Иммунитет органы иммунной системы биология

Для защиты организма природа создала многоэтапную систему обороны. При вторжении чужеродные агенты сталкиваются со следующими компонентами иммунной системы:

  • кожа и слизистые оболочки: симбиотические бактерии, живущие на границе нашего организма и окружающей среды, выделяют вещества, губительно действующие на патогенные (болезнетворные) микроорганизмы;

  • слизистые оболочки дыхательных путей, пищеварительного тракта, мочевыделительной системы не только заселены симбиотическими бактериями, но и покрыты слизистыми выделениями: со слизью из организма удаляются чужеродные вещества и микроорганизмы; кроме того, слизистые выделения содержат вещества, обладающие противомикробной, противовирусной и противогрибковой активностью (например, лизоцим — антибактериальный агент, фермент, разрушающий муреин клеточных стенок бактерий);

  • стенки лимфатических и кровеносных сосудов: воспалительная реакция сопровождается расширением капилляров (покраснение — гиперемия), повышением температуры, увеличением проницаемости их стенок для лейкоцитов и белка плазмы фибриногена. Фибриноген превращается в фибрин и закупоривает лимфатические сосуды. Это препятствует оттоку лимфы из воспалённого участка и распространению инфекции. Развивается отёк. В очаге воспаление скапливается большое количество лейкоцитов-фагоцитов, которые поглощают вторгшиеся микроорганизмы.

Иммунная система — система органов и тканей позвоночных животных, которые защищают организм от чужеродных агентов: болезнетворных микроорганизмов, инородных тел, ядовитых веществ и переродившихся клеток самого организма.

Иммунной системе принадлежат следующие структуры (рис. 1):
центральные органы —

  • костный мозг;

  • тимус.
    Органы, содержащие лимфоидную ткань (лимфоциты различной степени зрелости):

  • селезёнка;

  • лимфатические узлы;

  • пейеровы бляшки кишечника;

  • миндалины;

  • аппендикс.

Рис. 1. Органы иммунной системы человека

По организации и механизмам функционирования иммунная система подобна нервной системе.

Обе системы представлены центральными и периферическими органами, способными реагировать на разные сигналы, имеют большое количество рецепторных структур и специфическую память.

Особенности иммунной системы:

  • ранняя закладка в эмбриогенезе;

  • костный мозг и тимус хорошо защищены от повреждений;

  • диффузность: компоненты иммунной системы равномерно распределены по всему телу;

  • циркуляция клеток иммунной системы с кровотоком и лимфотоком по всему организму;

  • способность вырабатывать антитела — молекулы, осуществляющие специфическую защиту от определённых чужеродных агентов (антигенов).

К центральным органам иммунной системы относят костный мозг и тимус. В костном мозге из его стволовых клеток образуются В-лимфоциты. В тимусе происходит дифференцировка Т-лимфоцитов, образованных из поступивших в этот орган стволовых клеток костного мозга. В дальнейшем В- и Т-лимфоциты с током крови попадают в периферические органы иммунной системы, к которым относят миндалины, лимфоидные узелки, расположенные в стенках полых органов пищеварительной и дыхательной систем, мочевыводящей системы, лимфоидные пейеровы бляшки в стенках тонкой кишки, лимфатические узлы и селезёнку, а также многочисленные лейкоциты, свободно перемещающиеся в органах и тканях с целью поиска, распознавания и уничтожения чужеродных веществ.

Наиболее высокой степенью активности иммунной системы считается появление в лимфоидных узелках центров размножения — мест образования лимфоцитов. Такие центры появляются при сильных либо длительных антигенных влияниях (агрессивной внешней среде, инфекциях, онкологических процессах).

Органы иммунной системыФункции органов иммунной системы
красный костный мозг образование всех клеток крови; дифференциация В-лимфоцитов
тимусдифференциация Т-лимфоцитов
лимфатическая системаудаление из организма чужеродных веществ (погибших клеток, клеток-мутантов и т. п.) путем фильтрации тканевой жидкости через лимфатические узлы
миндалины (миндалевидные железы)образуют окологлоточное лимфоидное кольцо — защиту от инфекции из ротовой и носовой полости
 аппендиксзащищает нижние ворота инфекции (от инфекции, проникающей через толстый кишечник)
 селезёнкалежит на пути тока крови из артериальной системы в венозную: распознавание и утилизация вышедших из строя эритроцитов 

Таким образом, иммунная система состоит из многих компонентов, но главные среди них — лейкоциты.

Все лейкоциты имеют общее происхождение из гемопоэтических стволовых клеток красного костного мозга (рис. 2).

Иммунитет органы иммунной системы биология

Рис. 2. Происхождение лейкоцитов

Все эти клетки циркулируют в крови, хотя свои функции они выполняют в основном вне сосудов.

Основные функции лейкоцитов:

  • обнаружение и уничтожение бактерий, вирусов и других чужеродных агентов путем фагоцитоза;

  • уничтожение изменённых клеток (раковых и т. п.);

  • уничтожение погибших клеток организма;

  • участие в аллергических реакциях;

  • участие в воспалительных реакциях при повреждениях тканей;

  • выработка антител;

  • формирование иммунной памяти организма. 

Виды лейкоцитов

Лейкоциты делятся на три главные группы: гранулоциты, моноциты и лимфоциты.

Гранулоциты содержат многочисленные лизосомы, секреторные пузырьки и гранулы. В соответствии с различным характером окраски этих гранул гранулоциты делятся на нейтрофилы, базофилы и эозинофилы (рис. 3).

Эозинофилы (розовая окраска гранул) защищают организм от паразитов и способствуют развитию аллергических реакций. Уровень эозинофилов повышается при глистных инвазиях (заражениях).

Базофилы (сине-фиолетовая окраска гранул) выделяют гистамин, который участвует в воспалительных реакциях. 

Нейтрофилы (фиолетово-розовая окраска гранул) способны к фагоцитозу. Они захватывают, убивают и переваривают микроорганизмы (в основном бактерии). 

Читайте также:  Врожденный иммунитет к столбняку

Иммунитет органы иммунной системы биология

Рис. 3. Гранулоциты

Моноциты — самые крупные из лейкоцитов (рис. 4). Выходя из кровяного русла, они становятся макрофагами (рис. 5) — крупными клетками серо-голубого цвета. Как и нейтрофилы, они способны к фагоцитозу (рис. 6). Макрофаги, однако, значительно больше по размерам и дольше живут, чем нейтрофилы.

Иммунитет органы иммунной системы биологияИммунитет органы иммунной системы биология Иммунитет органы иммунной системы биология

Рис. 4. Моноцит                                Рис. 5. Макрофаг                        Рис. 6. Макрофаг поглощает                                                                                                                               раковые клетки

Таким образом, фагоцитами являются гранулярные нейтрофилы и более крупные и долгоживущие агранулярные макрофаги (моноциты).

Лимфоциты участвуют в иммунном ответе:

  • B-лимфоциты (рис. 7) производят антитела;

  • T-лимфоциты (рис. 8) убивают клетки, инфицированные вирусом, и регулируют активность других лейкоцитов;

  • нормальные (естественные) киллеры уничтожают некоторые виды опухолевых и заражённых вирусами клеток.

B-лимфоциты образуют антитела, являющиеся изменёнными формами собственных поверхностных рецепторов.

Иммунитет органы иммунной системы биология   Иммунитет органы иммунной системы биология

Рис. 7. B-лимфоцит                                            Рис. 8. Т-лимфоцит

T-лимфоциты подразделяются на:

T-хелперы, способствующие развитию иммунного ответа;

T-супрессоры, подавляющие развитие иммунного ответа;

T-киллеры, уничтожающие клетки, несущие на себе антигены.

Рис. 9. Виды лейкоцитов и их функции

Кроме лимфоцитов этих двух главных классов известны ещё лимфоциты, осуществляющие неспецифические реакции.

Тучные клетки относятся к вспомогательным клеткам иммунной системы. Они представляют незрелые лейкоциты, которые мигрируют из кровяных сосудов в ткани, где подвергаются окончательной дифференцировке и созреванию (рис. 10). Тучные клетки находятся практически во всех тканях, но особенно их много в коже, около сосудов и в слизистой оболочке дыхательных путей и кишечника.

Иммунитет органы иммунной системы биология

Рис. 10. Тучная клетка

В тканях тучные клетки активно перемещаются  с помощью псевдоподий. В их цитоплазме содержится большое количество везикул (пузырьков). При контакте тучной клетки с антигеном везикулы сливаются с клеточной  мембраной в течение доли секунды, и их содержимое освобождается. Этот процесс  играет важную роль в аллергических и воспалительных реакциях немедленного типа.

Не смотря на то, что тучные клетки способны самостоятельно уничтожать некоторые антигены путем фагоцитоза, основная их роль заключается в координации врожденных и адаптивных иммунных реакций.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2020;
проверки требуют 9 правок.

Иммуните́т (лат. immunitas — освобождение) человека и животных — способность организма поддерживать свою целостность и биологическую индивидуальность пу­тём рас­по­зна­ва­ния и уда­ле­ния чу­же­род­ных ве­ществ и кле­ток[1] (в том числе болезнетворных бактерий и вирусов). Характеризуется изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.

Назначение[править | править код]

Простейшие защитные механизмы, имеющие своей целью распознавание и обезвреживание патогенов, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые препятствуют заражению бактерии вирусом[2]. Одноклеточные эукариотные организмы применяют токсичные пептиды, чтобы предотвратить проникновение бактерий и вирусов в свои клетки[3].

По мере эволюции сложно организованных многоклеточных организмов у них формируется многоуровневая иммунная система, важнейшим звеном которой становятся специализированные клетки, противостоящие вторжению генетически чужеродных объектов[4].

У таких организмов иммунный ответ происходит при столкновении данного организма с самым различным чужеродным в антигенном отношении материалом, включая вирусы, бактерии и другие микроорганизмы, обладающие иммуногенными свойствами молекулы (прежде всего белки, а также полисахариды и даже некоторые простые вещества, если последние образуют комплексы с белками-носителями — гаптены[5]), трансплантаты или мутационно изменённые собственные клетки организма. Как отмечает В. Г. Галактионов, «иммунитет есть способ защиты организма от всех антигенно чужеродных веществ как экзогенной, так и эндогенной природы; биологический смысл подобной защиты — обеспечение генетической целостности особей вида в течение их индивидуальной жизни»[6]. Биологическим смыслом такой защиты является обеспечение генетической целостности особей вида на протяжении их индивидуальной жизни, так что иммунитет выступает как фактор стабильности онтогенеза[7].

Характерные признаки иммунной системы[8]:

  • способность отличать «своё» от «чужого»;
  • формирование памяти после первичного контакта с чужеродным антигенным материалом;
  • клональная организация иммунокомпетентных клеток, при которой отдельный клеточный клон способен, как правило, реагировать лишь на одну из множества антигенных детерминант.
Читайте также:  Рецепт для иммунитет у ребенка

Классификации[править | править код]

Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют молекулы, находящиеся в плазме крови, а не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы.

Иммунитет также классифицируют на врождённый и адаптивный.

Врождённый (неспецифический, наследственный[9]) иммунитет обусловлен способностью идентифицировать и обезвреживать разнообразные патогены по наиболее консервативным, общим для них признакам, дальности эволюционного родства, до первой встречи с ними. В 2011 году была вручена Нобелевская премия в области медицины и физиологии за изучение новых механизмов работы врождённого иммунитета (Ральф Стайнман, Жюль Хоффман и Брюс Бётлер)[10].

Осуществляется большей частью клетками миелоидного ряда, не имеет строгой специфичности к антигенам, не имеет клонального ответа, не обладает памятью о первичном контакте с чужеродным агентом.

Адаптивный (устар. приобретённый, специфический) иммунитет имеет способность распознавать и реагировать на индивидуальные антигены, характеризуется клональным ответом, в реакцию вовлекаются лимфоидные клетки, имеется иммунологическая память, возможна аутоагрессия.

Классифицируют на активный и пассивный.

  • Приобретённый активный иммунитет возникает после перенесённого заболевания или после введения вакцины.
  • Приобретённый пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорождённому с молозивом матери или внутриутробным способом.

Другая классификация разделяет иммунитет на естественный и искусственный.

  • Естественный иммунитет включает врождённый иммунитет и приобретённый активный (после перенесённого заболевания), а также пассивный иммунитет при передаче антител ребёнку от матери.
  • Искусственный иммунитет включает приобретённый активный после прививки (введение вакцины) и приобретённый пассивный (введение сыворотки).

Органы иммунной системы[править | править код]

Выделяют центральные и периферические органы иммунной системы. К центральным органам относят красный костный мозг и тимус, а к периферическим — селезёнку, лимфатические узлы, а также местноассоциированную лимфоидную ткань: бронхассоциированную (БАЛТ), кожноассоциированную (КАЛТ), кишечноассоциированную (КиЛТ, пейеровы бляшки).

Красный костный мозг — центральный орган кроветворения и иммуногенеза. Содержит самоподдерживающуюся популяцию стволовых клеток. Красный костный мозг находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. Здесь происходит дифференцировка В-лимфоцитов из предшественников. Содержит также Т-лимфоциты.

Тимус — центральный орган иммунной системы. В нём происходит дифференцировка Т-лимфоцитов из предшественников, поступающих из красного костного мозга.

Лимфатические узлы — периферические органы иммунной системы. Они располагаются по ходу лимфатических сосудов. В каждом узле выделяют корковое и мозговое вещество. В корковом веществе есть В-зависимые зоны и Т-зависимые зоны. В мозговом есть только Т-зависимые зоны.

Селезёнка — паренхиматозный зональный орган. Является самым крупным органом иммунной системы, кроме того, выполняет депонирующую функцию по отношению к крови. Селезёнка покрыта капсулой из плотной соединительной ткани, которая содержит гладкомышечные клетки, позволяющие ей при необходимости сокращаться. Паренхима представлена двумя функционально различными зонами: белой и красной пульпой. Белая пульпа составляет 20 %, представлена лимфоидной тканью. Здесь имеются В-зависимые и Т-зависимые зоны. И также здесь есть макрофаги. Красная пульпа составляет 80 %. Она выполняет следующие функции:

  1. Депонирование зрелых форменных элементов крови.
  2. Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов.
  3. Фагоцитоз инородных частиц.
  4. Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.

Иммунокомпетентные клетки[править | править код]

К иммунокомпетентным клеткам относят макрофаги и лимфоциты. Эти клетки совместно участвуют в инициации и развитии всех звеньев адаптивного иммунного ответа (система трёхклеточной кооперации).

Клетки, участвующие в иммунном ответе[править | править код]

T-Лимфоциты[править | править код]

Субпопуляция лимфоцитов, отвечающая главным образом за клеточный иммунный ответ. Включает в себя субпопуляции Т-хелперов (дополнительно разделяются на Th1, Th2, а также выделяют Treg, Th9, Th17, Th22,), цитотоксических Т-лимфоцитов,NKT. Включает в себя эффектор, регуляторы и долгоживущие клетки-памяти. Функции разнообразны: как регуляторы и администраторы иммунного ответа (Т-хелперы), так и киллеры (цитотоксические Т-лимфоциты).

B-Лимфоциты[править | править код]

Субпопуляция лимфоцитов, синтезирующая антитела и отвечающая за гуморальный иммунный ответ.

Натуральные киллеры[править | править код]

Натуральные киллеры (NK-клетки) — субпопуляция лимфоцитов, обладающая цитотоксичной активностью, то есть они способны: контактировать с клетками-мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз. Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.

Нейтрофилы[править | править код]

Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 65-70 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим (мурамидаза), липопероксидаза и другие антибиотические белки. Нейтрофилы способны самостоятельно мигрировать к месту нахождения антигена, так как у них есть рецепторы хемотаксиса (двигательная реакция на химическое вещество). Нейтрофилы способны «прилипать» к эндотелию сосудов и далее мигрировать через стенку к месту нахождения антигенов. Далее проходит фагический цикл, и нейтрофилы постепенно заполняются продуктами обмена. Далее они погибают и превращаются в клетки гноя.

Читайте также:  Укрепляем иммунитет после мононуклеоза

Эозинофилы[править | править код]

Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Эозинофилы узнают гельминтов и экзоцитируют в зону контакта вещества — перфорины. Эти белки встраиваются в билипидный слой клеток гельминта. В них образуются поры, внутрь клеток устремляется вода, и гельминт погибает от осмотического шока.

Базофилы[править | править код]

Базофилы составляют 0,5-1 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в ткани. Тучные клетки располагаются в различных тканях, лёгких, слизистых и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). При этом происходит взаимодействие с иммуноглобулином Е (IgE). Таким образом они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа.

Моноциты[править | править код]

Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани, существуют несколько видов макрофагов в зависимости от типа ткани, в которой они находятся, в том числе:

  1. Некоторые антигенпредставляющие клетки, в первую очередь дендритные клетки, роль которых — поглощение микробов и «представление» их Т-лимфоцитам.
  2. Клетки Купфера — специализированные макрофаги печени, являющиеся частью ретикулоэндотелиальной системы.
  3. Альвеолярные макрофаги‬‏ — специализированные макрофаги лёгких.
  4. Остеокласты — костные макрофаги, гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена.
  5. Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.
  6. Кишечные макрофаги и т. д.

Функции их разнообразны и включают в себя фагоцитоз, взаимодействие с адаптивной иммунной системой и инициацию и поддержание иммунного ответа, поддержание и регулирование процесса воспаления, взаимодействие с нейтрофилами и привлечение их в очаг воспаления, выделение цитокинов, регуляция репарации, регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления, синтез компонентов системы комплемента.

Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают прохождение врождённого иммунного ответа, который является неспецифичным (в патологии неспецифичный ответ на альтерацию называют воспалением, воспаление является неспецифической фазой последующих специфических иммунных).

Иммунно привилегированные области[править | править код]

В некоторых частях организма млекопитающих и человека появление чужеродных антигенов не вызывает иммунного ответа. К таким областям относятся мозг и глаза, семенники, эмбрион и плацента. Нарушение иммунных привилегий может становиться причиной аутоиммунных заболеваний.

Иммунные заболевания[править | править код]

Аутоиммунные заболевания[править | править код]

При нарушении иммунной толерантности или повреждении тканевых барьеров возможно развитие иммунных реакций на собственные клетки организма. Например, патологическая выработка антител к ацетилхолиновым рецепторам собственных мышечных клеток вызывает развитие миастении[11].

Иммунодефицит[править | править код]

См. также[править | править код]

  • Иммунная система
  • Врождённый иммунитет
  • Приобретенный иммунитет
  • Иммунотерапия рака
  • Иммунитет растений
  • Химера (биология)

Примечания[править | править код]

  1. ↑ ИММУНИТЕТ • Большая российская энциклопедия — электронная версия. bigenc.ru. Дата обращения 8 апреля 2020.
  2. Bickle T. A., Krüger D. H.  Biology of DNA restriction // Microbiological Reviews. — 1993. — Vol. 57, no. 7. — P. 434—450. — PMID 8336674.
  3. Черешнев В.А. Черешнева М.В. Иммунологические механизмы локального воспаления. Медицинская иммунология 2011 т.13 №6 стр.557-568 РО РААКИ. cyberleninka.ru. Дата обращения 16 мая 2020.
  4. Travis J.  On the Origin of the Immune System // Science. — 2009. — Vol. 324, no. 5927. — P. 580—582. — doi:10.1126/science.324_580. — PMID 19407173.
  5. ↑ Genetics of the Immune Response / Ed. by E. Möller and G. Möller. — New York: Plenum Press, 2013. — viii + 316 p. — (Nobel Foundation Symposia, vol. 55). — ISBN 978-1-4684-4469-8. — P. 262.
  6. Галактионов В.Г. Проблемы эволюционной иммунологии. cyberleninka.ru. Медицинская иммунология 2004 т.6 №3-5 РО РААКИ. Дата обращения 16 мая 2020.
  7. ↑ Галактионов, 2005, с. 8.
  8. ↑ Галактионов, 2005, с. 8, 12.
  9. ↑ Иммунитет // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
  10. ↑ Нобелевская премия по физиологии и медицине 2011 (англ.). www.nobelprize.org.
  11. ↑ Галактионов, 2005, с. 392.

Литература[править | править код]

  • Галактионов В. Г. . Эволюционная иммунология. — М.: Академкнига, 2005. — 408 с. — ISBN 5-94628-103-8.
  • Хаитов Р. М. . Иммунология. — М.: ГЕОТАР, 2006. — 320 с. — ISBN 978-5-9704-1288-6.
  • Ярилин А. А. . Иммунология. — М.: ГЕОТАР, 2010. — 737 с. — ISBN 978-5-9704-1319-7.

Источник