Из чего состоит мрт схема

Из чего состоит мрт схема thumbnail


ОГЛАВЛЕНИЕ

  • Что представляет из себя МРТ?
  • История производства и особенности устройства аппарата МРТ
  • Принцип работы Магнитно-Резонансного Томографа (МРТ)
  • Устройство МРТ
  • Преимущества МРТ
  • Видео «Как устроен МРТ»

Одним из наиболее результативных способов медицинского обследования, является МРТ или магнитно-резонансная томография, дающая возможность, обрести наиболее точную информацию об:

  • особенностях анатомии человеческого организма,
  • внутренних органов,
  • эндокринной системы,
  • а также возбудимости тканей.

Возможность точно определить место развития паталогического процесса и объема произошедших повреждений, становится основным преимуществом процедуры МРТ, при обнаружении злокачественных опухолей и обследования сосудов.

ЧТО ПРЕДСТАВЛЯЕТ ИЗ СЕБЯ МРТ?

Что представляет из себя МРТ?

Магнитно-резонансная томография – это исключительный шанс получить точнейшие послойные изображения, области организма, которая исследуется.

Процедура МРТ заключается в стимулирувании электромагнитных волн. Образовывается внушительное магнитное поле, в которое помещается пациет (или часть тела). Затем фиксируется обратный электромагнитный сигнал, поступающий от человеческого организма на компьютер. В итоге, выстраивается изображение.

Магнитно-резонансный томограф, является аппаратом, дающим возможность достичь эффективнейшего диагностирования, определить метаморфозы в функционировании организма и осуществить высочайшее, по точности, изображение изучаемых органов, которое дает результаты, на порядок выше, нежели рентген, компьютерная томография или УЗИ.

МРТ дает возможность обнаружить онкологические заболевания и перечень других не менее опасных болезней, а также замерить быстроту кровотока и течение спинномозговой жидкости.

Аппарат МРТ дает возможность содействовать неизменному состоянию магнетизма в теле человека, при его размещении внутри устройства.
В результате чего, он осуществляет:

  • стимулирование организма с помощью электромагнитных волн, помогая смене стабильной направленности настроенных частиц;
  • приостановку электромагнитных волн и фиксацию тех же излучений, со стороны человеческого организма;
  • обрабатывание принятого сигнала и перестройка его в картинку (изображение).

МРТ изображение
За основу функционирования МРТ, взят ЯМР принцип, с последовательным обрабатыванием получаемой информации, специализированными программами.

Итоговое изображение – это совсем не фотография или фото-негатив изучаемой части тела или органа. Радиосигналы преобразовываются в высококачественное изображение среза человеческого организма, на экране монитора. Доктора видят органы в разрезе.

Магнитно-Резонансная Томография, является более точным и надежным методом диагностирования, нежели КТ (компьютерная томография), ведь при МРТ не осуществляется применение ионизирующего излучения, наоборот, применяются абсолютно безвредные для организма электромагнитные волны.

История производства и особенности устройства аппарата МРТ

История производства МРТ

Датой сотворения сего полезнейшего устройства, называют 1973 год, а одним из первых разработчиков, считается – Пол Лотербур. В одном из его трудов был четко описан факт изображения строений организма и органов, благодаря применению магнитных и радиоволн.

Однако, Лотербур не единственный изобретатель, приложивший руку к изобретению МРТ. За 27 лет до этого, Ричард Пурселл и Феликс Блох, работая в Гарвардском Университете, испытывали явление, основой которого являлось качество, характерное для атомных ядер (изначальное вбирание энергии и ее последующее «отдавание», то есть отделение с возвращением к исходному состоянию). Спустя шесть лет, за свою работу, ученые были удостоены Нобелевской премии.

Их открытие, стало, в определенном роде, прорывом для развития суждения по ЯМР.
Удивительный феномен подвергался изучению многими ученными, не только физиками, но и математиками, и химиками. Показ первого Компьютерного Томографа, с перечнем опытов, был осуществлен в 1972 году. В результате, был выявлен новейший способ диагностирования, позволяющий подробно изображать наиболее важные структуры человеческого организма.

Впоследствии, некто Лотербур, хоть и не в полной мере, но высказал принцип функционирования МРТ. Его работа стала толчком для развития и дальнейших исследований в данной отрасли.

Головной мозг на МРТ
Немало времени уделяли надзору над недоброкачественными опухолями.
Исследования, производящиеся Лотербуром, продемонстрировали: они кардинально разнятся со здоровыми клетками. Разница состоит в параметрах добываемого сигнала.

И так, можно смело утверждать, что стартом новейшей эры развития диагностирования с помощью МРТ, являются семидесятые годы прошлого века. Именно в тот период времени, Ричард Эрнст, предложил осуществление МРТ с применением особенного метода – кодирования (и радиочастотного, и фазового). Метод, который был предложен тогда, используют доктора и в наши дни. В восьмидесятом году прошлого века было продемонстрировано изображение, на создание которого было затрачено всего 5 минут, а через шесть лет, это время составляло уже 5 секунд. Стоит отметить, что качество изображения при этом, не изменилось.

Через 8 лет после первого изображения, внушительный рывок произошел и в ангиографии, дающей возможность показать кровоток человека без вспомогательного введения в кровь лекарств, выполняющих функцию контраста.

Развитие данной отрасли стало историческим моментом для современной медицины.
МРТ используется в диагностировании болезней:

  • позвоночника;
  • суставов;
  • головного и спинного мозга;
  • нижнего мозгового придатка;
  • внутренних органов;
  • парных молочных желез внешней секреции и так далее.

Потенциал открытого метода, дает возможность выявлять болезни на начальных стадиях и находить аномалии, нуждающиеся в безотлагательном лечении или в неотложном хирургическом вмешательстве.

Процедура МРТ, осуществленная на нынешнем ультрасовременном оборудовании, позволяет:

  • получить точнейшую визуализацию внутренних органов, тканей;
  • накопить нужные данные о вращении спинномозговой жидкости;
  • выявить уровень активности областей коры головного мозга;
  • отслеживать газообмен, происходящий в тканях.

МРТ значительно и в лучшую сторону отличим от прочих методов диагностирования:

  • Он не предусматривает манипуляций с хирургическими инструментами;
  • Он эффективен и безопасен;
  • Процедура достаточно распространена, доступна и необходима при изучении наиболее серьезных случаев, нуждающихся в подробном изображении случающихся в организме метаморфоз.
Читайте также:  Мрт позвоночника на олеко дундича

Принцип работы Магнитно-Резонансного Томографа (МРТ)

Принцип работы МРТ
Процедура производится следующим образом. Пациента размещают в специализированное узкое углубление (своего рода тоннель), в котором он обязательно должен быть размещен горизонтально. Длительность процедуры составляет от четверти до половины часа.

По завершении процедуры, человеку на руки отдают изображение, которое формируется с помощью ЯМР метода – физического явления магнитного и ядерного резонанса, связанного с особенностями протонов. Благодаря радиочастотному импульсу, в образованном при помощи аппарата электромагнитном поле преобразуется излучение, превращающееся в сигнал. Затем он принимается и подвергается обработке специализированной программой для компьютера.

На монитор выводится серия изображений срезов организма. Каждый изучаемый срез, обладает индивидуальной толщиной. Этот метод отображения похож на технологию удаления всего лишнего над или под слоем. Немаловажную роль, при этом, выполняют конкретные элементы объема и части среза.

Из-за того, что тело человека на 90% состоит из жидкости, осуществляется стимулирование протонов атомов водорода. Метод МРТ, дает возможность взглянуть в организм и определить серьезность недуга без непосредственного физического вмешательства.

Устройство МРТ

Современный аппарат МРТ, состоит из таких частей:

  • магнит;
  • катушки;
  • генератор радиоимпульсов;
  • клетка Фарадея;
  • ресурс питания;
  • охладительная система;
  • системы, обрабатывающие получаемые данные.

В последующих пунктах мы изучим работу части отдельных элементов аппарата МРТ!

Магнит

Производит стабилизированное поле, которое характеризуется равномерностью и внушительной эмфазой (напряженностью). Из заключительного показателя выявляется мощность устройства. Упомянем еще раз, именно от мощности зависит то, насколько высокое качество обретет визуализация после окончания терапии.

Аппараты делятся на 4 группы:

  • Низкопольные – оснащение начального типа, сила поля менее 0.5 Тл;
  • Среднепольные – сила поля от 0,5-1 Тл;
  • Высокопольные – характеризуются великолепной скоростью обследования, хорошо просматриваемой визуализаций, даже если человек двигался при процедуре. Сила поля – 1-2 Тл;
  • Сверхвысокопольные – более 2 Тл. Применяются исключительно при исследованиях.

Также стоит отметить такие разновидности применяемых магнитов:

Постоянный магнит – производится из сплавов, имеющих, так называемые Ферромагнитные свойства. Плюсами данных элементов, являет то, что им нет необходимости понижать температуру, потому что им не нужно энергии для поддержки однородного поля. Из минусов, стоит отметить внушительную массу и незначительную напряженность. Кроме прочего, такие магниты, восприимчивы к изменениям температур.

Сверхпроводимый магнит – катушка, созданная из особого сплава. Через данную катушку, происходит пропуск огромных токов. Благодаря аппаратам с подобными катушками, в них создается внушительное по силе магнитное поле. Однако, в сравнении с предыдущим магнитом, для сверхпроводимого магнита, необходима охладительная система. Из минусов, стоит отметить значительный расход жидкого гелия при незначительных затратах энергии, внушительные затраты на эксплуатирование агрегата, экранирование в обязательном порядке. Кроме прочего, существует риск выброса жидкости для охлаждения при утрате сверх проводимых свойств.

Резистивный магнит – не нуждается в применении специализированных систем охлаждения, и могут производить относительно однородное поле для осуществления сложных испытаний. Из минусов, стоит отметить внушительную массу, составляющую около пяти тонн и повышающуюся в случае экранирования.
как устроен МРТ

Передатчик

Вырабатывает колебания и импульсы радиочастот (формы прямоугольника и сложной). Данное изменение дает возможность достичь возбуждения ядер, улучшить контрастность картинки, получаемой в результате обработки данных.

Сигнал передает на переключатель, который оказывает действие на катушку, образуя магнитное поле, обладающее влиянием на спиновую систему.

Приемник

Это усилитель сигнала с высочайшей чувствительностью и незначительным шумом, который работает на сверхвысоких частотах. Получаемый отзыв видоизменяется из мГц в кГц (то есть от больших частот, к меньшим).

Прочие запчасти

Для более подробной детализации картинки несут ответственность, также, датчики регистрации, расположенные около изучаемого органа. Процедура МРТ не представляет никакой опасности для человека, осуществив излучение сообщаемой энергии, протоны перетекают в изначальное состояние.

Чтобы качество визуализации было лучше, исследуемому человеку могут ввести вещество контрастного типа на основе Gadolinium, которое не обладает побочными действиями. Вводится он при помощи шприца, который автоматизировано, подсчитывает необходимую дозу и быстроту введения препарата. Средство поступает в организм синхронно с протекающей процедурой.

Качество МРТ исследования, зависит от большого количества факторов – это и состояние магнитного поля, катушка, которая применяется, какой контрастный препарат и даже доктор, проводящий процедуру.

Преимущества МРТ:

  • высочайшая вероятность получить наиболее точную визуализацию исследуемой части тела или органа;
  • постоянно развивающееся качество диагностирования;
  • отсутствие негативных воздействий на человеческий организм;

Аппараты разнятся по силе генерируемого поля и «распахнутости» магнита. Чем выше мощность, тем скорее проводится исследование и тем лучше качество визуализации.

Открытые аппараты, обладают C-образной формой и считаются наилучшим для исследования людей, подверженных тяжелым формам клаустрофобии. Изначально они разрабатывались для осуществления вспомогательных внутри-магнитных процедур. Также, стоит отметить, что эта разновидность устройства значительно слабее, нежели закрытый аппарат.
Обследование с помощью МРТ — одно из наиболее результативных и неопасных методов диагностирования и максимально информативно для подробного изучения спинного и головного мозга, позвоночника, органов брюшной полости и малого таза.

Видео «Как устроен МРТ»:

Также предлагаем Вашему вниманию несколько видео об устройстве и приципу работы МРТ:

Читайте также:  Мрт костей и органов малого таза

Источник

В 1973 году американский химик Пол Лотербур опубликовал в журнале Nature статью под названием «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса». Позднее британский физик Питер Мэнсфилд предложит более совершенную математическую модель получения изображения целого организма, а в 2003 году исследователи получат Нобелевскую премию за открытие метода МРТ в медицине.

Немалый вклад в создание современной магнитно-резонансной томографии внесет и американский ученый Реймонд Дамадьян, отец первого коммерческого аппарата МРТ и автор работы «Обнаружение опухоли с помощью ядерного магнитного резонанса», опубликованной в 1971 году.

Но справедливости ради стоит отметить, что задолго до западных исследователей, в 1960 году, советский ученый Владислав Иванов уже подробно изложил принципы МРТ, тем не менее авторское свидетельство он получил лишь в 1984 году… Давайте же оставим споры об авторстве, и рассмотрим наконец в общих чертах принцип работы магнитно-резонансного томографа.

В наших организмах очень много атомов водорода, а ядро каждого атома водорода — это один протон, который можно представить в виде маленького магнитика, существующего благодаря наличию у протона ненулевого спина. То что ядро атома водорода (протон) имеет спин, — это значит что оно как бы вращается вокруг своей оси. При этом известно, что у ядра водорода есть положительный электрический заряд, а вращающийся вместе с наружной поверхностью ядра заряд — это подобие маленького витка с током. Получается, что каждое ядро атома водорода — это миниатюрный источник магнитного поля.

Если теперь много ядер атомов водорода (протоны) поместить во внешнее магнитное поле, то они начнут пытаться сориентироваться по этому магнитному полю подобно стрелкам компасов. Однако в процессе такой переориентации ядра начнут прецессировать, (как прецессирует ось гироскопа при попытке его наклонить), потому что магнитный момент каждого ядра оказывается связан с механическим моментом ядра, с наличием у него упомянутого выше спина.

Допустим, ядро водорода поместили во внешнее магнитное поле с индукцией 1 Тл. Частота прецессии в этом случае составит 42,58 МГц (это так называемая ларморовская частота для данного ядра и для данной индукции магнитного поля). И если теперь оказать дополнительное воздействие на это ядро электромагнитной волной с частотой 42,58 МГц, возникнет явление ядерного магнитного резонанса, то есть амплитуда прецессии возрастет, поскольку вектор общей намагниченности ядра станет больше.

И таких ядер, способных прецессировать и попадать в резонанс, в наших телах миллиард миллиардов миллиардов. Но поскольку в режиме обычной повседневной жизни магнитные моменты всех ядер водорода и других веществ в нашем теле друг с другом взаимодействуют, то общий магнитный момент всего тела равен нулю.

Действуя радиоволнами на протоны, получают резонансное усиление колебаний (увеличение амплитуд прецессий) этих протонов, а по окончании внешнего воздействия протоны стремятся вернуться к своем исходным состояниям равновесия, и тогда уже они сами излучают фотоны радиоволн.

Таким образом в аппарате МРТ тело человека (или какое-нибудь другое исследуемое тело или предмет) превращается периодически то в набор радиоприемников, то в набор радиопередатчиков. Исследуя таким образом участок за участком тела, аппарат строит пространственную картину распределения атомов водорода в теле. И чем более высока напряженность магнитного поля томографа — тем больше атомов водорода, связанных с другими атомами, расположенными рядом, можно исследовать (тем выше разрешение магнитно-резонансного томографа).

Современные медицинские томографы в качестве источников внешнего магнитного поля содержат электромагниты на сверхпроводниках, охлаждаемые жидким гелием. В некоторых томографах открытого типа для этой цели используются постоянные неодимовые магниты.

Оптимальная индукция магнитного поля в аппарате МРТ составляет сегодня 1,5 Тл, она позволяет получать довольно качественные снимки многих частей тела. При индукции менее 1 Тл не получится сделать качественный снимок (достаточно высокого разрешения), например малого таза или брюшной полости, однако для получения обычных снимков МРТ головы и суставов подходят и такие слабые поля.

Для правильной пространственной ориентации, в магнитно-резонансном томографе кроме постоянного магнитного поля используются еще и градиентные катушки, создающие дополнительное градиентное возмущение в однородном магнитном поле. В результате наиболее сильный резонансный сигнал локализуется более точно в том или ином срезе. Мощность и параметры действия градиентных катушек — наиболее значимые показатели в МРТ — от них зависит разрешение и быстродействие томографа.

Электрик Инфо — электротехника и электроника в простом и доступном изложении.

Источник

Идея по формированию изображения внутренних органов человека посредством ядерного магнитного резонанса была выдвинута в 1973 году.
В 2003 году Paul Christian Lauterbur из университета Иллинойса (США) и Peter Mansfield из университета Ноттингема (Великобритания) получили Нобелевскую премию в области физиологии и медицины за изобретение МРТ томографа.

МР томограф состоит из:

  • магнитных градиентов;
  • основного магнита;
  • систем сбора и обработки данных;
  • генератора (передатчика) радиоимпульсов;
  • приёмника радиоимпульсов;
  • систем энергоснабжения и охлаждения.

Принципиальная схема МР томографа

Рассмотрим лишь общие принципы строения МР томографов, так как частое обновление модельного ряда лишает смысла рассматривать конструктивные особенности конкретного аппарата. Качество и скорость получения выходной картинки, определяемые сигналом в приемной катушке томографа, зависят от магнитной индукции (силы магнита).

Читайте также:  Повреждение хряща коленного сустава мрт

По силе магнитного поля томографы разделяются на:

  1. ультранизкие: менее 0,1 Тл;
  2. низкопольные: в диапазоне от 0,1 до 0,5 Тл;
  3. средние: от 0,5 до 1,0 Тл;
  4. высокопольные: 1,0 — 2,0 Тл, типичный высокопольный томограф 1,5 Тл;
  5. ультравысокие: от 2,0 Тл и выше, наиболее распространены модели томографов 3,0 Тл.

Магниты в МР томографах классифицируются как:

  • постоянные;
  • резистивные электрические;
  • сверхпроводящие электрические.
Характеристики магнитов 1 класса постоянных:
  • состоят из ферромагнитных сплавов;
  • поле 0,2 — 0,3 Тл;
  • экономичны в эксплуатации, так как не требуют затрат электроэнергии и охлаждения;
  • ориентация магнитного поля — вертикальная;

Преимуществом постоянных магнитов и томографов открытого типа на их основе является возможность проведения МРТ для больных, страдающих приступами клаустрофобии.
Экономичность, простота и возможность приема пациентов с клаустрофобией и весом более 120 кг способствовали росту спроса на МР томографы открытого типа на постоянных магнитах.

Характеристики резистивных электромагнитов 2 класса:
  • конструкция резистивного электрического магнита:
    • соленоид из медной или железной проволоки;
    • используется водяное охлаждение;
  • магнитное поле от 0,2 до 0,4 Тл;
  • поле ориентировано вдоль отверстия соленоида;
  • современные модели МР томографов на основе резистивных электромагнитов — открытого типа.

Содержание МР томографов на их основе дороже, чем постоянных магнитов, что способствует падению спроса на резистивные электромагниты.

Характеристики сверхпроводящих электромагнитов 3, 4 и 5 классов:
  • конструктивные особенности:
    • соленоид из ниобий — титанового сплава;
    • охлаждается жидким гелием до — 269 гр. по Цельсию (4К) при которой переходит в сверхпроводящее состояние;
  • поле 0,35 — 4 Тл.
Достоинства сверхпроводящих магнитов:
  • высокопольность;
  • создание на их основе томографов открытого типа.
Недостатки высокопольных МР томографов:
  • высокая стоимость;
  • использование для охлаждения жидкого гелия;
  • необходимость дополнительного выравнивания магнитного поля для получения качественного изображения.

МРТ томограф - принцип действия при сканировании

Принцип работы МРТ томографа

  • передающая катушка генерирует волны резонансной частоты и модулирует их в импульсы;
  • приемная катушка, представляющая высокочувствительную антенну, расположенную перпендикулярно направлению основного поля (плоскость X-Y) передает полученный сигнал на АЦП;
  • аналого-цифровой преобразователь (АЦП) отправляет данные в цифровом виде на операторский компьютер для реконструкции изображения;
  • компьютер, кроме получения изображения с томографа, позволяет:

    • централизованно управлять всей системой;
    • обрабатывать, записывать и печатать изображение;
    • выполнять быстрое Фурье-преобразование.

Идея по формированию изображения внутренних органов человека посредством ядерного магнитного резонанса была выдвинута в 1973 году.
В 2003 году Paul Christian Lauterbur из университета Иллинойса (США) и Peter Mansfield из университета Ноттингема (Великобритания) получили Нобелевскую премию в области физиологии и медицины за изобретение МРТ томографа.

МР томограф состоит из:

  • магнитных градиентов;
  • основного магнита;
  • систем сбора и обработки данных;
  • генератора (передатчика) радиоимпульсов;
  • приёмника радиоимпульсов;
  • систем энергоснабжения и охлаждения.

Принципиальная схема МР томографа

Рассмотрим лишь общие принципы строения МР томографов, так как частое обновление модельного ряда лишает смысла рассматривать конструктивные особенности конкретного аппарата. Качество и скорость получения выходной картинки, определяемые сигналом в приемной катушке томографа, зависят от магнитной индукции (силы магнита).

По силе магнитного поля томографы разделяются на:

  1. ультранизкие: менее 0,1 Тл;
  2. низкопольные: в диапазоне от 0,1 до 0,5 Тл;
  3. средние: от 0,5 до 1,0 Тл;
  4. высокопольные: 1,0 — 2,0 Тл, типичный высокопольный томограф 1,5 Тл;
  5. ультравысокие: от 2,0 Тл и выше, наиболее распространены модели томографов 3,0 Тл.

Магниты в МР томографах классифицируются как:

  • постоянные;
  • резистивные электрические;
  • сверхпроводящие электрические.
Характеристики магнитов 1 класса постоянных:
  • состоят из ферромагнитных сплавов;
  • поле 0,2 — 0,3 Тл;
  • экономичны в эксплуатации, так как не требуют затрат электроэнергии и охлаждения;
  • ориентация магнитного поля — вертикальная;

Преимуществом постоянных магнитов и томографов открытого типа на их основе является возможность проведения МРТ для больных, страдающих приступами клаустрофобии.
Экономичность, простота и возможность приема пациентов с клаустрофобией и весом более 120 кг способствовали росту спроса на МР томографы открытого типа на постоянных магнитах.

Характеристики резистивных электромагнитов 2 класса:
  • конструкция резистивного электрического магнита:
    • соленоид из медной или железной проволоки;
    • используется водяное охлаждение;
  • магнитное поле от 0,2 до 0,4 Тл;
  • поле ориентировано вдоль отверстия соленоида;
  • современные модели МР томографов на основе резистивных электромагнитов — открытого типа.

Содержание МР томографов на их основе дороже, чем постоянных магнитов, что способствует падению спроса на резистивные электромагниты.

Характеристики сверхпроводящих электромагнитов 3, 4 и 5 классов:
  • конструктивные особенности:
    • соленоид из ниобий — титанового сплава;
    • охлаждается жидким гелием до — 269 гр. по Цельсию (4К) при которой переходит в сверхпроводящее состояние;
  • поле 0,35 — 4 Тл.
Достоинства сверхпроводящих магнитов:
  • высокопольность;
  • создание на их основе томографов открытого типа.
Недостатки высокопольных МР томографов:
  • высокая стоимость;
  • использование для охлаждения жидкого гелия;
  • необходимость дополнительного выравнивания магнитного поля для получения качественного изображения.

МРТ томограф - принцип действия при сканировании

Принцип работы МРТ томографа

  • передающая катушка генерирует волны резонансной частоты и модулирует их в импульсы;
  • приемная катушка, представляющая высокочувствительную антенну, расположенную перпендикулярно направлению основного поля (плоскость X-Y) передает полученный сигнал на АЦП;
  • аналого-цифровой преобразователь (АЦП) отправляет данные в цифровом виде на операторский компьютер для реконструкции изображения;
  • компьютер, кроме получения изображения с томографа, позволяет:

    • централизованно управлять всей системой;
    • обрабатывать, записывать и печатать изображение;
    • выполнять быстрое Фурье-преобразование.

Источник