в организме огромного разнообразия образующихся в тимусе клонов T-лимфоцитов (отбор клонов) и при помощи комплекса генов главного комплекса гистосовместимости (MHC) классов I и II. Нейтрализацию «чужого» осуществляют цирку-
лирующие в жидкостях организма антитела (гуморальный иммунитет) и цитотоксические лимфоциты (клеточный иммунитет).
Таким образом, основными характеристиками адаптивного иммунного ответа являются умение различать собственные антигены от чужеродных, специфичность и иммунная память.
• Различение «своего» и «чужого» выражается в дифференциации компонентов собственных тканей организма и чужеродных молекул. Специфическую неотвечаемость организма на собственные антигены обозначают как иммунную толерантность. Если же организм воспринимает собственные компоненты как чужеродные, развивается аутоиммунный ответ.
• Специфичность иммунного ответа проявляется в том, что иммунитет, сформировавшийся в результате контакта с определённым антигеном, будет обеспечивать защиту только против этого антигена.
• Иммунная память формируется в результате адаптивного иммунного ответа против конкретного возбудителя и сохраняется, как правило, в течение всей последующей жизни организма, защищая его от повторной инфекции, вызываемой этим же возбудителем. Такой механизм обеспечивается способностью иммунной системы к «запоминанию» антигенных детерминант патогена за счёт образования клеток иммунной памяти. Наличие иммунной памяти обусловливает развитие ускоренного и усиленного ответа (вторичный иммунный ответ) при повторном контакте с антигеном. Формирование иммунной памяти является основной целью вакцинации, т.е. процесса естественного или искусственного формирования иммунной защиты против определённой инфекции.
Схема развития иммунного ответа представлена на рис. 1-2. Содержание отдельных этапов иммунного ответа раскрыто ниже.
• Воспаление: участвуют клетки, поглощающие антигены (фагоциты, антигенпрезентирующие клетки) — в частности, дендритные клетки (ДК), макрофаги, эндотелиальные и другие клетки. Выделяются провоспалительные цитокины и хемокины.
• Переработка антигена (процессинг). После поглощения антигена антигенпрезентирующей клеткой (АПК) происходит его процессинг (расщепление и встраивание в молекулы MHC) и презентация на поверхности клетки. Это необходимо для распознавания антигена Т-лимфоцитами.
• Распознавание антигена происходит в периферических лимфоидных органах. Начало специфического иммунного ответа — про-
Рис. 1-2. Основные этапы иммунного ответа
лиферация и дифференцировка эффекторных и регуляторных лимфоцитов.
• Деструкция антигена и повреждённых патогеном тканей. При этом одни лимфоциты (помощники — хелперы) «нанимают» для выполнения эффекторных функций другие лимфоциты (эффекторные) и/или воспалительные лейкоциты (нейтрофилы, моноциты, базофилы, эозинофилы), тучные клетки, а также гуморальные литические системы типа комплемента.
• Выведение продуктов распада происходит с участием известных систем выделения.
КЛЕТКИ ИММУННОЙ СИСТЕМЫ
Клетки иммунной системы условно подразделяют на клетки врождённого и адаптивного иммунитета (рис. 1-3). Главным их различием является специфичность распознавания: низкая у первых и высокая у вторых. Существует и третья группа клеток — промежуточная, несущая черты обеих групп. Наличие этой группы показывает единство происхождения и способов защиты организма от чужеродных веществ антигенной природы.
Рис. 1-3. Клетки иммунной системы
В выполнении эффекторных иммунных функций очень важную роль играют АПК, T- и B-лимфоциты и NK-клетки (от англ. Natural Killer — естественный киллер, натуральный киллер).
• Антигенпрезентирующие клетки (АПК). К АПК относят макрофаги, дендритные клетки (включая клетки Лангерганса эпидермиса, М-клетки лимфатических фолликулов пищеварительного тракта и других слизистых оболочек, дендритные эпителиальные клетки тимуса), а также B-лимфоциты. АПК захватывают антиген, обрабатывают его (процессируют) и презентируют антигенные фрагменты на своей поверхности T-лимфоцитам (рис. 1-4).
• T-лимфоциты обусловливают клеточный иммунный ответ, а также помогают отвечать на антиген B-лимфоцитам при гуморальном иммунном ответе. Каждый T-лимфоцит несет на своей поверхности рецептор T-лимфоцитов (TCR — T-Cell Receptor) (см. рис. 5-1, в и рис. 6-1) строго одной специфичности, т.е. взаимодействующий с одним антигеном. T-клетки по экспрессии маркёрных антигенов CD (Cluster Differentiation) подразделяют на CD4+ и CD8+.
— CD4+ Т-лимфоциты (хелперы). Среди T-клеток, экспрессирующих мембранные маркёры CD4, выделяют Т-лимфоциты с эффекторными функциями (Th1, Th2, Th17) и Т-регуляторные клетки (естественные — Treg и индуцированные — Th3, или Tr1).
Рис. 1-4. Взаимодействие клеток в ходе гуморального иммунного ответа. Рецептор T-хелпера (TCR) распознаёт антигенную детерминанту (эпитоп), экспрессированную на поверхности антигенпрезентирующей клетки вместе с молекулой главного комплекса гистосовместимости класса II (MHC-II). Во взаимодействии участвует маркёрная молекула T-хелпера — CD4. В результате подобного взаимодействия антигенпрезентирующая клетка секретирует интерлейкин-1 (ИЛ-1), стимулирующий в T-хелпере синтез и секрецию цитокинов, включая ИЛ-2, а также синтез и перенос на плазматическую мембрану T-хелпера рецепторов для ИЛ-2 (ИЛ-2 также стимулирует пролиферацию T-хелперов). Отбор B-лимфоцитов происходит при взаимодействии антигена с вариабельными участками антител (иммуноглобулинов) на поверхности этих клеток (правая часть рисунка). Эпитоп этого антигена в комплексе с молекулой MHC-II распознаёт рецептор T-хелпера, после чего T-лимфоцит секретирует цитокины, стимулирующие пролиферацию B-лимфоцитов и их дифференцировку в плазматические клетки, синтезирующие антитела к данному антигену. Также показаны некоторые мембранные белки (CD40/CD40L и CD28/B7), участвующие в проведении костимуляторных сигналов, необходимых для полноценной активации взаимодействующих клеток (они описаны подробнее в главе 7)
◊ T-хелперы при взаимодействии с АПК специфически распознают антигены и начинают вырабатывать определённый набор цитокинов соответственно типу инфекционного агента: Th2 при взаимодействии с B-клетками индуцируют гуморальный иммунный ответ (см. рис. 1-4), а Th1 — при взаимодействии с макрофагами и цитотоксическими Т-лимфоцитами (ЦТЛ) — клеточный иммунный ответ. Th17 продуцируют ИЛ17 — мощный индуктор тканевого воспаления, привлекающий и активирующий гранулоциты и макрофаги.
◊ Регуляторные T-клетки (Т-регуляторы) контролируют интенсивность иммунного ответа, подавляя активность других субпопуляций Т-лимфоцитов.
— CD8+ Т-лимфоциты. Субпопуляция T-клеток, экспрессирующих мембранные молекулы CD8. Эти клетки выступают в роли ЦТЛ. Они лизируют клетки-мишени, несущие чужеродные или видоизменённые собственные антигены — аутоантигены: например, клетки опухоли, трансплантата, инфицированные вирусом клетки, несущие поверхностные вирусные антигены. Эффекторные функции ЦТЛ реализуются через индукцию образования в клетках-мишенях пор (под действием особых белков — перфоринов) и секрецию в поры специализированных сериновых протеаз — гранзимов. Вызванное этим нарушение осмотического баланса с внеклеточной средой приводит к гибели клетки (рис. 1-5). Под влиянием гранзимов индуцируются процессы запрограммированной гибели клетки — апоптоза.
• Т-клетки памяти — долгоживущие рециркулирующие малые лимфоциты, формируемые при первичном иммунном ответе. Они «запоминают» особенности детерминант антигенов и при повторном распознавании того же антигена развивают быстрый и усиленный ответ. Т-клетки памяти отличаются от наивных и эффекторных Т-лимфоцитов высоким уровнем экспрессии мембранных маркёров активации, меньшей потребностью в провоспалительных медиаторах и корецепторных сигналах для развития вторичного иммунного ответа.
• B-лимфоциты отвечают за гуморальный иммунный ответ. На мембране B-лимфоцитов присутствует рецептор для антигена — мономер IgM. Продолжительность жизни большинства B-лимфоцитов (если они не активируются антигеном!) не превышает 10 сут.
Рис. 1-5. Уничтожение клетки-мишени цитотоксическим T-лимфоцитом (Т-киллером). При сближении цитотоксического T-лимфоцита с клеткоймишенью после специфичного взаимодействия мембранных молекул клетокпартнёров T-лимфоцит убивает клетку-мишень
— Эффекторные B-лимфоциты. Активированные B-лимфоциты размножаются и дифференцируются в плазматические клетки (см. рис. 5-9), вырабатывающие антитела (иммуноглобулины, специфичные к конкретному антигену). При этом плазматические клетки теряют экспрессию специфических рецепторов для антигена.
— B-лимфоциты иммунной памяти — долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об антигене, с которым когда-то контактировали, за счёт продолжающейся экспрессии рецептора для антигена. Клетки памяти активируются
при повторном распознавании того же антигена. В этом случае B-лимфоциты памяти, при обязательном участии T-хелперов и ряда других факторов, превращаются в плазматические клетки, обеспечивая быстрый синтез большого количества специфичных антител, взаимодействующих с чужеродным антигеном, и развитие эффективного иммунного ответа. • NK-клетки (от англ. Natural Killer — естественный киллер) — лимфоциты, лишённые характерных для T- и B-клеток поверхностных CD-маркёров, а также антигенраспознающих рецепторов — TCR (T Cell Receptor) или BCR (B Cell Receptor). Эти клетки играют важную роль в механизмах врождённого иммунитета (см. главу 3), уничтожают трансформированные, инфицированные вирусами и чужеродные клетки.