Иммунитет при введении сыворотки
Иммунитет – это невосприимчивость организма к инфекционным агентам и чужеродным веществам. Такими агентами чаще всего бывают микробы и яды, которые они выделяют, токсины. Иммунитет к инфекционным болезням проявляется в нескольких формах. Различают естественный и искусственный иммунитет.
Естественный иммунитет возникает натуральным путем без сознательного вмешательства человека. Он может быть врожденным и приобретенным.
Врожденный видовой иммунитет обусловливается врожденными свойствами человека или данного вида животных, которые передаются по наследству. Так, известно, что человек не болеет чумой рогатого скота и холерой кур, а они не болеют брюшным или сыпным тифом.
Приобретенный иммунитет возникает в случае перенесения инфекционной болезни. После одних болезней он сохраняется долго, иногда всю жизнь (натуральная оспа, брюшной тиф и др.), а после других – кратковременно (грипп).
Искусственный иммунитет создается путем введения в организм вакцины или сыворотки для предупреждения инфекционных болезней. Он всегда бывает приобретенным.
Иммунитет может быть активным и пассивным.
Активный иммунитет вырабатывается в организме активным путем в результате перенесения инфекционной болезни или после введения вакцины.
Пассивный иммунитет возникает после введения в организм сыворотки, содержащей специфические антитела, или путем передачи антител от матери к плоду через плаценту. Известно, что дети в первые месяцы жизни имеют пассивный иммунитет к кори, скарлатине, дифтерии в том случае, если мать имеет иммунитет к этим болезням.
Продолжительность активного иммунитета может быть от полугода до 5 лет, а после некоторых болезней (натуральная оспа, брюшной тиф) иммунитет может сохраняться всю жизнь. Пассивный иммунитет сохраняется 2-3 недели после введения сыворотки, а при получении антител через плаценту – до нескольких месяцев.
Иммунитет обеспечивается защитными механизмами, которые препятствуют проникновению в организм патогенных агентов, а если они проникли, то вызывают их гибель. К таким механизмам относятся защитные свойства кожи, слизистых оболочек, бактерицидное действие слюны, слез, желудочного и кишечного соков, лимфоидная система организма.
Вакцины (от лат. Vaccinus – коровий) – это препараты получаемые из микробов, вирусов и продуктов их жизнедеятельности и применяемые для активной иммунизации людей и животных с профилактической и лечебной целью.
Начало иммунизации положил английский врач Э. Дженнер, который в 1796г. привил ребенку коровью оспу, после чего у него возник иммунитет к натуральной оспе.
Большой вклад в развитие вакцинации внес французский ученый Луи Пастер, разработавший методы ослабления вирулентности микробов и создавший вакцины против бешенства и сибирской язвы. Русский ученый Н.Ф. Гамалея установил возможность создания химических вакцин, а также вакцин из убитых микробов.
Современная медицина имеет вакцины против многих опасных инфекционных заболеваний (чумы, холеры, туберкулеза, дифтерии, сибирской язвы, туляремии, столбняка, натуральной оспы, полиомиелита, гриппа, энцефалитов, эпидемического паротита и др.)
Вакцины подразделяются на живые, убитые, анатоксины и химические. Для приготовления живых вакцин используют штаммы патогенных микробов с ослабленной вирулентностью, т.е. лишенных возможности вызвать заболевание, но сохранивших свойства размножаться в организме вакцинированных и вызывать доброкачественный вакцинальный процесс (БЦЖ – вакцина против туберкулеза, противобруцеллезная вакцина, против вирусного гепатита А и др.). Живые вакцины дают стойкий иммунитет.
Убитые вакцины получают путем нагревания бактерий и вирусов, другими физическими воздействиями (ультрафиолетовым или ионизирующим излучением), путем обработки химическими веществами (фенолом, спиртовыми растворами, формалином). Убитые вакцины чаще всего вводятся подкожно или внутримышечно (против кишечных инфекций, коклюша, лечебная вакцина против бруцеллеза).
Химические вакцины готовятся путем извлечения из микробных тел основных антигенов, обладающих иммуногенными свойствами (поливакцина)
Вакцины можно вводить разными путями: внутримышечно (корь), подкожно (брюшной тиф, паратифы, дизентерия, холера, чума и др.), накожно (натуральная оспа, туляремия, туберкулез, сибирская язва), в нос (грипп) или через рот (полиомиелит).
Плановая вакцинация проводится в определенной последовательности. Так, новорожденные получают вакцину против туберкулеза (БЦЖ), далее детей вакцинируют против дифтерии, столбняка и коклюша, позже – против кори и полиомиелита. Плановая вакцинация населения позволила ликвидировать такие инфекционные болезни, как натуральная оспа, чума, туляремия. Заболеваемость другими инфекционными болезнями снижена в десятки и сотни раз.
Иммунные сыворотки – препараты крови животных или человека, которые содержат антитела. Используются для диагностики, лечения и профилактики различных заболеваний. После введения иммунной сыворотки возникает пассивный иммунитет, который сохраняется до 3-4 недель. Введение иммунной сыворотки проводят по методу А.М. Безредко, который позволяет десенсибилизировать организм: сначала подкожно вводят 0,1 мл, через 30 мин – 0,2 мл, а через 1-2 – внутримышечно всю остальную дозу сыворотки.
Анонимный вопрос · 8 февраля 2018
13,4 K
Вакцины предназначены для плановой и массовой профилактики заболеваний. В них мало действующего вещества, они лучше очищены. Риски минимальны: серьёзные осложнения бывают у одного на несколько миллионов. Вакцины представляют собой «осколки» убитых бактерий (пневмококк, менингококк), ослабленные вирусы (корь, краснуха, паротит, ветрянка) или обезвреженные токсины (коклюшный, столбнячный, дифтерийный). Вакцины заставляют иммунную систему человека вырабатывать антитела, чтоб в будущем он мог бороться с возбудителем болезни.
Сыворотки (противостолбнячная, проиводифтерийная, противоботулиническая, противогангренозная и другие) это уже готовые антитела, их берут из крови людей или лошадей, привитых от нужной болезни. Антител много, они для организма пациента чужие, очистить их от других белков крови полностью невозможно. Потому введение сыворотки часто сопровождается побочными эффектами: сыпь, лихорадка, рвота, увеличение лимфоузлов, воспаление почек, анафилактический шок. Применяют столь рискованный метод лечения в тех случаях, когда беда уже случилась и надо человека спасать от смерти прямо сейчас.
Из-за этой разницы между препаратами гораздо выгоднее получить вакцины от столбняка и дифтерии, забыв об этих болезнях на 10 лет, чем подвергаться потом жестоким методам лечения.
при эпидемии нужна сыворотка а не вакцина которая в разы увеличит смертность это факт
Люблю халву, варенье, сыр. Увлекаюсь компьютерами и всякими новыми и инновационн…
Вакцина стимулирует иммунитет организма для выработки средств защиты от данного заболевания. Действует месяцы, годы, всю жизнь. Сыворотка действует несколько часов, до суток. Представляет собой смесь антител к данному заболеванию Но организм бороться она «не учит».
Лечебная сыворотка — содержит АНТИТЕЛА, которые при введении в организм создают пассивный иммунитет
> Почему пассивный?
Так как антитела чужие, то они подвергаются иммунному ответу со стороны организма
Вакцина — содержит ослабленные микроорганизмы или частицы АГ
> Почему активный?
Так как при введении АГ вырабатываются свои АТ Читать далее
Что такое прививка АКДС, какова ее расшифровка и побочные эффекты?
АКДС — аббревиатура от Адсорбированная Коклюшно-Дифтерийно-Столбнячная вакцина с цельноклеточным коклюшным компонентом.
Основным отличием АКДС от других прививок с коклюшниым компонентом (Пентаксим, инфанрикс, Инфанрикс гекса) является то, что в ее состав входит убитая коклюшная бактерия целиком. Это обеспечивает более эффективную и чуть более длительную защиту от коклюша, однако сопряжено с бОльшей реактогенностью вакцины и она чаще вызывает сильное повышение температуры и ярковыраженные местные реакции.
Такой же коклюшный компонент входит в состав вакцины Бубо-Кок.
Бесклеточные коклюшные вакцины содержат только несколько самых важных коклюшных антигенов (белков), за счет этого вызывают меньшее количество реакций и имеют меньшее число противопоказаний, в т.ч. могут применяться для переболевших коколюшем. Но при этом формируют менее длительную защиту от коклюша.
Адсорбированная — значит, что вакцина содержит адъювант. Это такое вещество, которое повышает эффективность прививки, так как действующие вещества (антигены) в этой вакцине очень «маленькие» и малозаметны для иммунной системы. Добавление адъюванта привлекает привлекает к месту инъекции клетки иммунной системы, что усиливает иммунный ответ и полезное действие вакцины. Кроме вакцин от коклюша дифтерии и столбняка адъювант содержат конъюгированные вакцины от пневмококковой инфекции, а также вакцины от гепатита В.
Прочитать ещё 1 ответ
Почему противопоказанием для применения инактивированной гриппозной вакцины является гиперчувствительность к яичному белку?
Потому что в составе вакцин против гриппа содержится яичный белок (вирус в самой вакцине выращивается на эмбрионах курицы). Поэтому у людей с аллергией на куриный белок могли возникнуть аллергические реакции на прививку.
А теперь хорошая новость: с 2011 года получено много убедительных доказательств, что вакцина от гриппа одинаково безопасна как для аллергиков, так и для здоровых (не имеющих аллергии на белок) людей.
Вопрос уже снят, проведены десятки исследований, которые доказали, что в современных вакцинах ничтожное количество куриного протеина, которое не в силах вызвать аллергическую реакцию даже у пациентов с очень(!) тяжёлыми формами аллергии.
Что такое поствакцинальное осложнение?
Мы — журналисты, которые задаются вопросами о том, как жить в России.
Поствакцинальное осложнение — это серьезное, но очень редкое состояние, которое может возникнуть после прививки. Наряду с мифами про ртуть в вакцинах или их вред, этот факт часто пугает родителей и заставляет их отказываться от вакцинации детей. Причем это происходит во всем мире и увеличилось в 21 веке настолько, что в 2019 году Всемирная организация здравоохранения (ВОЗ) внесла сознательный отказ от прививок в список 10 глобальных угроз человечеству.
Чтобы разобраться в этом вопросе, нужно понимать, что вообще может происходить с человеком после вакцинации. ВОЗ предлагает называть любые состояния организма после вакцины, которые требуют медицинского контроля, побочным проявлением после иммунизации (ПППИ). И разделяет их на две категории — по серьезности ПППИ для здоровья и по доказанной связи этого состояния с вакциной.
Первая категория включает всего два параметра — ПППИ может быть
— серьезным: это и есть поствакцинальные осложнения, о которых мы говорим. Например, анафилаксия — сильная аллергическая реакция, которая случается примерно у 1 — 20 человек (смотря какая вакцина) на миллион доз вакцины. Она проявляется практически сразу же после введения препарата, поэтому после вакцинации человеку лучше как минимум 30 минут посидеть в клинике. У врачей там есть все средства, чтобы купировать это состояние, если оно вдруг начнется.
— несерьезным для организма: это называют вакцинальной реакцией. Она может быть местной, тогда сюда входят все отеки, боль и покраснение на участке кожи, куда вводили вакцину. А может быть системной — и это уже повышение температуры, головная боль, недомогание и другие симптомы. Вакцинальные реакции встречаются чаще, но обычно проходят достаточно быстро сами.
Вторая категория — это связь между вакцинацией и медицинским состоянием. И здесь все они могут быть точно связаны, возможно связаны или совсем не связаны с прививкой. С любым побочным проявлением после иммунизации человек может обратиться к врачу, а тот в свою очередь должен разобраться и провести расследование — в заключении будет сделан вывод о реальной связи с вакциной. В Америке для этого есть даже специальная программа VAERS, которая собирает отчеты от медсестер, родителей и любых людей, которые решили оставить информацию о ПППИ. Это помогает дополнительно оценить безопасность вакцин, быстрее находить какие-то редкие побочные эффекты и контролировать уже известные осложнения и реакции. И это очень важно, как для системы здравоохранения и ученых, так и для коммуникации с пациентами и семьями.
В своей книге «Смертельно опасный выбор» (если что, это автор про отказ от вакцин) Пол Оффит рассказывает историю одной семьи. Маленькой девочке должны были сделать прививку, но родители опоздали на прием. Через пару дней ребенка нашли мертвым в своей кроватке — врачи связали это со синдромом внезапной детской смерти, точную причину которого у детей до года до сих пор не могут объяснить ученые. Но что, если бы родители успели сделать прививку? Скорее всего, они бы точно связали такую внезапную смерть с ней. Вот для этого и нужно делать медицинские расследования каждого кейса. Совпадения случаются. Не все болезни, которые проявляются после вакцин, точно связаны с ними.
Если вернуться к страхам родителей и серьезным поствакцинальным осложнениям. Во-первых, нужно понимать, что не все из тех болезней, которыми пугают в социальных сетях другие родители, действительно произошли из-за вакцинации. Во-вторых, поствакцинальные осложнения случаются очень редко, а главное — риск пострадать от них намного меньше, чем от болезни, которую предотвращает вакцина. Некоторым кажется, что заболеваний, которые входят во все календари прививок, практически нет уже в мире или они не так опасны (это можно часто услышать про ветряную оспу или грипп). Но статистика смертности и тяжелых последствий от дифтерии, столбняка, менингита и других болезней, которая была до изобретения вакцин, говорит обратное. Именно из-за успеха вакцинации сейчас намного меньше погибших детей и взрослых от этих болезней, как и людей, получивших инвалидность.
Но как только большое количество родителей начинает отказываться от вакцин для детей и самих себя, коллективный иммунитет падает и начинаются вспышки болезней. Так, например, происходит сейчас в мире с корью — все больше людей страдают от нее в Европе, Америке и других странах. Например, в Самоа (маленьком государстве на острове с населением в 200 тысяч человек) в социальных сетях в 2018 году развернули масштабную антивакцинаторскую кампанию из-за смерти двух детей от прививки от кори. Расследование выяснило, что это произошло из-за ошибки медсестер, но доверие к вакцине было подорвано. И итоге в октябре 2019 года в Самоа началась самая настоящая эпидемия кори — умерло более 80 людей (и большем числе дети до 4 лет), заразились более 5 тысяч человек, а власти были вынуждены объявить чрезвычайное положение.
Прочитать ещё 1 ответ
Почему назначают иммунотерапию а не химиотерапию?
«Медицина 24/7» — круглосуточный хирургический, онкологический стационар с консу… · medica24.ru
Иммунотерапия — это метод лечения онкологических заболеваний, при котором лекарство действует не на опухоль, как химиотерапия или таргетная терапия, а на иммунитет, помогая ему обнаружить раковые клетки.
Иммунотерапия мешает опухолевым клеткам сопротивляться иммунной системе.
В норме иммунитет убивает все чужое или просто подозрительное, но опухолевые клетки умеют притворяться «хорошими» либо «обманом» заставляют иммунитет отключаться.
На поверхности T-лимфоцитов (клеток иммунной системы) есть особые белки под кодовыми обозначениями PD-1 и CTLA-4. Их называют контрольными точками. Для иммунитета это как тормоза для машины. Опухолевые клетки умеют на них влиять, «жать на тормоза», чтобы иммунитет бездействовал.
Иммунотерапевтические препараты могут эти тормоза отключать: T-лимфоцит «заводится» и атакует раковую клетку. Либо препарат блокирует другой белок (PD-L1), который скрывает опухоль от внимания иммунитета.
Подробнее об этом Вы можете прочитать, пройдя по ссылке.
Иммунотерапия уже добралась до России и активно используется в практике нашей клиники.
Прочитать ещё 2 ответа
Правда ли, что живые вакцины опасны?
Живые вакцины имеют больше противопоказаний, чем НЕживые.
В состав живых вакцин входит ослабленный патоген (вирус или бактерия). Если дикий патоген вызывает у человека заболевание, то вакцинный создается таким образом, чтобы наша иммунная система его замечала, вырабатывала на него ответ, но чтобы он не наносил организму вреда (не был патогенным). То есть силы в этой «схватке» априори на стороне человека.
Однако, если у человека иммунодефицит (первичный, в следствии ВИЧ инфекции), аспления, он принимает высокие дозы иммуносупрессивной терапии, или у него онкогематологическое заболевание, которе само по себе приводит к снижению хащитных сил нашей иммунной системы, то баланс сил смещается и для таких людей живые вакцины уже могут быть опасны, ведь вакцинный вирус никто не будет сдерживать и он размножится сильнее, чем это необходимо.
Поэтому для живых вакцин (впрочем, как и для любых других)( важно соблюдение противопоказаний. Иммунокомпрометированные лица не должны быть ими привиты.
Также существуют правила по разобщению привитых некоторыми живыми вакцинами с иммунокомпрометированными лицами чтобы избежать трансмиссии вакцинного вируса.
Это в большей степени касается оральных вакцин (от полиомиелита, ротавируса), а так же интраназальной вакцины от гриппа, которая у нас в стране не применяется.
Подробно можно почитать вот тут.
Прочитать ещё 1 ответ
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2020;
проверки требуют 8 правок.
Иммуните́т (лат. immunitas — освобождение) человека и животных — способность организма поддерживать свою целостность и биологическую индивидуальность путём распознавания и удаления чужеродных веществ и клеток[1] (в том числе болезнетворных бактерий и вирусов). Характеризуется изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.
Назначение[править | править код]
Простейшие защитные механизмы, имеющие своей целью распознавание и обезвреживание патогенов, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые препятствуют заражению бактерии вирусом[2]. Одноклеточные эукариотные организмы применяют токсичные пептиды, чтобы предотвратить проникновение бактерий и вирусов в свои клетки[3].
По мере эволюции сложно организованных многоклеточных организмов у них формируется многоуровневая иммунная система, важнейшим звеном которой становятся специализированные клетки, противостоящие вторжению генетически чужеродных объектов[4].
У таких организмов иммунный ответ происходит при столкновении данного организма с самым различным чужеродным в антигенном отношении материалом, включая вирусы, бактерии и другие микроорганизмы, обладающие иммуногенными свойствами молекулы (прежде всего белки, а также полисахариды и даже некоторые простые вещества, если последние образуют комплексы с белками-носителями — гаптены[5]), трансплантаты или мутационно изменённые собственные клетки организма. Как отмечает В. Г. Галактионов, «иммунитет есть способ защиты организма от всех антигенно чужеродных веществ как экзогенной, так и эндогенной природы; биологический смысл подобной защиты — обеспечение генетической целостности особей вида в течение их индивидуальной жизни»[6]. Биологическим смыслом такой защиты является обеспечение генетической целостности особей вида на протяжении их индивидуальной жизни, так что иммунитет выступает как фактор стабильности онтогенеза[7].
Характерные признаки иммунной системы[8]:
- способность отличать «своё» от «чужого»;
- формирование памяти после первичного контакта с чужеродным антигенным материалом;
- клональная организация иммунокомпетентных клеток, при которой отдельный клеточный клон способен, как правило, реагировать лишь на одну из множества антигенных детерминант.
Классификации[править | править код]
Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют молекулы, находящиеся в плазме крови, а не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы.
Иммунитет также классифицируют на врождённый и адаптивный.
Врождённый (неспецифический, наследственный[9]) иммунитет обусловлен способностью идентифицировать и обезвреживать разнообразные патогены по наиболее консервативным, общим для них признакам, дальности эволюционного родства, до первой встречи с ними. В 2011 году была вручена Нобелевская премия в области медицины и физиологии за изучение новых механизмов работы врождённого иммунитета (Ральф Стайнман, Жюль Хоффман и Брюс Бётлер)[10].
Осуществляется большей частью клетками миелоидного ряда, не имеет строгой специфичности к антигенам, не имеет клонального ответа, не обладает памятью о первичном контакте с чужеродным агентом.
Адаптивный (устар. приобретённый, специфический) иммунитет имеет способность распознавать и реагировать на индивидуальные антигены, характеризуется клональным ответом, в реакцию вовлекаются лимфоидные клетки, имеется иммунологическая память, возможна аутоагрессия.
Классифицируют на активный и пассивный.
- Приобретённый активный иммунитет возникает после перенесённого заболевания или после введения вакцины.
- Приобретённый пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорождённому с молозивом матери или внутриутробным способом.
Другая классификация разделяет иммунитет на естественный и искусственный.
- Естественный иммунитет включает врождённый иммунитет и приобретённый активный (после перенесённого заболевания), а также пассивный иммунитет при передаче антител ребёнку от матери.
- Искусственный иммунитет включает приобретённый активный после прививки (введение вакцины) и приобретённый пассивный (введение сыворотки).
Органы иммунной системы[править | править код]
Выделяют центральные и периферические органы иммунной системы. К центральным органам относят красный костный мозг и тимус, а к периферическим — селезёнку, лимфатические узлы, а также местноассоциированную лимфоидную ткань: бронхассоциированную (БАЛТ), кожноассоциированную (КАЛТ), кишечноассоциированную (КиЛТ, пейеровы бляшки).
Красный костный мозг — центральный орган кроветворения и иммуногенеза. Содержит самоподдерживающуюся популяцию стволовых клеток. Красный костный мозг находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. Здесь происходит дифференцировка В-лимфоцитов из предшественников. Содержит также Т-лимфоциты.
Тимус — центральный орган иммунной системы. В нём происходит дифференцировка Т-лимфоцитов из предшественников, поступающих из красного костного мозга.
Лимфатические узлы — периферические органы иммунной системы. Они располагаются по ходу лимфатических сосудов. В каждом узле выделяют корковое и мозговое вещество. В корковом веществе есть В-зависимые зоны и Т-зависимые зоны. В мозговом есть только Т-зависимые зоны.
Селезёнка — паренхиматозный зональный орган. Является самым крупным органом иммунной системы, кроме того, выполняет депонирующую функцию по отношению к крови. Селезёнка покрыта капсулой из плотной соединительной ткани, которая содержит гладкомышечные клетки, позволяющие ей при необходимости сокращаться. Паренхима представлена двумя функционально различными зонами: белой и красной пульпой. Белая пульпа составляет 20 %, представлена лимфоидной тканью. Здесь имеются В-зависимые и Т-зависимые зоны. И также здесь есть макрофаги. Красная пульпа составляет 80 %. Она выполняет следующие функции:
- Депонирование зрелых форменных элементов крови.
- Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов.
- Фагоцитоз инородных частиц.
- Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.
Иммунокомпетентные клетки[править | править код]
К иммунокомпетентным клеткам относят макрофаги и лимфоциты. Эти клетки совместно участвуют в инициации и развитии всех звеньев адаптивного иммунного ответа (система трёхклеточной кооперации).
Клетки, участвующие в иммунном ответе[править | править код]
T-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, отвечающая главным образом за клеточный иммунный ответ. Включает в себя субпопуляции Т-хелперов (дополнительно разделяются на Th1, Th2, а также выделяют Treg, Th9, Th17, Th22,), цитотоксических Т-лимфоцитов,NKT. Включает в себя эффектор, регуляторы и долгоживущие клетки-памяти. Функции разнообразны: как регуляторы и администраторы иммунного ответа (Т-хелперы), так и киллеры (цитотоксические Т-лимфоциты).
B-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, синтезирующая антитела и отвечающая за гуморальный иммунный ответ.
Натуральные киллеры[править | править код]
Натуральные киллеры (NK-клетки) — субпопуляция лимфоцитов, обладающая цитотоксичной активностью, то есть они способны: контактировать с клетками-мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз. Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.
Нейтрофилы[править | править код]
Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 65-70 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим (мурамидаза), липопероксидаза и другие антибиотические белки. Нейтрофилы способны самостоятельно мигрировать к месту нахождения антигена, так как у них есть рецепторы хемотаксиса (двигательная реакция на химическое вещество). Нейтрофилы способны «прилипать» к эндотелию сосудов и далее мигрировать через стенку к месту нахождения антигенов. Далее проходит фагический цикл, и нейтрофилы постепенно заполняются продуктами обмена. Далее они погибают и превращаются в клетки гноя.
Эозинофилы[править | править код]
Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Эозинофилы узнают гельминтов и экзоцитируют в зону контакта вещества — перфорины. Эти белки встраиваются в билипидный слой клеток гельминта. В них образуются поры, внутрь клеток устремляется вода, и гельминт погибает от осмотического шока.
Базофилы[править | править код]
Базофилы составляют 0,5-1 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в ткани. Тучные клетки располагаются в различных тканях, лёгких, слизистых и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). При этом происходит взаимодействие с иммуноглобулином Е (IgE). Таким образом они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа.
Моноциты[править | править код]
Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани, существуют несколько видов макрофагов в зависимости от типа ткани, в которой они находятся, в том числе:
- Некоторые антигенпредставляющие клетки, в первую очередь дендритные клетки, роль которых — поглощение микробов и «представление» их Т-лимфоцитам.
- Клетки Купфера — специализированные макрофаги печени, являющиеся частью ретикулоэндотелиальной системы.
- Альвеолярные макрофаги — специализированные макрофаги лёгких.
- Остеокласты — костные макрофаги, гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена.
- Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.
- Кишечные макрофаги и т. д.
Функции их разнообразны и включают в себя фагоцитоз, взаимодействие с адаптивной иммунной системой и инициацию и поддержание иммунного ответа, поддержание и регулирование процесса воспаления, взаимодействие с нейтрофилами и привлечение их в очаг воспаления, выделение цитокинов, регуляция репарации, регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления, синтез компонентов системы комплемента.
Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают прохождение врождённого иммунного ответа, который является неспецифичным (в патологии неспецифичный ответ на альтерацию называют воспалением, воспаление является неспецифической фазой последующих специфических иммунных).
Иммунно привилегированные области[править | править код]
В некоторых частях организма млекопитающих и человека появление чужеродных антигенов не вызывает иммунного ответа. К таким областям относятся мозг и глаза, семенники, эмбрион и плацента. Нарушение иммунных привилегий может становиться причиной аутоиммунных заболеваний.
Иммунные заболевания[править | править код]
Аутоиммунные заболевания[править | править код]
При нарушении иммунной толерантности или повреждении тканевых барьеров возможно развитие иммунных реакций на собственные клетки организма. Например, патологическая выработка антител к ацетилхолиновым рецепторам собственных мышечных клеток вызывает развитие миастении[11].
Иммунодефицит[править | править код]
См. также[править | править код]
- Иммунная система
- Врождённый иммунитет
- Приобретенный иммунитет
- Иммунотерапия рака
- Иммунитет растений
- Химера (биология)
Примечания[править | править код]
- ↑ ИММУНИТЕТ • Большая российская энциклопедия — электронная версия. bigenc.ru. Дата обращения 8 апреля 2020.
- ↑ Bickle T. A., Krüger D. H. Biology of DNA restriction // Microbiological Reviews. — 1993. — Vol. 57, no. 7. — P. 434—450. — PMID 8336674.
- ↑ Черешнев В.А. Черешнева М.В. Иммунологические механизмы локального воспаления. Медицинская иммунология 2011 т.13 №6 стр.557-568 РО РААКИ. cyberleninka.ru. Дата обращения 16 мая 2020.
- ↑ Travis J. On the Origin of the Immune System // Science. — 2009. — Vol. 324, no. 5927. — P. 580—582. — doi:10.1126/science.324_580. — PMID 19407173.
- ↑ Genetics of the Immune Response / Ed. by E. Möller and G. Möller. — New York: Plenum Press, 2013. — viii + 316 p. — (Nobel Foundation Symposia, vol. 55). — ISBN 978-1-4684-4469-8. — P. 262.
- ↑ Галактионов В.Г. Проблемы эволюционной иммунологии. cyberleninka.ru. Медицинская иммунология 2004 т.6 №3-5 РО РААКИ. Дата обращения 16 мая 2020.
- ↑ Галактионов, 2005, с. 8.
- ↑ Галактионов, 2005, с. 8, 12.
- ↑ Иммунитет // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
- ↑ Нобелевская премия по физиологии и медицине 2011 (англ.). www.nobelprize.org.
- ↑ Галактионов, 2005, с. 392.
Литература[править | править код]
- Галактионов В. Г. . Эволюционная иммунология. — М.: Академкнига, 2005. — 408 с. — ISBN 5-94628-103-8.
- Хаитов Р. М. . Иммунология. — М.: ГЕОТАР, 2006. — 320 с. — ISBN 978-5-9704-1288-6.
- Ярилин А. А. . Иммунология. — М.: ГЕОТАР, 2010. — 737 с. — ISBN 978-5-9704-1319-7.