Иммунитет и обмен веществ
Лимфоциты кишечника регулируют интенсивность метаболизма, действуя на кишечные клетки и кишечные гормоны.
В кишечнике очень много иммунных клеток, и неудивительно: во-первых, инфекции зачастую проникают в тело именно через кишечник, во-вторых, здесь же обитает масса симбиотических бактерий, без которых нам бы жилось намного труднее. Кишечный департамент иммунной системы должен постоянно уничтожать патогенных нарушителей и одновременно не трогать дружественную микрофлору.
Выросты эпителиальных клеток кишечника. (Фото Science 3.0 / Flickr.com)
‹
›
Наши «домашние» кишечные бактерии влияют на множество физиологических процессов, и в первую очередь на обмен веществ. Можно предположить, что иммунитет, который постоянно общается с микрофлорой, косвенно действует и на метаболизм тоже – мы уже как-то писали, что иммунная система влияет на сахарный обмен через кишечных бактерий.
Но иммунные клетки, которые сидят в кишечнике, могут и сами регулировать обмен веществ. Известно, что Т-лимфоциты, которые сидят в кишечном эпителии, часто скапливаются там, где особенно активно всасываются питательные вещества; кроме того, у них активно работают гены, управляющие метаболизмом, и сами клетки путешествуют по эпителию не только когда организму угрожает какая-то инфекция, но и по каким-то другим причинам.
Исследователи из Гарварда и Йеля с помощью генетических модификаций создали мышей, у которых лимфоциты лишены интегрина β7. Это мембранный белок, который помогает лимфоцитам взаимодействовать с эпителиальными клетками. В результате количество лимфоцитов в кишечном эпителии у таких мышей сильно падало.
Одновременно у животных разгонялся обмен веществ: бурый жир, задача которого – сжигать жировые запасы, вдруг начинал заниматься этим чрезвычайно активно, а поджелудочная железа начинала выбрасывать в кровь очень много инсулина, сильно снижая уровень сахара. Таких мышей пробовали держать на вредной диете с большим количеством жира и сахара, но, несмотря на вредную диету, у животных не появлялось признаков метаболического синдрома, который обычно сопутствует ожирению, диабету второго типа, проблем с сосудами и т. д.
Похожие вещи происходят при повышении уровня глюкагоноподобного пептида-1, который синтезируют так называемые L-клетки кишечного эпителия. Синтезируют они его либо под действием нервного сигнала, либо в ответ на появление сахара или желчных кислот (которые, в свою очередь, появляются в кишечнике в ответ на жиры). Глюкагоноподобный пептид-1 заставляет поджелудочную железу вырабатывать больше инсулина, и заодно стимулирует прирост инсулинсинтезирующих клеток. Кроме того, этот пептид замедляет перистальтику желудочно-кишечного тракта и заставляет нейроны отправлять в мозг сигналы насыщения. То есть в целом глюкагоноподобный пептид-1 помогает меньше есть и одновременно помогает избавляться от лишних калорий.
Поэтому возникла гипотеза, что иммунитет регулирует обмен веществ, действуя на этот пептид. Всё так и оказалось: в статье в Nature говорится, что у мышей, у которых в кишечнике было мало Т-лимфоцитов, было больше как пептида, так и синтезирующих его L-клеток. Иммунные клетки управляют обменом веществ напрямую, влияя на появление новых L-клеток и поглощая пептид, который они выделяют. Как пишет портал Nature, можно предположить, что иммунитет работает добавочным регулятором обмена веществ, настраивая его на разные условия среды. Ведь когда еды мало, то желательно, чтобы L-клетки и их пептид особо не активничали; и наоборот, когда еды много и организму, чего доброго, грозит ожирение, то L-клетки и их пептид должны работать, так сказать, не покладая рук.
Разумеется, тут сразу возникает вопрос, как сами Т-лимфоциты чувствуют, как нужно отрегулировать метаболизм. Очевидно, в иммунной системе для этого должен стоять некий «датчик снабжения», который определял бы, сколько в теле хранится запасов, как индивидуум питается и т. д.
С другой стороны, интересно, как Т-лимфоциты сочетают такую работу со своей прямой функцией – защитой организма от бактерий, вирусов и пр. Кишечные Т-лимфоциты работают в особых условиях, но ведь генетически они не отличаются от тех, которые находятся в других местах – значит, есть какие-то молекулярные механизмы, которые делают из кишечных Т-лимфоцитов тех, кто они есть.
Ответив на эти и другие вопросы, мы не только больше узнаем об иммунитете, но и, возможно, найдём новый способ бороться с избыточным весом, диабетом и прочими расстройствами, связанными с обменом веществ.
Как устроен иммунитет: Объясняем по пунктам
Наш организм непрерывно меняется, но при этом очень «любит» постоянство и может нормально работать только при определенных параметрах своей внутренней среды. Например, нормальная температура тела колеблется между 36 и 37 градусами по Цельсию. Вспомните последнюю простуду и то, как плохо вы себя чувствовали, стоило температуре подняться всего на полградуса. Такая же ситуация и с другими показателями: артериальным давлением, рН крови, уровнем кислорода и глюкозы в крови и другими. Постоянство значений этих параметров называется гомеостазом, а поддержкой его стабильного уровня занимаются практически все органы и системы организма: сердце и сосуды поддерживают постоянное артериальное давление, легкие — уровень кислорода в крови, печень — уровень глюкозы и так далее.
Иммунная же система отвечает за генетический гомеостаз. Она помогает поддерживать постоянство генетического состава организма. То есть ее задача — уничтожать не только все чужеродные организмы и продукты их жизнедеятельности, проникающие извне (бактерии, вирусы, грибки, токсины и прочее), но также и клетки собственного организма, если «что-то пошло не так» и, например, они превратились в злокачественную опухоль, то есть стали генетически чужеродными.
Как клетки иммунной системы уничтожают «врагов»?
Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.
Иммунитет бывает врожденным (он же неспецифический) и приобретенным (он же адаптивный, или специфический). Врожденный иммунитет одинаков у всех людей и идентичным образом реагирует на любых «врагов». Реакция начинается немедленно после проникновения микроба в организм и не формирует иммунологическую память. То есть, если такой же микроб проникнет в организм снова, система неспецифического иммунитета его «не узнает» и будет реагировать «как обычно». Неспецифический иммунитет очень важен — он первым сигнализирует об опасности и немедленно начинает давать отпор проникшим микробам.
Однако эти реакции не могут защитить организм от серьезных инфекций, поэтому после неспецифического иммунитета в дело вступает приобретенный иммунитет. Здесь уже реакция организма индивидуальна для каждого «врага», поэтому «арсенал» специфического иммунитета у разных людей различается и зависит от того, с какими инфекциями человек сталкивался в жизни и какие прививки делал.
Специфическому иммунитету нужно время, чтобы изучить проникшую в организм инфекцию, поэтому реакции при первом контакте с инфекцией развиваются медленнее, зато работают гораздо эффективнее. Но самое главное, что, один раз уничтожив микроба, иммунная система «запоминает» его и в следующий раз при столкновении с таким же реагирует гораздо быстрее, часто уничтожая его еще до появления первых симптомов заболевания. Именно так работают прививки: когда в организм вводят ослабленных или убитых микробов, которые уже не могут вызвать заболевание, у иммунной системы есть время изучить их и запомнить, сформировать иммунологическую память. Поэтому, когда человек после вакцинации сталкивается с реальной инфекцией, иммунная система уже полностью готова дать отпор, и заболевание не начинается вообще или протекает гораздо легче.
Кто отвечает за работу различных видов иммунитета?
- Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
- Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
- Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
- Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.
Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.
- Т-лимфоциты. Названы так, потому что после образования в костном мозге дозревают в вилочковой железе — тимусе. Разные подвиды Т-лимфоцитов отвечают за разные функции. Например, Т-киллеры могут убивать зараженные вирусами клетки, чтобы остановить развитие инфекции, Т-хелперы помогают иммунной системе распознавать конкретные виды микробов, а Т-супрессоры регулируют силу и продолжительность иммунной реакции.
- B-лимфоциты. Название их происходит от Bursa fabricii (сумка Фабрициуса) — особого органа у птиц, в котором впервые обнаружили эти клетки. В-лимфоциты умеют синтезировать антитела (иммуноглобулины). Это специальные белки, которые «прилипают» к микробам и вызывают их гибель. Также антитела могут нейтрализовывать некоторые токсины.
- Натуральные киллеры. Эти клетки находят и убивают раковые клетки и клетки, пораженные вирусами.
- Нейтрофилы и макрофаги умеют ловить и переваривать микробов — осуществлять фагоцитоз. Кроме того, макрофаги выполняют важнейшую роль в процессе презентации антигена, когда макрофаг знакомит другие клетки иммунной системы с кусочками переваренного микроба, что позволяет организму лучше бороться с инфекцией.
- Эозинофилы защищают наш организм от паразитов — обеспечивают антигельминтный иммунитет.
- Базофилы — выполняют главным образом сигнальную функцию, выделяя большое количество сигнальных веществ (цитокинов) и привлекая этим другие иммунные клетки в очаг воспаления.
Как клетки иммунной системы отличают «своих» от «чужих» и понимают, с кем нужно бороться?
В этом им помогает главный комплекс гистосовместимости первого типа (MHC-I). Это группа белков, которая располагается на поверхности каждой клетки нашего организма и уникальна для каждого человека. Это своего рода «паспорт» клетки, который позволяет иммунной системе понимать, что перед ней «свои». Если с клеткой организма происходит что-то нехорошее, например, она поражается вирусом или перерождается в опухолевую клетку, то конфигурация MHC-I меняется или же он исчезает вовсе. Натуральные киллеры и Т-киллеры умеют распознавать MHC-I рецептор, и как только они находят клетку с измененным или отсутствующим MHC-I, они ее убивают. Так работает клеточный иммунитет.
Но у нас есть еще один вид иммунитета — гуморальный. Основными защитниками в этом случае являются антитела — специальные белки, синтезируемые B-лимфоцитами, которые связываются с чужеродными объектами (антигенами), будь то бактерия, вирусная частица или токсин, и нейтрализуют их. Для каждого вида антигена наш организм умеет синтезировать специальные, подходящие именно для этого антигена антитела. Молекулу каждого антитела, также их называют иммуноглобулинами, можно условно разделить на две части: Fc-участок, который одинаков у всех иммуноглобулинов, и Fab-участок, который уникален для каждого вида антител. Именно с помощью Fab-участка антитело «прилипает» к антигену, поэтому строение этого участка молекулы зависит от строения антигена.
Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?
Рассмотрим этот процесс на примере развития бактериальной инфекции. Например, вы поцарапали палец. При повреждении кожи в рану чаще всего попадают бактерии. При повреждении любой ткани организма сразу же запускается воспалительная реакция. Поврежденные клетки выделяют большое количество разных веществ — цитокинов, к которым очень чувствительны нейтрофилы и макрофаги. Реагируя на цитокины, они проникают через стенки капилляров, «приплывают» к месту повреждения и начинают поглощать и переваривать попавших в рану бактерий — так запускается неспецифический иммунитет, но до синтеза антител дело пока еще не дошло.
Расправляясь с бактериями, макрофаги выводят на свою поверхность разные их кусочки, чтобы познакомить Т-хелперов и B-лимфоцитов со строением этих бактерий. Этот процесс называется презентацией антигена. Т-хелпер и B-лимфоцит изучают кусочки переваренной бактерии и подбирают соответствующую структуру антитела так, чтобы потом оно хорошо «прилипало» к таким же бактериям. Так запускается специфический гуморальный иммунитет. Это довольно длительный процесс, поэтому при первом контакте с инфекцией организму может понадобиться до двух недель, чтобы подобрать структуру и начать синтезировать нужные антитела.
После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.
Есть ли еще какие-то механизмы?
Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.
Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.
Иммунитет
Иммунитет – это способность организма защищаться от проникновения чужеродных антигенов.
Он помогает сохранить биологическую целостность организма.
В основе учения об иммунитете лежат учения Мечникова И.И. Он был первым ученым, который смог связать способности организма с работой лейкоцитов. Его учение звучит следующим образом:
- Невосприимчивость организма к действию проникших в него чужеродных и инфекционных высокомолекулярных органических агентов называется иммунитетом и обуславливается клетками крови.
Мечников обнаружил, что лейкоциты осуществляют защиту с помощью фагоцитоза. Они захватывают чужеродные объекты, полностью их поглощают и переваривают. В процессе переваривания эритроциты часто погибают. При разрушении они выделяют антитела – это комплексы, которые способны распознать чужеродного агента и направить силы на их уничтожение.
Антитела попадают в органы, где вырабатываются лейкоциты и передают информацию. Новые лейкоциты способны различить антиген. Начинает вырабатываться большее количество лейкоцитов. Как только их становиться достаточное количество, они уничтожают инфекцию и запоминают ее. Так формируется иммунитет.
Иммунная система обладает определенными признаками:
- способность отличать чужеродные антигены от родных;
- формирование памяти после контакта с инфекцией;
- клональная организация клеток, один клон реагирует на один антиген.
Иммунитет разделяют на врожденный и приобретенный. Каждый из них также подразделяют на активный и пассивный. Приобретенный делят на естественный и искусственный.
Врожденный наследуется ребенком от матери. Это естественный процесс. Новорожденный с первых дней жизни имеет собственную группу крови с наличием антител, а также иммунитет к собачьей чуме и чуме крупного рогатого скота.
Естественный активный иммунитет вырабатывается после перенесения какого-либо заболевания. Он может быть пожизненным или временным. Например, если в детстве ребенок перенес ветряную оспу, корь, коклюш или свинку, то повторно заболеть уже не сможет.
Естественный пассивный иммунитет – это переход антител от матери к ребенку. Они продолжают защищать ребенка первые 2 года жизни. Постепенно белки разрушаются и выводятся из организма. У человека формируется свой собственный иммунитет.
Искусственный активный иммунитет – его получают путем введения в организм ослабленных антигенов определенных инфекций. Они называются анатоксинами. Человек переносит заболевание в легкой форме, практически незаметной. После чего у него формируются антитела к инфекции. В настоящее время предусмотрен ряд обязательных прививок для людей:
- корь;
- коклюш;
- дифтерия;
- столбняк;
- оспа;
- полиомиелит;
- туберкулез.
Искусственный пассивный иммунитет – в организм человека вводят сыворотку с содержанием антитоксинов и антител к определенному заболеванию. Сыворотку получают путем введения инфекции животному, оно вырабатывает антитела. Далее кровь животного обрабатывают и получают сыворотку.
Пассивно приобретенный иммунитет – сохраняется на короткий срок, около 1 месяца. Появляется практически сразу после введения лечебной сыворотки. Помогает в борьбе с быстротечными инфекциями. Такая сыворотка содержит уже готовые антитела для борьбы с инфекцией.
Обмен веществ и превращение энергии в организме человека
В организме человека постоянно и непрерывно протекают обменные процессы. Водный, солевой, жировой, углеводный и белковый обмен происходят постоянно. За счет этих процессов организм получает энергию для жизнедеятельности.
Обмен веществ в организме называется метаболизмом. Это обязательная часть жизни и развития человека. Обеспечивает совокупность химических и ферментативных реакций в организме.
Запасы энергии в ходе активности расходуются. С пищей человек получает новую энергию. Соотношение поступающей энергии в организм и расходованной, называется энергетическим балансом.
Белковый обмен
Процесс направлен на использование белков, поступающих в организм с пищей. Сами белки организму не нужны. Большую пользу приносят аминокислоты. Белки распадаются на аминокислоты, часть всасывается в кровь и разносится по органам и тканям. Другая часть идет на получение энергии и строительство собственных белков.
Содержание аминокислот регулирует печень, полученные излишки она расщепляет до аммиака. Он идет на синтез мочевины, которая выводится почками и частично кожей. Остаток аминокислот организм перерабатывает в глюкозу, а затем в гликоген. В клетках белки полностью окисляются до воды, углекислого газа, мочевины и мочевой кислоты.
Углеводный обмен
Процесс описывает использование и преобразование углеводов организмом. Углеводы являются основным источником энергии для организма. В суточном рационе они должны составлять треть всего объема пищи. При расщеплении 1 грамма глюкозы выделяется 17,6 кДж.
После поступления в организм углеводов, они расщепляются до глюкозы. Часть накапливается в печени и преобразуется в гликоген. Он является основным энергетическим источником для сокращения мышечной ткани.
Другая часть преобразуется в жиры. Основная часть глюкозы полностью расщепляется до воды и углекислого газа.
Уровень глюкозы в крови регулируется гормональной системой, а именно инсулином. При пониженном его содержании, уровень глюкозы в крови находится в повышенном состоянии, что приводит к развитию сахарного диабета. Инсулин тормозит распад гликогена в печени, тем самым увеличивая его содержание.
Также в организме есть гормон глюкагон. Он отвечает за расщепление гликогена, преобразует его в глюкозу, после чего уровень повышается.
Липидный обмен
Липидный обмен – это процесс преобразования и использования жиров, поступающих в организм с пищей. При расщеплении 1 г выделяется 38,9 кДж энергии.
Жиры содержат незаменимые жирные кислоты. Они всасываются в лимфу через стенки тонкого кишечника. С током крови они распределяются по организму и клеткам. Они являются строительным материалом для клеточных элементов, участвуют в синтезе и образовании гормонов.
При избыточном употреблении жиров образуются подкожные накопления в виде сальников. Они могут откладываться на тканях органов и на стенках сосудов. Конечным продуктом распада жиров являются вода и углекислый газ.
Водно-солевой обмен
Организм человека на 70% состоит из воды. 30% из них содержится в крови, лимфе и плазме. Вода выполняет множество полезных функций:
- транспортную;
- выделительную;
- теплорегуляционную;
- среда для протекания химических процессов;
- определяет физические свойства клеток.
Суточная потребность в жидкости у человека составляет 2-2,5 л. Водный обмен предполагает равновесие между потребляемой и выводимой жидкостью. Вода поступает в организм, всасывается через стенки кишечника, попадает в кровь и распространяется по органам и тканям. Выводится остаток воды с мочой и потом.
Солевой обмен необходим для совершения химических процессов в организме человека. Ежедневно необходимо поступление солей натрия, калия, кальция, фосфора и железа. Они не только участвуют в обменах, но и являются питанием для некоторых органов.
Витамины
Для организма важно поддерживать нормальный уровень витаминов. Они участвуют в биохимических синтезах и оказывают влияние на здоровье человека. Эти вещества организм не способен самостоятельно синтезировать, они попадают внутрь с продуктами питания.
Впервые витамины обнаружил и описал русский врач Лунин Н.И. Он назвал их низкомолекулярными веществами различного характера и природы. Нормальный уровень и баланс витаминов положительно сказывается на мозговой деятельности, состоянии здоровья и работоспособности человека.
При повышении уровня какого-либо витамина развивается гипервитаминоз, при снижении наоборот гиповитаминоз. Эти состояния являются серьезными, имеют запущенные формы, и требуют лечения.
Витамины подразделяют на жирорастворимые и водорастворимые. К жирорастворимым относят: К, Е, D, A. Все остальные являются водорастворимыми.
Название | Значение | Признаки гиповитаминоза и гипервитаминоза | Пищевые продукты, содержащие витамин | Суточная потребность, мг |
Водорастворимые витамины | ||||
В1 (тиамин) | Участвует в обмене белков, жиров и углеводов | Заболевание Бери-Бери, теряется сон, аппетит, нарушается работа нервной системы | Печень, яичный желток, черный хлеб | 2-3 |
В2 (рибофлавин) | Участвует в синтезе ферментов | Нарушается сон, ухудшается состояние роговицы глаза, сухость кожи | Рыбные продукты, гречневая крупа, печень | 2-4 |
В6(пиридоксин) | Участвует в кроветворении, синтезе белков кожи и нервной системы | Заболевания кожи-дерматиты | Зародыши пшеницы, рисовые отруби | 2-4 |
В15 (пангамовая кислота) | Повышает поглощение клетками кислорода | Недостаточность сердечно-сосудистой системы | Свежие фрукты и овощи | 200-300 |
С (аскорбиновая кислота) | Отвечает за иммунитет, участвует в белковом обмене, образовании органического вещества костей | Цинга-кровоточивость десен, сонливость, снижается иммунитет | Морковь, шпинат, лимон, апельсин, смородина и другие | 75-100 |
Жирорастворимые витамины | ||||
А (ретинол) | Влияет на рост и развитие человеческого организма | Нарушение зрения, рост и развития ребенка, снижается иммунитет | Масло, молоко, рыбная икра, яичный белок, морковь, шпинат | 1-2 |
D (кальциеферол) | Участвует в синтезе и регуляции кальция и фосфора | Рахит – тяжелые изменения в костях и скелете человека с нарушениями опорно-двигательного аппарата | Рыбий жир, яичный желток, молоко. Синтезируется кожей при попадании на нее прямых солнечных лучей. | 0,02-0,05 |
Е (токоферол) | Влияет на репродуктивную систему и процессы зачатия | Бесплодие | Растительные масла | 10-15 |
К (филохинин) | Влияет на свертываемость крови | Кровотечения, нарушение свертываемости | Синтезируется микроорганизмами кишечника | Не установлено |