Иммунитет биологически активные вещества
Биологически активные вещества природы и иммунитет
Своими целебными свойствами пища, которую употребляет человек, обязана физиологически активным соединениям (ФАС) различной природы, которые находятся в том или ином продукте питания. ФАС способны ликвидировать патологические процессы, возникающие в организме человека.
К этим соединениям относятся алкалоиды, терпеноиды, фенольные соединения и их гликозиды, полисахариды, в том числе мукополисахариды и т. д.
По статистике количество различных алкалоидов, выделенных из растений, составляет около 10 000! Алкалоиды обнаружены примерно в четверти всех высших растений в виде солей органических кислот (например, яблочной, лимонной, щавелевой).
Каждому алкалоиду присущи только ему свойственные признаки. Так, алкалоид атропин из красавки, белены, дурмана, лобелий обладает спазмолитическим свойством. Алкалоиды мака морфин и кодеин обладают противокашлевым и болеутоляющим свойствами. Резерпин, присутствующий во многих растениях (например, в хвойной араукарии или таких сорняках, как осока и хвостник), снижает кровяное давление.
К гликозидам относятся, например, природные соединения: сердечные гликозиды, сапонины. Сердечные гликозиды – одна из важнейших групп гликозидов, которые до сих пор не находят равных себе синтетических заменителей. К ним относятся гликозиды наперстянки, горицвета, ландыша.
Сапонины концентрируются в клеточном соке. Сапонины ноготков обладают противоаритмическим действием. Сапонины конского каштана – капилляроукрепляющим, первоцвета – отхаркивающим. Корень солодки голой занимает одно из первых мест среди лекарственных растений, предотвращающих, в частности, нарушение водно-солевого обмена.
Горькие гликозиды (горечи) применяются для улучшения аппетита, обладают мочегонным, седативным, противоопухолевым, гипотензивным, коронорасширяющим свойствами.
Терпеноиды представлены витаминами, каротиноидами, эфирными маслами. В настоящее время известно около 30 витаминов, около двадцати из которых, человек получает с растительной и животной пищей.
Фенольные соединения – главные из соединений, обладающих высокой биологической активностью и оказывающих положительное влияние на состояние иммунной системы. Достаточно назвать родиолу розовую – золотой корень. Все части этого растения оказывают стимулирующее действие, аналогично элеутерококку и женьшеню. Кроме того, фенольные соединения, подавляющие большинство БАВ, оказывают спазмолитическое, седативное, капилляроукрепляющее, противовоспалительное действие.
Все растения имеют в своем составе полисахариды в виде крахмала и клетчатки.
К полисахаридам также относятся инсулин, пектиновые вещества, камеди, слизи.
Пектины, содержащиеся в растениях, стимулируют заживление ран, снижают содержание холестерина в крови, влияют на обмен желчных кислот, снижают токсичность антибиотиков.
Мукополисахариды, входящие в состав мяса животных, рыб и птицы (хрящи, кости и др.), являются ценнейшей пищей для иммунитета.
Рассматривая значение физиологически активных соединений для укрепления иммунной системы, следует помнить, что только грамотное использование продуктов питания даст положительный результат. Излишняя термообработка, сочетание с несовместимыми продуктами и другие нарушения в процессе приготовления пищи приведут к разрушению полезных свойств целебных продуктов.
Следующая глава >
Похожие главы из других книг:
34. Биологически активные добавки
Биологические активные вещества применяют для улучшения функции и регуляции микробиоценоза ЖКТ, профилактики и лечения: диетические добавки, функциональное питание, пробиотики, пребиотики, синбиотики, бактериофаги, биотерапевтические
БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА
Говоря о биологически активных веществах в рационе диабетика, следует напомнить, что диабет – во многом болезнь питания. Именно нарушения питания приводят к потере контроля за сахаром в крови и, как следствие, тяжелым осложнениям болезни.
Биологически активные добавки
Наши люди принимают огромное количество БАДов, совершенно не задумываясь, что туда входит. Нормальный и современный врач никогда не порекомендует БАДы. Это не лекарства, это в лучшем случае пустышки, в худшем – неизученные и, возможно,
Биологически активные добавки (БАД)
Аббревиатура БАД становится все более привычной для россиян. Этот продукт рекламируют в средствах массовой информации, выставляют на витринах аптек, прописывают в поликлиниках и больницах. Населению настойчиво внушается мысль о
Глава 1. Биологически активные вещества лекарственных растений
Издревле известны растения, оказывающие целебное воздействие на организм человека. Сегодня лекарственные растения и сборы применяются практически при всех видах заболеваний, не исключение и острые
Биологически активные вещества
Деготь березовый очищенный, так же как и неочищенный, обладает выраженной биологической активностью в отношении эпителиальных компонентов неповрежденной кожи, оказывая стимулирующее действие на пролиферацию и кератинизацию
Биологически активные продукты и вещества
К ним относятся витамины, микроэлементы, ферменты, органические кислоты и ряд других веществ, которые не только способствуют поддержанию биологических процессов в организме на высоком уровне, но и защищают его от разного рода
Биологически активные вещества и продукты, их содержащие
К биологически активным веществам относятся витамины, микроэлементы, ферменты, органические кислоты и ряд других веществ. Они способствуют поддержанию биологических процессов в организме на высоком уровне,
Биологически активные вещества
К биологически активным веществам относятся витамины, микроэлементы, ферменты, органические кислоты и ряд других веществ. Они способствуют поддержанию биологических процессов в организме на высоком уровне, выводят шлаки и т. д. В пожилом
Биологически активные вещества сабельника
К сожалению, Дима Свечкин уехал в Тулу сразу же после нашего разговора о микроэлементах на кухне за чашкой болотного чая. Я отвез знаменитого биолога и фитотерапевта на Московский вокзал. Пока я его вез по забитым машинами
Биологически активные вещества
Для того чтобы после напряженных тренировок и соревнований спортсмен смог поддерживать нормальную деятельность организма и работоспособность, необходимо сбалансировать рацион в зависимости от индивидуальных потребностей спортсмена,
Пенообразующие вещества (ПАВ) – поверхностно активные вещества
Используются в качестве очищающих и дезинфицирующих агентов. Необходимы для обеспечения равномерного распределения пасты в труднодоступных местах полости рта, а также для дополнительного удаления налета
Биологически активные точки
В организме каждого человека существует 12 основных энергетических каналов. Они проходят от макушки головы через пальцы рук вниз — к пальцам ног. Данные каналы или меридианы проводят через наше тело жизненную энергию. Точки акупунктуры, или
Важнейшие биологически активные вещества лекарственных растений
Лекарственные растения и получаемые из них фитопрепараты издавна используются как для лечения, так и с целью профилактики практически всех заболеваний человека. В их число входят сердечно-сосудистые
Биологически активные вещества в растениях
Лечебные свойства растений в первую очередь зависят от того, сколько в них биологически активных веществ, принадлежащих к разным классам химических соединений: алкалоидов, эфирных масел, дубильных веществ, горечей, гликозидов,
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2020;
проверки требуют 9 правок.
Иммуните́т (лат. immunitas — освобождение) человека и животных — способность организма поддерживать свою целостность и биологическую индивидуальность путём распознавания и удаления чужеродных веществ и клеток[1] (в том числе болезнетворных бактерий и вирусов). Характеризуется изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.
Назначение[править | править код]
Простейшие защитные механизмы, имеющие своей целью распознавание и обезвреживание патогенов, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые препятствуют заражению бактерии вирусом[2]. Одноклеточные эукариотные организмы применяют токсичные пептиды, чтобы предотвратить проникновение бактерий и вирусов в свои клетки[3].
По мере эволюции сложно организованных многоклеточных организмов у них формируется многоуровневая иммунная система, важнейшим звеном которой становятся специализированные клетки, противостоящие вторжению генетически чужеродных объектов[4].
У таких организмов иммунный ответ происходит при столкновении данного организма с самым различным чужеродным в антигенном отношении материалом, включая вирусы, бактерии и другие микроорганизмы, обладающие иммуногенными свойствами молекулы (прежде всего белки, а также полисахариды и даже некоторые простые вещества, если последние образуют комплексы с белками-носителями — гаптены[5]), трансплантаты или мутационно изменённые собственные клетки организма. Как отмечает В. Г. Галактионов, «иммунитет есть способ защиты организма от всех антигенно чужеродных веществ как экзогенной, так и эндогенной природы; биологический смысл подобной защиты — обеспечение генетической целостности особей вида в течение их индивидуальной жизни»[6]. Биологическим смыслом такой защиты является обеспечение генетической целостности особей вида на протяжении их индивидуальной жизни, так что иммунитет выступает как фактор стабильности онтогенеза[7].
Характерные признаки иммунной системы[8]:
- способность отличать «своё» от «чужого»;
- формирование памяти после первичного контакта с чужеродным антигенным материалом;
- клональная организация иммунокомпетентных клеток, при которой отдельный клеточный клон способен, как правило, реагировать лишь на одну из множества антигенных детерминант.
Классификации[править | править код]
Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют молекулы, находящиеся в плазме крови, а не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы.
Иммунитет также классифицируют на врождённый и адаптивный.
Врождённый (неспецифический, наследственный[9]) иммунитет обусловлен способностью идентифицировать и обезвреживать разнообразные патогены по наиболее консервативным, общим для них признакам, дальности эволюционного родства, до первой встречи с ними. В 2011 году была вручена Нобелевская премия в области медицины и физиологии за изучение новых механизмов работы врождённого иммунитета (Ральф Стайнман, Жюль Хоффман и Брюс Бётлер)[10].
Осуществляется большей частью клетками миелоидного ряда, не имеет строгой специфичности к антигенам, не имеет клонального ответа, не обладает памятью о первичном контакте с чужеродным агентом.
Адаптивный (устар. приобретённый, специфический) иммунитет имеет способность распознавать и реагировать на индивидуальные антигены, характеризуется клональным ответом, в реакцию вовлекаются лимфоидные клетки, имеется иммунологическая память, возможна аутоагрессия.
Классифицируют на активный и пассивный.
- Приобретённый активный иммунитет возникает после перенесённого заболевания или после введения вакцины.
- Приобретённый пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорождённому с молозивом матери или внутриутробным способом.
Другая классификация разделяет иммунитет на естественный и искусственный.
- Естественный иммунитет включает врождённый иммунитет и приобретённый активный (после перенесённого заболевания), а также пассивный иммунитет при передаче антител ребёнку от матери.
- Искусственный иммунитет включает приобретённый активный после прививки (введение вакцины) и приобретённый пассивный (введение сыворотки).
Органы иммунной системы[править | править код]
Выделяют центральные и периферические органы иммунной системы. К центральным органам относят красный костный мозг и тимус, а к периферическим — селезёнку, лимфатические узлы, а также местноассоциированную лимфоидную ткань: бронхассоциированную (БАЛТ), кожноассоциированную (КАЛТ), кишечноассоциированную (КиЛТ, пейеровы бляшки).
Красный костный мозг — центральный орган кроветворения и иммуногенеза. Содержит самоподдерживающуюся популяцию стволовых клеток. Красный костный мозг находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. Здесь происходит дифференцировка В-лимфоцитов из предшественников. Содержит также Т-лимфоциты.
Тимус — центральный орган иммунной системы. В нём происходит дифференцировка Т-лимфоцитов из предшественников, поступающих из красного костного мозга.
Лимфатические узлы — периферические органы иммунной системы. Они располагаются по ходу лимфатических сосудов. В каждом узле выделяют корковое и мозговое вещество. В корковом веществе есть В-зависимые зоны и Т-зависимые зоны. В мозговом есть только Т-зависимые зоны.
Селезёнка — паренхиматозный зональный орган. Является самым крупным органом иммунной системы, кроме того, выполняет депонирующую функцию по отношению к крови. Селезёнка покрыта капсулой из плотной соединительной ткани, которая содержит гладкомышечные клетки, позволяющие ей при необходимости сокращаться. Паренхима представлена двумя функционально различными зонами: белой и красной пульпой. Белая пульпа составляет 20 %, представлена лимфоидной тканью. Здесь имеются В-зависимые и Т-зависимые зоны. И также здесь есть макрофаги. Красная пульпа составляет 80 %. Она выполняет следующие функции:
- Депонирование зрелых форменных элементов крови.
- Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов.
- Фагоцитоз инородных частиц.
- Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.
Иммунокомпетентные клетки[править | править код]
К иммунокомпетентным клеткам относят макрофаги и лимфоциты. Эти клетки совместно участвуют в инициации и развитии всех звеньев адаптивного иммунного ответа (система трёхклеточной кооперации).
Клетки, участвующие в иммунном ответе[править | править код]
T-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, отвечающая главным образом за клеточный иммунный ответ. Включает в себя субпопуляции Т-хелперов (дополнительно разделяются на Th1, Th2, а также выделяют Treg, Th9, Th17, Th22,), цитотоксических Т-лимфоцитов,NKT. Включает в себя эффектор, регуляторы и долгоживущие клетки-памяти. Функции разнообразны: как регуляторы и администраторы иммунного ответа (Т-хелперы), так и киллеры (цитотоксические Т-лимфоциты).
B-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, синтезирующая антитела и отвечающая за гуморальный иммунный ответ.
Натуральные киллеры[править | править код]
Натуральные киллеры (NK-клетки) — субпопуляция лимфоцитов, обладающая цитотоксичной активностью, то есть они способны: контактировать с клетками-мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз. Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.
Нейтрофилы[править | править код]
Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 65-70 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим (мурамидаза), липопероксидаза и другие антибиотические белки. Нейтрофилы способны самостоятельно мигрировать к месту нахождения антигена, так как у них есть рецепторы хемотаксиса (двигательная реакция на химическое вещество). Нейтрофилы способны «прилипать» к эндотелию сосудов и далее мигрировать через стенку к месту нахождения антигенов. Далее проходит фагический цикл, и нейтрофилы постепенно заполняются продуктами обмена. Далее они погибают и превращаются в клетки гноя.
Эозинофилы[править | править код]
Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Эозинофилы узнают гельминтов и экзоцитируют в зону контакта вещества — перфорины. Эти белки встраиваются в билипидный слой клеток гельминта. В них образуются поры, внутрь клеток устремляется вода, и гельминт погибает от осмотического шока.
Базофилы[править | править код]
Базофилы составляют 0,5-1 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в ткани. Тучные клетки располагаются в различных тканях, лёгких, слизистых и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). При этом происходит взаимодействие с иммуноглобулином Е (IgE). Таким образом они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа.
Моноциты[править | править код]
Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани, существуют несколько видов макрофагов в зависимости от типа ткани, в которой они находятся, в том числе:
- Некоторые антигенпредставляющие клетки, в первую очередь дендритные клетки, роль которых — поглощение микробов и «представление» их Т-лимфоцитам.
- Клетки Купфера — специализированные макрофаги печени, являющиеся частью ретикулоэндотелиальной системы.
- Альвеолярные макрофаги — специализированные макрофаги лёгких.
- Остеокласты — костные макрофаги, гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена.
- Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.
- Кишечные макрофаги и т. д.
Функции их разнообразны и включают в себя фагоцитоз, взаимодействие с адаптивной иммунной системой и инициацию и поддержание иммунного ответа, поддержание и регулирование процесса воспаления, взаимодействие с нейтрофилами и привлечение их в очаг воспаления, выделение цитокинов, регуляция репарации, регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления, синтез компонентов системы комплемента.
Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают прохождение врождённого иммунного ответа, который является неспецифичным (в патологии неспецифичный ответ на альтерацию называют воспалением, воспаление является неспецифической фазой последующих специфических иммунных).
Иммунно привилегированные области[править | править код]
В некоторых частях организма млекопитающих и человека появление чужеродных антигенов не вызывает иммунного ответа. К таким областям относятся мозг и глаза, семенники, эмбрион и плацента. Нарушение иммунных привилегий может становиться причиной аутоиммунных заболеваний.
Иммунные заболевания[править | править код]
Аутоиммунные заболевания[править | править код]
При нарушении иммунной толерантности или повреждении тканевых барьеров возможно развитие иммунных реакций на собственные клетки организма. Например, патологическая выработка антител к ацетилхолиновым рецепторам собственных мышечных клеток вызывает развитие миастении[11].
Иммунодефицит[править | править код]
См. также[править | править код]
- Иммунная система
- Врождённый иммунитет
- Приобретенный иммунитет
- Иммунотерапия рака
- Иммунитет растений
- Химера (биология)
Примечания[править | править код]
- ↑ ИММУНИТЕТ • Большая российская энциклопедия — электронная версия. bigenc.ru. Дата обращения 8 апреля 2020.
- ↑ Bickle T. A., Krüger D. H. Biology of DNA restriction // Microbiological Reviews. — 1993. — Vol. 57, no. 7. — P. 434—450. — PMID 8336674.
- ↑ Черешнев В.А. Черешнева М.В. Иммунологические механизмы локального воспаления. Медицинская иммунология 2011 т.13 №6 стр.557-568 РО РААКИ. cyberleninka.ru. Дата обращения 16 мая 2020.
- ↑ Travis J. On the Origin of the Immune System // Science. — 2009. — Vol. 324, no. 5927. — P. 580—582. — doi:10.1126/science.324_580. — PMID 19407173.
- ↑ Genetics of the Immune Response / Ed. by E. Möller and G. Möller. — New York: Plenum Press, 2013. — viii + 316 p. — (Nobel Foundation Symposia, vol. 55). — ISBN 978-1-4684-4469-8. — P. 262.
- ↑ Галактионов В.Г. Проблемы эволюционной иммунологии. cyberleninka.ru. Медицинская иммунология 2004 т.6 №3-5 РО РААКИ. Дата обращения 16 мая 2020.
- ↑ Галактионов, 2005, с. 8.
- ↑ Галактионов, 2005, с. 8, 12.
- ↑ Иммунитет // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
- ↑ Нобелевская премия по физиологии и медицине 2011 (англ.). www.nobelprize.org.
- ↑ Галактионов, 2005, с. 392.
Литература[править | править код]
- Галактионов В. Г. . Эволюционная иммунология. — М.: Академкнига, 2005. — 408 с. — ISBN 5-94628-103-8.
- Хаитов Р. М. . Иммунология. — М.: ГЕОТАР, 2006. — 320 с. — ISBN 978-5-9704-1288-6.
- Ярилин А. А. . Иммунология. — М.: ГЕОТАР, 2010. — 737 с. — ISBN 978-5-9704-1319-7.