Иммунитет этапы иммунного ответа

Иммунитет этапы иммунного ответа thumbnail

Схематическое представление первичной и вторичной иммунной реакции

Иммунный ответ — это сложная многокомпонентная, кооперативная реакция иммунной системы организма, индуцированная антигеном, уже распознанным как чужеродный, и направленная на его элиминацию. Явление иммунного ответа лежит в основе иммунитета. Иммунный ответ зависит от:

  • антигена — свойства, состав, молекулярная масса, доза, кратность попадания, длительность контакта;
  • состояния организма (иммунологическая реактивность);
  • условий внешней среды.

Иммунный ответ различается врождённый и приобретённый (или адаптивный). Врождённый — это распознавание чужеродных раздражителей благодаря унаследованным механизмам, в то время как приобретённый иммунный ответ использует для распознавания рецепторы, число которых почти ничем не ограничено и они формируются в организме каждого человека. Приобретённый иммунный ответ может гибко реагировать на чужеродный раздражитель: если тот будет сочтён не опасным, то данный раздражитель в будущем больше не будет вызвать реакции (иммунологическая толерантность). Если же раздражитель классифицирован как опасный, последует продуктивный иммунный ответ, и чужеродные цели-раздражители будут устранены.

Иммунный ответ действует на вторжение болезнетворных микроорганизмов в организм (бактерии, вирусы, грибки, паразиты) либо патологически изменённые клетки собственного тела (злокачественная опухоль). Иммунный ответ против нормальных клеток организма может возникать, когда собственные вещества организма ошибочно воспринимаются как чужеродные (аутоиммунные заболевания). Кроме этого, безвредные вещества из окружающей среды также ошибочно могут быть классифицированы как опасные и вызывать реакцию (аллергия). С другой стороны, если патогенам удаётся избежать иммунного ответа, то это приводит к ускользанию от иммунного ответа (нем. Immunevasion).

Механизмы, которые вызывают устранение вторгнувшихся в организм патогенов в ходе иммунного ответа, чрезвычайно разнообразны. Система комплемента состоит из самоорганизующихся белковых комплексов, которые помечают агента или могут напрямую убить его. Микробицидные вещества высвобождаются клетками вне иммунной системы, также могут быть активированы разнообразные макрофаги и клетки-киллеры, а антитела начнут связываться с высокоспецифичными чужеродными структурами. Обычно несколько таких эффекторных механизмов действуют одновременно с тем, чтобы обеспечить полное удаление патогенов из организма. Тем не менее, чрезмерная реакция иммунной системы должна предотвращаться, так как это может привести к серьёзным повреждениям или даже некрозу тканей, а также летальному исходу (анафилактический или септический шок, гиперцитокинемия). Кроме того, значительная реакция против собственного тела также должна быть исключена, чтобы предотвратить аутоиммунные заболевания. Таким образом, в иммунной системе присутствует множество регуляторных механизмов для того, чтобы соблюдался баланс между защитным и вредным иммунным ответом.

Врождённый иммунный ответ[править | править код]

Во врождённом иммунном ответе участвует большое разнообразие типов клеток и переменных факторов, что в совокупности образует тесно связанную и скоординированную форму защитной системы. Это обусловлено характеристиками возбудителей иммунной реакции, которые распознаются врождёнными рецепторами — отсюда термин «врождённая иммунная реакция». Такой иммунный ответ происходит быстро и эффективно: через считанные минуты после проникновения в организм большинство болезнетворных микроорганизмов обнаруживаются и обезвреживаются, а спустя несколько часов они полностью устранены.

Приобретённый иммунный ответ[править | править код]

Посредством фагоцитоза активированные вирусом макрофаги затем «назначаются» иммунной системой для специфического или адаптивного приобретённого иммунного ответа. В свою очередь он различается на 2 вида: гуморальный и клеточный иммунный ответ.

Гуморальный иммунный ответ[править | править код]

Гуморальный иммунный ответ организма представляет собой антитела против патогенов, в основном находящихся в жидкости крови и лимфы, а также в бесклеточной плазме или в сыворотке крови. Специфические антитела, также называемые иммуноглобулинами, — это белковые молекулы, которые продуцируются и высвобождаются плазматическими клетками и действуют в кровяном и лимфатическом потоках.

Плазматические клетки являются потомками активированных B-лимфоцитов. Активация B-лимфоцита происходит путём связывания соответствующего антигена с распознающим антигены B-клеточным рецептором. Это специфические иммуноглобулины, закреплённые в клеточной мембране B-клетки.

Гиперчувствительность и аллергия[править | править код]

Гиперчувствительность (создаваемая антителами анафилаксия и клеточно-опосредованная аллергия) является приобретённым иммунным ответом с «памятью». Такой иммунный ответ может наступать в качестве контактного дерматита против химически чистых веществ после первичного или нескольких повторных контактов с аллергеном. Клеточно-опосредованным иммунным ответом может являться отторжение экзогенных трансплантированных органов.

Литература[править | править код]

  • Jörg Hacker, Jürgen Heesemann. Molekulare Infektionsbiologie. — 1-е издание. — Heidelberg, Berlin: Spektrum Akademischer Verlag, 2000. — ISBN 3-86025-368-9.
  • Michael T. Madigan, John M. Martinko. Brock Biology of Microorganisms. — 11-е международное издание. — Upper Saddle River, NJ., USA: Pearson Prentice Hall, 2006. — 992 с. — ISBN 978-0131443297.
  • Peter F. Zipfel, Peter Kraiczy, Jens Hellwage: Das tägliche Versteckspiel: Wie Mikroorganismen der Immunabwehr entgehen. Biologie in unserer Zeit 32(6), S. 371 — 379 (2002), ISSN 0045-205X
  • Diethard Baron, Jürgen Braun, Andreas Erdmann: Grüne Reihe. Genetik. Materialien S II. (Lernmaterialien)
  • Charles A. Janeway, Paul Travers, Mark Walport: Immunobiology. B&T; 6. Auflage (2005) ISBN 0815341016.
Читайте также:  Препарат для иммунитета лор органов

Источник

Как устроен иммунитет: Объясняем по пунктам

Наш организм непрерывно меняется, но при этом очень «любит» постоянство и может нормально работать только при определенных параметрах своей внутренней среды. Например, нормальная температура тела колеблется между 36 и 37 градусами по Цельсию. Вспомните последнюю простуду и то, как плохо вы себя чувствовали, стоило температуре подняться всего на полградуса. Такая же ситуация и с другими показателями: артериальным давлением, рН крови, уровнем кислорода и глюкозы в крови и другими. Постоянство значений этих параметров называется гомеостазом, а поддержкой его стабильного уровня занимаются практически все органы и системы организма: сердце и сосуды поддерживают постоянное артериальное давление, легкие — уровень кислорода в крови, печень — уровень глюкозы и так далее.

Иммунная же система отвечает за генетический гомеостаз. Она помогает поддерживать постоянство генетического состава организма. То есть ее задача — уничтожать не только все чужеродные организмы и продукты их жизнедеятельности, проникающие извне (бактерии, вирусы, грибки, токсины и прочее), но также и клетки собственного организма, если «что-то пошло не так» и, например, они превратились в злокачественную опухоль, то есть стали генетически чужеродными.

Как клетки иммунной системы уничтожают «врагов»?

Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.

Иммунитет бывает врожденным (он же неспецифический) и приобретенным (он же адаптивный, или специфический). Врожденный иммунитет одинаков у всех людей и идентичным образом реагирует на любых «врагов». Реакция начинается немедленно после проникновения микроба в организм и не формирует иммунологическую память. То есть, если такой же микроб проникнет в организм снова, система неспецифического иммунитета его «не узнает» и будет реагировать «как обычно». Неспецифический иммунитет очень важен — он первым сигнализирует об опасности и немедленно начинает давать отпор проникшим микробам.

Однако эти реакции не могут защитить организм от серьезных инфекций, поэтому после неспецифического иммунитета в дело вступает приобретенный иммунитет. Здесь уже реакция организма индивидуальна для каждого «врага», поэтому «арсенал» специфического иммунитета у разных людей различается и зависит от того, с какими инфекциями человек сталкивался в жизни и какие прививки делал.

Специфическому иммунитету нужно время, чтобы изучить проникшую в организм инфекцию, поэтому реакции при первом контакте с инфекцией развиваются медленнее, зато работают гораздо эффективнее. Но самое главное, что, один раз уничтожив микроба, иммунная система «запоминает» его и в следующий раз при столкновении с таким же реагирует гораздо быстрее, часто уничтожая его еще до появления первых симптомов заболевания. Именно так работают прививки: когда в организм вводят ослабленных или убитых микробов, которые уже не могут вызвать заболевание, у иммунной системы есть время изучить их и запомнить, сформировать иммунологическую память. Поэтому, когда человек после вакцинации сталкивается с реальной инфекцией, иммунная система уже полностью готова дать отпор, и заболевание не начинается вообще или протекает гораздо легче.

Кто отвечает за работу различных видов иммунитета?

  • Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
  • Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
  • Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
  • Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.

Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.

  • Т-лимфоциты. Названы так, потому что после образования в костном мозге дозревают в вилочковой железе — тимусе. Разные подвиды Т-лимфоцитов отвечают за разные функции. Например, Т-киллеры могут убивать зараженные вирусами клетки, чтобы остановить развитие инфекции, Т-хелперы помогают иммунной системе распознавать конкретные виды микробов, а Т-супрессоры регулируют силу и продолжительность иммунной реакции.
  • B-лимфоциты. Название их происходит от Bursa fabricii (сумка Фабрициуса) — особого органа у птиц, в котором впервые обнаружили эти клетки. В-лимфоциты умеют синтезировать антитела (иммуноглобулины). Это специальные белки, которые «прилипают» к микробам и вызывают их гибель. Также антитела могут нейтрализовывать некоторые токсины.
  • Натуральные киллеры. Эти клетки находят и убивают раковые клетки и клетки, пораженные вирусами.
  • Нейтрофилы и макрофаги умеют ловить и переваривать микробов — осуществлять фагоцитоз. Кроме того, макрофаги выполняют важнейшую роль в процессе презентации антигена, когда макрофаг знакомит другие клетки иммунной системы с кусочками переваренного микроба, что позволяет организму лучше бороться с инфекцией.
  • Эозинофилы защищают наш организм от паразитов — обеспечивают антигельминтный иммунитет.
  • Базофилы — выполняют главным образом сигнальную функцию, выделяя большое количество сигнальных веществ (цитокинов) и привлекая этим другие иммунные клетки в очаг воспаления.
Читайте также:  Укрепление иммунитета у взрослых в домашних условиях

Как клетки иммунной системы отличают «своих» от «чужих» и понимают, с кем нужно бороться?

В этом им помогает главный комплекс гистосовместимости первого типа (MHC-I). Это группа белков, которая располагается на поверхности каждой клетки нашего организма и уникальна для каждого человека. Это своего рода «паспорт» клетки, который позволяет иммунной системе понимать, что перед ней «свои». Если с клеткой организма происходит что-то нехорошее, например, она поражается вирусом или перерождается в опухолевую клетку, то конфигурация MHC-I меняется или же он исчезает вовсе. Натуральные киллеры и Т-киллеры умеют распознавать MHC-I рецептор, и как только они находят клетку с измененным или отсутствующим MHC-I, они ее убивают. Так работает клеточный иммунитет.

Но у нас есть еще один вид иммунитета — гуморальный. Основными защитниками в этом случае являются антитела — специальные белки, синтезируемые B-лимфоцитами, которые связываются с чужеродными объектами (антигенами), будь то бактерия, вирусная частица или токсин, и нейтрализуют их. Для каждого вида антигена наш организм умеет синтезировать специальные, подходящие именно для этого антигена антитела. Молекулу каждого антитела, также их называют иммуноглобулинами, можно условно разделить на две части: Fc-участок, который одинаков у всех иммуноглобулинов, и Fab-участок, который уникален для каждого вида антител. Именно с помощью Fab-участка антитело «прилипает» к антигену, поэтому строение этого участка молекулы зависит от строения антигена.

Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?

Рассмотрим этот процесс на примере развития бактериальной инфекции. Например, вы поцарапали палец. При повреждении кожи в рану чаще всего попадают бактерии. При повреждении любой ткани организма сразу же запускается воспалительная реакция.  Поврежденные клетки выделяют большое количество разных веществ — цитокинов, к которым очень чувствительны нейтрофилы и макрофаги. Реагируя на цитокины, они проникают через стенки капилляров, «приплывают» к месту повреждения и начинают поглощать и переваривать попавших в рану бактерий — так запускается неспецифический иммунитет, но до синтеза антител дело пока еще не дошло.

Расправляясь с бактериями, макрофаги выводят на свою поверхность разные их кусочки, чтобы познакомить Т-хелперов и B-лимфоцитов со строением этих бактерий. Этот процесс называется презентацией антигена. Т-хелпер и B-лимфоцит изучают кусочки переваренной бактерии и подбирают соответствующую структуру антитела так, чтобы потом оно хорошо «прилипало» к таким же бактериям. Так запускается специфический гуморальный иммунитет. Это довольно длительный процесс, поэтому при первом контакте с инфекцией организму может понадобиться до двух недель, чтобы подобрать структуру и начать синтезировать нужные антитела.

После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.

Есть ли еще какие-то механизмы?

Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.

Читайте также:  Прививка против бешенства иммунитет

Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.

Источник

Иммунную реакцию от начала до завершения можно разделить на три этапа:

  • распознавание антигена;
  • формирование эффекторов;
  • эффекторная часть иммунного ответа.

Основу теории специфического распознавания антигенов составляют следующие постулаты:

  1. На поверхности лимфоцитов присутствуют специфические антигенсвязывающие рецепторы, которые экспрессируются вне зависимости от того, встречался ли ранее организм с данным антигеном.
  2. Каждый лимфоцит имеет рецептор только одной специфичности.
  3. Антигенсвязывающие рецепторы экспрессируются на поверхности как Т-, так и В-лимфоцитов.
  4. Лимфоциты, наделенные рецепторами одной специфичности, являются потомками одной родительской клетки и составляют клон.
  5. Макрофаги осуществляют презентацию антигена лимфоциту.
  6. Распознавание «чужого» напрямую связано с распознаванием «своего», т.е. антигенсвязывающий рецептор лимфоцита распознает на поверхности макрофага комплекс, состоящий из чужеродного антигена и собственного антигена гистосовместимости (МНС).

В состав молекулярного аппарата антигенного распознавания входят:

  • антигены главного комплекса гистосовместимости,
  • антигенсвязывающие рецепторы лимфоцитов,
  • иммуноглобулины,
  • молекулы клеточной адгезии.

К основным этапам антигенного распознавания относятся:

  • неспецифический этап;
  • распознавание антигена Т-клетками;
  • распознавание антигена В-клетками;
  • клональная селекция.

Неспецифический этап. Макрофаг первым вступает во взаимодействие с антигеном, осуществляя филогенетически самую древнюю разновидность иммунной реакции. Антиген подвергается фагоцитозу и перевариванию, результатом которого является «разборка» крупных молекул на составные части. Этот процесс называется «процессингом антигена». Затем процессированный антиген экспрессируется в комплексе с белками главного комплекса гистосовместимости на поверхности макрофага.

Распознавание антигена Т- клетками. Т-хелпер распознает комплекс, состоящий из чужеродного антигена и собственного антигена МНС. Для иммунного ответа необходимо одновременное распознавание как чужеродного антигена, так и собственного антигена МНС.

Распознавание антигена В- клетками. В-лимфоциты распознают антигены посредством своих иммуноглобулиновых рецепторов. Антиген также может подвергаться повторному процессингу при взаимодействии с В-лимфоцитом. Процессированный антиген помещается на поверхность В- клетки, где он распознается активированным Т — хелпером. В- лимфоцит не способен к самостоятельному ответу на антигенную стимуляцию, поэтому ему необходимо получить второй сигнал от Т -хелпера. Антигены, иммунная реакция на которые возможна только с таким повторным сигналом, называются тимусзависимыми.

Иногда активация В — лимфоцитов возможна и без участия Т — клеток. Бактериальный липополисахарид в высоких концентрациях вызывает активацию В — лимфоцитов. При этом специфичность иммуноглобулиновых рецепторов В — лимфоцита не имеет значения. В данном случае собственная митогенная активность липополисахарида исполняет роль второго сигнала для В — лимфоцитов. Такие антигены называют тимуснезависимыми антигенами типа I. Некоторые линейные антигены (полисахариды пневмококков, поливинилпирролидон и др.), также стимулируют В- клетки без участия Т — лимфоцитов. Эти антигены длительное время остаются на мембране специализированных макрофагов и называются тимуснезависимыми антигенами типа II.

Клональная селекция. При попадании в организм антигена происходит селекция клонов с рецепторами, комплементарными данному антигену. Только представители этих клонов участвуют в дальнейшей антигензависимой дифференцировке клона В-лимфоцитов.

Формирование эффекторного звена иммунной реакции происходит путем дифференцировки клона В-лимфоцитов и образования цитотоксических Т-лимфоцитов.

Взаимодействие между клетками в процессе формирования иммунного ответа на антигенную стимуляцию осуществляется за счет особых растворимых медиаторов — цитокинов. Под воздействием различных цитокинов, продуцируемых макрофагами либо Т-лимфоцитами, происходит созревание В-лимфоцитов в антителообразующие клетки.

Для В- лимфоцитов конечным этапом дифференцировки является преобразование в плазматическую клетку, которая продуцирует огромное количество антител. Специфичность этих антител соответствует специфичности иммуноглобулинового рецептора В- лимфоцита -предшественника.

После того, как эффекторное звено иммунной реакции сформировано, наступает ее третий этап. На завершающем этапе иммунного ответа задействованы антитела, система комплемента, а также цитотоксические Т-лимфоциты, осуществляющие цитотоксическую реакцию.

Комплекс микроорганизма с антителом запускает классический путь активации системы комплемента, в результате чего образуется мембраноатакующий комплекс (МАК), наносящий клеточной стенке бактерии повреждения. Кроме того, антитела нейтрализуют бактериальные токсины и, связываясь с инкапсулированными бактериями, облегчают их фагоцитоз макрофагами. Этот феномен называется опсонизацией. Доказано, что неопсонизированным инкапсулированным бактериям часто удается избежать фагоцитоза.

Внешне же иммунный ответ проявляется в развитии острой воспалительной реакции.

В самой сжатой форме основное содержание каждого из этапов можно определить несколькими словами:

первый этап — это формирование антигенспецифических клонов,

второй — работа таких клонов.

Источник