Иммунитет органы иммунной системы биология
Для защиты организма природа создала многоэтапную систему обороны. При вторжении чужеродные агенты сталкиваются со следующими компонентами иммунной системы:
кожа и слизистые оболочки: симбиотические бактерии, живущие на границе нашего организма и окружающей среды, выделяют вещества, губительно действующие на патогенные (болезнетворные) микроорганизмы;
слизистые оболочки дыхательных путей, пищеварительного тракта, мочевыделительной системы не только заселены симбиотическими бактериями, но и покрыты слизистыми выделениями: со слизью из организма удаляются чужеродные вещества и микроорганизмы; кроме того, слизистые выделения содержат вещества, обладающие противомикробной, противовирусной и противогрибковой активностью (например, лизоцим — антибактериальный агент, фермент, разрушающий муреин клеточных стенок бактерий);
стенки лимфатических и кровеносных сосудов: воспалительная реакция сопровождается расширением капилляров (покраснение — гиперемия), повышением температуры, увеличением проницаемости их стенок для лейкоцитов и белка плазмы фибриногена. Фибриноген превращается в фибрин и закупоривает лимфатические сосуды. Это препятствует оттоку лимфы из воспалённого участка и распространению инфекции. Развивается отёк. В очаге воспаление скапливается большое количество лейкоцитов-фагоцитов, которые поглощают вторгшиеся микроорганизмы.
Иммунная система — система органов и тканей позвоночных животных, которые защищают организм от чужеродных агентов: болезнетворных микроорганизмов, инородных тел, ядовитых веществ и переродившихся клеток самого организма.
Иммунной системе принадлежат следующие структуры (рис. 1):
центральные органы —
костный мозг;
тимус.
Органы, содержащие лимфоидную ткань (лимфоциты различной степени зрелости):селезёнка;
лимфатические узлы;
пейеровы бляшки кишечника;
миндалины;
аппендикс.
Рис. 1. Органы иммунной системы человека
По организации и механизмам функционирования иммунная система подобна нервной системе.
Обе системы представлены центральными и периферическими органами, способными реагировать на разные сигналы, имеют большое количество рецепторных структур и специфическую память.
Особенности иммунной системы:
ранняя закладка в эмбриогенезе;
костный мозг и тимус хорошо защищены от повреждений;
диффузность: компоненты иммунной системы равномерно распределены по всему телу;
циркуляция клеток иммунной системы с кровотоком и лимфотоком по всему организму;
способность вырабатывать антитела — молекулы, осуществляющие специфическую защиту от определённых чужеродных агентов (антигенов).
К центральным органам иммунной системы относят костный мозг и тимус. В костном мозге из его стволовых клеток образуются В-лимфоциты. В тимусе происходит дифференцировка Т-лимфоцитов, образованных из поступивших в этот орган стволовых клеток костного мозга. В дальнейшем В- и Т-лимфоциты с током крови попадают в периферические органы иммунной системы, к которым относят миндалины, лимфоидные узелки, расположенные в стенках полых органов пищеварительной и дыхательной систем, мочевыводящей системы, лимфоидные пейеровы бляшки в стенках тонкой кишки, лимфатические узлы и селезёнку, а также многочисленные лейкоциты, свободно перемещающиеся в органах и тканях с целью поиска, распознавания и уничтожения чужеродных веществ.
Наиболее высокой степенью активности иммунной системы считается появление в лимфоидных узелках центров размножения — мест образования лимфоцитов. Такие центры появляются при сильных либо длительных антигенных влияниях (агрессивной внешней среде, инфекциях, онкологических процессах).
Органы иммунной системы | Функции органов иммунной системы |
---|---|
красный костный мозг | образование всех клеток крови; дифференциация В-лимфоцитов |
тимус | дифференциация Т-лимфоцитов |
лимфатическая система | удаление из организма чужеродных веществ (погибших клеток, клеток-мутантов и т. п.) путем фильтрации тканевой жидкости через лимфатические узлы |
миндалины (миндалевидные железы) | образуют окологлоточное лимфоидное кольцо — защиту от инфекции из ротовой и носовой полости |
аппендикс | защищает нижние ворота инфекции (от инфекции, проникающей через толстый кишечник) |
селезёнка | лежит на пути тока крови из артериальной системы в венозную: распознавание и утилизация вышедших из строя эритроцитов |
Таким образом, иммунная система состоит из многих компонентов, но главные среди них — лейкоциты.
Все лейкоциты имеют общее происхождение из гемопоэтических стволовых клеток красного костного мозга (рис. 2).
Рис. 2. Происхождение лейкоцитов
Все эти клетки циркулируют в крови, хотя свои функции они выполняют в основном вне сосудов.
Основные функции лейкоцитов:
обнаружение и уничтожение бактерий, вирусов и других чужеродных агентов путем фагоцитоза;
уничтожение изменённых клеток (раковых и т. п.);
уничтожение погибших клеток организма;
участие в аллергических реакциях;
участие в воспалительных реакциях при повреждениях тканей;
выработка антител;
формирование иммунной памяти организма.
Виды лейкоцитов
Лейкоциты делятся на три главные группы: гранулоциты, моноциты и лимфоциты.
Гранулоциты содержат многочисленные лизосомы, секреторные пузырьки и гранулы. В соответствии с различным характером окраски этих гранул гранулоциты делятся на нейтрофилы, базофилы и эозинофилы (рис. 3).
Эозинофилы (розовая окраска гранул) защищают организм от паразитов и способствуют развитию аллергических реакций. Уровень эозинофилов повышается при глистных инвазиях (заражениях).
Базофилы (сине-фиолетовая окраска гранул) выделяют гистамин, который участвует в воспалительных реакциях.
Нейтрофилы (фиолетово-розовая окраска гранул) способны к фагоцитозу. Они захватывают, убивают и переваривают микроорганизмы (в основном бактерии).
Рис. 3. Гранулоциты
Моноциты — самые крупные из лейкоцитов (рис. 4). Выходя из кровяного русла, они становятся макрофагами (рис. 5) — крупными клетками серо-голубого цвета. Как и нейтрофилы, они способны к фагоцитозу (рис. 6). Макрофаги, однако, значительно больше по размерам и дольше живут, чем нейтрофилы.
Рис. 4. Моноцит Рис. 5. Макрофаг Рис. 6. Макрофаг поглощает раковые клетки
Таким образом, фагоцитами являются гранулярные нейтрофилы и более крупные и долгоживущие агранулярные макрофаги (моноциты).
Лимфоциты участвуют в иммунном ответе:
B-лимфоциты (рис. 7) производят антитела;
T-лимфоциты (рис. 8) убивают клетки, инфицированные вирусом, и регулируют активность других лейкоцитов;
нормальные (естественные) киллеры уничтожают некоторые виды опухолевых и заражённых вирусами клеток.
B-лимфоциты образуют антитела, являющиеся изменёнными формами собственных поверхностных рецепторов.
Рис. 7. B-лимфоцит Рис. 8. Т-лимфоцит
T-лимфоциты подразделяются на:
T-хелперы, способствующие развитию иммунного ответа;
T-супрессоры, подавляющие развитие иммунного ответа;
T-киллеры, уничтожающие клетки, несущие на себе антигены.
Рис. 9. Виды лейкоцитов и их функции
Кроме лимфоцитов этих двух главных классов известны ещё лимфоциты, осуществляющие неспецифические реакции.
Тучные клетки относятся к вспомогательным клеткам иммунной системы. Они представляют незрелые лейкоциты, которые мигрируют из кровяных сосудов в ткани, где подвергаются окончательной дифференцировке и созреванию (рис. 10). Тучные клетки находятся практически во всех тканях, но особенно их много в коже, около сосудов и в слизистой оболочке дыхательных путей и кишечника.
Рис. 10. Тучная клетка
В тканях тучные клетки активно перемещаются с помощью псевдоподий. В их цитоплазме содержится большое количество везикул (пузырьков). При контакте тучной клетки с антигеном везикулы сливаются с клеточной мембраной в течение доли секунды, и их содержимое освобождается. Этот процесс играет важную роль в аллергических и воспалительных реакциях немедленного типа.
Не смотря на то, что тучные клетки способны самостоятельно уничтожать некоторые антигены путем фагоцитоза, основная их роль заключается в координации врожденных и адаптивных иммунных реакций.
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2020;
проверки требуют 9 правок.
Иммуните́т (лат. immunitas — освобождение) человека и животных — способность организма поддерживать свою целостность и биологическую индивидуальность путём распознавания и удаления чужеродных веществ и клеток[1] (в том числе болезнетворных бактерий и вирусов). Характеризуется изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.
Назначение[править | править код]
Простейшие защитные механизмы, имеющие своей целью распознавание и обезвреживание патогенов, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые препятствуют заражению бактерии вирусом[2]. Одноклеточные эукариотные организмы применяют токсичные пептиды, чтобы предотвратить проникновение бактерий и вирусов в свои клетки[3].
По мере эволюции сложно организованных многоклеточных организмов у них формируется многоуровневая иммунная система, важнейшим звеном которой становятся специализированные клетки, противостоящие вторжению генетически чужеродных объектов[4].
У таких организмов иммунный ответ происходит при столкновении данного организма с самым различным чужеродным в антигенном отношении материалом, включая вирусы, бактерии и другие микроорганизмы, обладающие иммуногенными свойствами молекулы (прежде всего белки, а также полисахариды и даже некоторые простые вещества, если последние образуют комплексы с белками-носителями — гаптены[5]), трансплантаты или мутационно изменённые собственные клетки организма. Как отмечает В. Г. Галактионов, «иммунитет есть способ защиты организма от всех антигенно чужеродных веществ как экзогенной, так и эндогенной природы; биологический смысл подобной защиты — обеспечение генетической целостности особей вида в течение их индивидуальной жизни»[6]. Биологическим смыслом такой защиты является обеспечение генетической целостности особей вида на протяжении их индивидуальной жизни, так что иммунитет выступает как фактор стабильности онтогенеза[7].
Характерные признаки иммунной системы[8]:
- способность отличать «своё» от «чужого»;
- формирование памяти после первичного контакта с чужеродным антигенным материалом;
- клональная организация иммунокомпетентных клеток, при которой отдельный клеточный клон способен, как правило, реагировать лишь на одну из множества антигенных детерминант.
Классификации[править | править код]
Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют молекулы, находящиеся в плазме крови, а не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы.
Иммунитет также классифицируют на врождённый и адаптивный.
Врождённый (неспецифический, наследственный[9]) иммунитет обусловлен способностью идентифицировать и обезвреживать разнообразные патогены по наиболее консервативным, общим для них признакам, дальности эволюционного родства, до первой встречи с ними. В 2011 году была вручена Нобелевская премия в области медицины и физиологии за изучение новых механизмов работы врождённого иммунитета (Ральф Стайнман, Жюль Хоффман и Брюс Бётлер)[10].
Осуществляется большей частью клетками миелоидного ряда, не имеет строгой специфичности к антигенам, не имеет клонального ответа, не обладает памятью о первичном контакте с чужеродным агентом.
Адаптивный (устар. приобретённый, специфический) иммунитет имеет способность распознавать и реагировать на индивидуальные антигены, характеризуется клональным ответом, в реакцию вовлекаются лимфоидные клетки, имеется иммунологическая память, возможна аутоагрессия.
Классифицируют на активный и пассивный.
- Приобретённый активный иммунитет возникает после перенесённого заболевания или после введения вакцины.
- Приобретённый пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорождённому с молозивом матери или внутриутробным способом.
Другая классификация разделяет иммунитет на естественный и искусственный.
- Естественный иммунитет включает врождённый иммунитет и приобретённый активный (после перенесённого заболевания), а также пассивный иммунитет при передаче антител ребёнку от матери.
- Искусственный иммунитет включает приобретённый активный после прививки (введение вакцины) и приобретённый пассивный (введение сыворотки).
Органы иммунной системы[править | править код]
Выделяют центральные и периферические органы иммунной системы. К центральным органам относят красный костный мозг и тимус, а к периферическим — селезёнку, лимфатические узлы, а также местноассоциированную лимфоидную ткань: бронхассоциированную (БАЛТ), кожноассоциированную (КАЛТ), кишечноассоциированную (КиЛТ, пейеровы бляшки).
Красный костный мозг — центральный орган кроветворения и иммуногенеза. Содержит самоподдерживающуюся популяцию стволовых клеток. Красный костный мозг находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. Здесь происходит дифференцировка В-лимфоцитов из предшественников. Содержит также Т-лимфоциты.
Тимус — центральный орган иммунной системы. В нём происходит дифференцировка Т-лимфоцитов из предшественников, поступающих из красного костного мозга.
Лимфатические узлы — периферические органы иммунной системы. Они располагаются по ходу лимфатических сосудов. В каждом узле выделяют корковое и мозговое вещество. В корковом веществе есть В-зависимые зоны и Т-зависимые зоны. В мозговом есть только Т-зависимые зоны.
Селезёнка — паренхиматозный зональный орган. Является самым крупным органом иммунной системы, кроме того, выполняет депонирующую функцию по отношению к крови. Селезёнка покрыта капсулой из плотной соединительной ткани, которая содержит гладкомышечные клетки, позволяющие ей при необходимости сокращаться. Паренхима представлена двумя функционально различными зонами: белой и красной пульпой. Белая пульпа составляет 20 %, представлена лимфоидной тканью. Здесь имеются В-зависимые и Т-зависимые зоны. И также здесь есть макрофаги. Красная пульпа составляет 80 %. Она выполняет следующие функции:
- Депонирование зрелых форменных элементов крови.
- Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов.
- Фагоцитоз инородных частиц.
- Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.
Иммунокомпетентные клетки[править | править код]
К иммунокомпетентным клеткам относят макрофаги и лимфоциты. Эти клетки совместно участвуют в инициации и развитии всех звеньев адаптивного иммунного ответа (система трёхклеточной кооперации).
Клетки, участвующие в иммунном ответе[править | править код]
T-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, отвечающая главным образом за клеточный иммунный ответ. Включает в себя субпопуляции Т-хелперов (дополнительно разделяются на Th1, Th2, а также выделяют Treg, Th9, Th17, Th22,), цитотоксических Т-лимфоцитов,NKT. Включает в себя эффектор, регуляторы и долгоживущие клетки-памяти. Функции разнообразны: как регуляторы и администраторы иммунного ответа (Т-хелперы), так и киллеры (цитотоксические Т-лимфоциты).
B-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, синтезирующая антитела и отвечающая за гуморальный иммунный ответ.
Натуральные киллеры[править | править код]
Натуральные киллеры (NK-клетки) — субпопуляция лимфоцитов, обладающая цитотоксичной активностью, то есть они способны: контактировать с клетками-мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз. Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.
Нейтрофилы[править | править код]
Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 65-70 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим (мурамидаза), липопероксидаза и другие антибиотические белки. Нейтрофилы способны самостоятельно мигрировать к месту нахождения антигена, так как у них есть рецепторы хемотаксиса (двигательная реакция на химическое вещество). Нейтрофилы способны «прилипать» к эндотелию сосудов и далее мигрировать через стенку к месту нахождения антигенов. Далее проходит фагический цикл, и нейтрофилы постепенно заполняются продуктами обмена. Далее они погибают и превращаются в клетки гноя.
Эозинофилы[править | править код]
Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Эозинофилы узнают гельминтов и экзоцитируют в зону контакта вещества — перфорины. Эти белки встраиваются в билипидный слой клеток гельминта. В них образуются поры, внутрь клеток устремляется вода, и гельминт погибает от осмотического шока.
Базофилы[править | править код]
Базофилы составляют 0,5-1 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в ткани. Тучные клетки располагаются в различных тканях, лёгких, слизистых и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). При этом происходит взаимодействие с иммуноглобулином Е (IgE). Таким образом они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа.
Моноциты[править | править код]
Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани, существуют несколько видов макрофагов в зависимости от типа ткани, в которой они находятся, в том числе:
- Некоторые антигенпредставляющие клетки, в первую очередь дендритные клетки, роль которых — поглощение микробов и «представление» их Т-лимфоцитам.
- Клетки Купфера — специализированные макрофаги печени, являющиеся частью ретикулоэндотелиальной системы.
- Альвеолярные макрофаги — специализированные макрофаги лёгких.
- Остеокласты — костные макрофаги, гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена.
- Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.
- Кишечные макрофаги и т. д.
Функции их разнообразны и включают в себя фагоцитоз, взаимодействие с адаптивной иммунной системой и инициацию и поддержание иммунного ответа, поддержание и регулирование процесса воспаления, взаимодействие с нейтрофилами и привлечение их в очаг воспаления, выделение цитокинов, регуляция репарации, регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления, синтез компонентов системы комплемента.
Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают прохождение врождённого иммунного ответа, который является неспецифичным (в патологии неспецифичный ответ на альтерацию называют воспалением, воспаление является неспецифической фазой последующих специфических иммунных).
Иммунно привилегированные области[править | править код]
В некоторых частях организма млекопитающих и человека появление чужеродных антигенов не вызывает иммунного ответа. К таким областям относятся мозг и глаза, семенники, эмбрион и плацента. Нарушение иммунных привилегий может становиться причиной аутоиммунных заболеваний.
Иммунные заболевания[править | править код]
Аутоиммунные заболевания[править | править код]
При нарушении иммунной толерантности или повреждении тканевых барьеров возможно развитие иммунных реакций на собственные клетки организма. Например, патологическая выработка антител к ацетилхолиновым рецепторам собственных мышечных клеток вызывает развитие миастении[11].
Иммунодефицит[править | править код]
См. также[править | править код]
- Иммунная система
- Врождённый иммунитет
- Приобретенный иммунитет
- Иммунотерапия рака
- Иммунитет растений
- Химера (биология)
Примечания[править | править код]
- ↑ ИММУНИТЕТ • Большая российская энциклопедия — электронная версия. bigenc.ru. Дата обращения 8 апреля 2020.
- ↑ Bickle T. A., Krüger D. H. Biology of DNA restriction // Microbiological Reviews. — 1993. — Vol. 57, no. 7. — P. 434—450. — PMID 8336674.
- ↑ Черешнев В.А. Черешнева М.В. Иммунологические механизмы локального воспаления. Медицинская иммунология 2011 т.13 №6 стр.557-568 РО РААКИ. cyberleninka.ru. Дата обращения 16 мая 2020.
- ↑ Travis J. On the Origin of the Immune System // Science. — 2009. — Vol. 324, no. 5927. — P. 580—582. — doi:10.1126/science.324_580. — PMID 19407173.
- ↑ Genetics of the Immune Response / Ed. by E. Möller and G. Möller. — New York: Plenum Press, 2013. — viii + 316 p. — (Nobel Foundation Symposia, vol. 55). — ISBN 978-1-4684-4469-8. — P. 262.
- ↑ Галактионов В.Г. Проблемы эволюционной иммунологии. cyberleninka.ru. Медицинская иммунология 2004 т.6 №3-5 РО РААКИ. Дата обращения 16 мая 2020.
- ↑ Галактионов, 2005, с. 8.
- ↑ Галактионов, 2005, с. 8, 12.
- ↑ Иммунитет // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
- ↑ Нобелевская премия по физиологии и медицине 2011 (англ.). www.nobelprize.org.
- ↑ Галактионов, 2005, с. 392.
Литература[править | править код]
- Галактионов В. Г. . Эволюционная иммунология. — М.: Академкнига, 2005. — 408 с. — ISBN 5-94628-103-8.
- Хаитов Р. М. . Иммунология. — М.: ГЕОТАР, 2006. — 320 с. — ISBN 978-5-9704-1288-6.
- Ярилин А. А. . Иммунология. — М.: ГЕОТАР, 2010. — 737 с. — ISBN 978-5-9704-1319-7.