Эффекторные клетки памяти в гуморальном иммунитете
Т-клетки памяти — популяция Т-лимфоцитов, хранящих информацию о ранее действовавших антигенах и формирующих вторичный иммунный ответ, осуществляющийся в более короткие сроки, чем первичный иммунный ответ, так как минует основные стадии этого процесса.
Суб-популяции[править | править код]
Внутри всей категории Т-клеток памяти выделяются минимум три субпопуляции, различающиеся экспрессией хемокиновых рецепторов CCR7 и L-селектина (CD62L).[1]
- Центральные клетки памяти TCM экспрессируют L-селектин и CCR7, также секретируют IL-2, но не секретируют IFNγ или IL-4.
- Эффекторные клетки памяти TEM не экспрессируют L-селектин и CCR7, а секретируют цитокины, такие как IFNγ и IL-4.
В последнее время выделены новые субпопуляции на основе CD27 и CD28 экспрессии в дополнение к CCR7 и CD62L.[2]
Функция[править | править код]
Антиген-специфическая память T-клеток может быть обнаружена в обеих популяциях TCM и TEM. Хотя большая доля представлений основана на исследованиях цитотоксических T-лимфоциты (CD8-положительных), сходные популяции, как представляется, существуют как для Т-хелперов (CD4-положительных) так и для цитотоксических T-лимфоцитов.
- Центральные клетки памяти (TCM). Считается что имея некоторые общие характеристики с клетками памяти, TCM проявляют потенциал самообновления благодаря высоким уровням фосфорилирования важного фактора транскрипции известного как STAT5.[3] TCM клетки мыши демонстрируют обеспечиваемую ими надежную защиту от вирусов,[4] бактерий,[4] и раковых клеток[5] в некоторых других моделях сравниваются с TEM клетками.
- два тесно связанных эффекторных подтипов клеток памяти, которые сильно экспрессируют гены для молекул, необходимых для цитотоксических функций СD8+ клеток:
- эффекторные клетки памяти (TEM)
- эффекторные клетки памяти RA (TEMRA)
- Антиген-опытные CD8+ Т-клетки с возможностями к самообновлению были описаны у мышей.[6][7] Эта популяция, названная стволовыми клетками памяти (TSCM), может быть идентифицирована по CD44(низким)CD62L(высоким)CD122(высоким)sca-1(+) уровням экспрессии и способна к производству TCM и TEM субпопуляций сохраняя при этом свою. В доклинических исследованиях трансплантированные TSCM показывают превосходящее значение для иммунитета в сравнении с другими субпопуляциями клеток памяти.[7] Остается предметом исследования существует ли такая популяция клеток в организме человека.
Исследование, опубликованное в Science, показало, что T-лимфоциты селезёнки могут синтезировать ацетилхолин в ответ на стимуляцию блуждающего нерва. (Science Sept 15, 2011. DOI : 10.1126/science.1209985)
Этот механизм может играть роль в регуляции воспаления посредством ФНО макрофагов.
Примечания[править | править код]
- ↑ Sallusto F., Langenkamp A., Geginat J., Lanzavecchia A. Functional subsets of memory T cells identified by CCR7 expression (англ.) // Curr. Top. Microbiol. Immunol. : journal. — 2000. — Vol. Current Topics in Microbiology and Immunology. — P. 167—171. — ISBN 978-3-540-67569-3. — doi:10.1007/978-3-642-57276-0_21. — PMID 11036772.
- ↑ Okada R., Kondo T., Matsuki F., Takata H., Takiguchi M. Phenotypic classification of human CD4+ T cell subsets and their differentiation (англ.) // Int. Immunol. (англ.)русск. : journal. — 2008. — September (vol. 20, no. 9). — P. 1189—1199. — doi:10.1093/intimm/dxn075. — PMID 18635582.
- ↑ Willinger T., Freeman T., Hasegawa H., McMichael A. J., Callan M. F. Molecular signatures distinguish human central memory from effector memory CD8 T cell subsets (англ.) // Journal of Immunology (англ.)русск. : journal. — 2005. — November (vol. 175, no. 9). — P. 5895—5903. — PMID 16237082.
- ↑ 1 2 Wherry EJ; Teichgräber V; Becker TC; Masopust, David; Kaech, Susan M.; Antia, Rustom; Von Andrian, Ulrich H.; Ahmed, Rafi. Lineage relationship and protective immunity of memory CD8 T cell subsets (англ.) // Nature Immunology : journal. — 2003. — March (vol. 4, no. 3). — P. 225—234. — doi:10.1038/ni889. — PMID 12563257.
- ↑ Klebanoff CA; Gattinoni L; Torabi-Parizi P; Kerstann, K; Cardones, AR; Finkelstein, SE; Palmer, DC; Antony, PA; Hwang, S. T. Central memory self/tumor-reactive CD8+ T cells confer superior antitumor immunity compared with effector memory T cells (англ.) // Proceedings of the National Academy of Sciences of the United States of America : journal. — 2005. — July (vol. 102, no. 27). — P. 9571—9576. — doi:10.1073/pnas.0503726102. — PMID 15980149.
- ↑ Zhang Y., Joe G., Hexner E., Zhu J., Emerson S. G. Host-reactive CD8+ memory stem cells in graft-versus-host disease (англ.) // Nature Medicine : journal. — 2005. — December (vol. 11, no. 12). — P. 1299—1305. — doi:10.1038/nm1326. — PMID 16288282.
- ↑ 1 2 Gattinoni L; Zhong XS; Palmer DC; Ji, Yun; Hinrichs, Christian S; Yu, Zhiya; Wrzesinski, Claudia; Boni, Andrea; Cassard, Lydie. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells (англ.) // Nature Medicine : journal. — 2009. — July (vol. 15, no. 7). — P. 808—813. — doi:10.1038/nm.1982. — PMID 19525962.
См. также[править | править код]
- Иммунная система
Т-клетки это фактически приобретенный иммунитет, способный защитить от цитотоксического повреждающего воздействия на организм. Чужеродные клетки-агрессоры, попадая в организм вносят “хаос”, который внешне проявляется в симптомах заболеваний.
Клетки-агрессоры повреждают по ходу своей деятельности в организме все, что могут, действуя в своих интересах. А задача иммунной системы найти и уничтожить все чуждые элементы.
Специфическая защита организма от биологической агрессии (чужеродных молекул, клеток, токсинов, бактерий, вирусов, грибов и т.д.) осуществляется при помощи двух механизмов:
- продуцирования специфических антител в ответ на чужеродные антигены (потенциально опасных для организма веществ);
- выработки клеточных факторов приобретённого иммунитета (Т-клетки).
Как осуществляются иммунные реакции
При попадании в организм человека «клетки-агрессора», иммунная система распознаёт чужеродные и собственные измененные макромолекулы (антигены) и удаляет их из организма. Также при первичном контакте с новыми антигенами происходит их запоминание, что способствует их более быстрому удалению, в случае вторичного попадания в организм.
Процесс запоминания (презентация) происходит благодаря антиген-распознающим рецепторам клеток и работе антиген представляющих молекул (МНС молекул- комплексов гистосовместимости).
Что такое Т-клетки иммунной системы, и какие функции они выполняют
Функционирование иммунной системы обуславливается работой лимфоцитов. Это клетки иммунной системы, являющиеся
разновидностью лейкоцитов и способствующие формированию приобретённого иммунитета. Среди них выделяют:
- В-клетки (распознающие «агрессора» и вырабатывающие к нему антитела);
- Т-клетки (выполняющие функцию регулятора клеточного иммунитета);
- NК- клетки (разрушающие отмеченные антителами чужеродные структуры).
Однако, помимо регуляции иммунного ответа, Т-лимфоциты способны выполнять эффекторную функцию, разрушая опухолевые, мутировавшие и чужеродные клетки, участвовать в формировании иммунологической памяти, распознавать антигены и индуцировать иммунные реакции.
Справочно. Важной особенностью T-клеток является их способность реагировать только на презентированные антигены. На одном T-лимфоците находится только один рецептор к одному конкретному антигену. Это обеспечивает отсутствие реакции T-клеток на собственные аутоантигены организма.
Разнообразие функций Т-лимфоцитов обусловлено наличием в них субпопуляций, представленных Т-хелперами, Т-киллерами и Т-супрессорами.
Субпопуляция клеток, их стадия дифференцирования (развития), степень зрелости и т.д. определяется при помощи специальных кластеров дифференцировки, обозначаемых как СD. Наиболее значимыми являются СD3, СD4 и СD8:
- СD3 находится на всех зрелых T-лимфоцитах, он способствует передаче сигнала от рецептора к цитоплазме. Это важный маркер функционирования лимфоцитов.
- СD8 – это маркер цитотоксических T-клеток.
- СD4 является маркером T-хелперов и рецептором к ВИЧ (вирус иммунодефицита человека)
Т-хелперы
Около половины Т-лимфоцитов имеют антиген CD4, то есть являются Т-хелперами. Это помощники, стимулирующие процесс секреции антител В-лимфоцитами, стимулируют работу моноцитов, тучных клеток и предшественников Т-киллеров к «включению» в иммунную реакцию.
Справочно. Функция хелперов осуществляется за счёт синтеза цитокинов (информационных молекул, регулирующих взаимодействие между клетками).
В зависимости от продуцируемого цитокина, их разделяют на:
- T-хелперные клетки 1-го класса (продуцируют интерлейкин-2 и гамма-интерферон, обеспечивая гуморальный иммунный ответ на вирусы, бактерии, опухоли и трансплантанты).
- T-хелперные клетки 2-го класса (секретируют интерлейкины-4,-5,-10,-13 и отвечают за образование IgЕ, а также иммунного ответа, направленного на внеклеточные бактерии).
Т-хелперы 1-го и 2-го типа всегда взаимодействуют антагонистически, то есть повышенная активность первого типа угнетает функцию второго типа и наоборот.
Работа хелперов обеспечивает взаимодействие между всеми клетками иммунитета, определяя какой тип иммунного ответа будет преобладать (клеточный либо гуморальный).
Важно. Нарушение работы клеток-помощников, а именно недостаточность их функции, наблюдается у больных с приобретённым иммунодефицитом. Т-хелперы являются основной мишенью ВИЧ. В результате их гибели нарушается иммунная реакция организма на стимуляцию антигенов, что приводит к развитию тяжёлых инфекций, росту онкологических новообразований и летальному исходу.
Т-киллеры
Это так называемые T-эффекторы (цитотоксические клетки) или клетки убийцы. Такое название обусловлено их способностью уничтожать клетки-мишени. Осуществляя лизирование (ли́зис (от греч. λύσις — разделение) — растворение клеток и их систем) мишеней, переносящих чужеродный антиген или мутировавший аутоантиген (трансплантанты, опухолевые клетки), они обеспечивают реакции противоопухолевой защиты, трансплантационного и противовирусного иммунитета, а также аутоиммунные реакции.
Т-киллеры при помощи собственных МНС-молекул распознают чужеродный антиген. Связываясь с ним на поверхности клетки, они продуцируют перфорин (цитотоксический белок).
После лизирования клетки «агрессора» Т-киллеры остаются жизнеспособными и продолжают циркулировать в крови, разрушая чужеродные антигены.
Т-киллеры составляют до 25-ти процентов от всех Т-лимфоциотов.
Справочно. Помимо обеспечения реакций нормального иммунного ответа, Т-эффекторы могут участвовать в реакциях антителозависимой клеточной цитотоксичности, способствуя развитию гиперчувствительности второго типа (цитотоксической).
Это может проявляться лекарственными аллергиями и различными аутоиммунными заболеваниями (системные заболевания соединительной ткани, гемолитическая анемия аутоиммунного характера, злокачественная миастения, аутоиммунные тиреоидиты, и т.д.).
Подобным механизмом действия обладают некоторые лекарственные средства, способные запускать процессы некроза опухолевых клеток.
Важно. Препараты с цитотоксическим действием используют в химиотерапии онкологических заболеваний.
Например, к таким медикаментам относится Хлорбутин. Это средство применяют для лечения хронического лимфолейкоза, лимфогранулематоза и рака яичников.
Т-супрессоры и клетки памяти
Супрессоры подавляют функцию хелперов и В-лимфоцитарного звена. Однако современная классификация не выносит супрессоры в отдельную субпопуляцию. Поскольку доказано, что решающую роль в угнетении иммунной реакции играют апоптоз и специфические цитокины.
Помимо основных T-лимфоцитов, в организме человека существуют потомки клеток, контактировавших с антигеном и имеющих к нему рецепторы. Это клетки обеспечивающие иммунологическую память. Они способны в течение от десяти до 15 лет сохранять память об антигене, передавая её другим клеткам.
Справочно. Благодаря клеткам памяти обеспечивается быстрый иммунный ответ при повторном попадании «агрессора» в организм.
Нулевые лимфоциты
К ним относят лимфоциты, не имеющие T и B маркеров. Они составляют до 10% от всей популяции лимфоцитов. К ним относят NК-клетки (естественные киллеры) и K-клетки (киллерные).
Справочно. Основным отличием NK-клеток от T-киллеров является способность уничтожать не сенсибиллизированные клетки-мишени.
K-клетки отвечают за антителозависимую клеточную цитотоксичность. Они отражают взаимодействия гуморального и клеточного звеньев иммунитета, а также выступают в качестве «наводчиков» эффекторных (выполняющих функцию – в данном случае уничтожение) клеток на мишень.
NК- клетки обеспечивают контроль за качеством клеток и участвуют в формировании противовирусного иммунитета, обеспечиваютзащиту от роста опухолей и размножения мутировавших (дефектных) клеток.
Диагностика клеточного иммунитета
Диагностика T- и B-лимфоцитарного звена позволяет оценить состояние клеточного иммунитета. Базовое исследование с определением процентного содержания Т-, В- и нулевых клеток проводится с целью выявления первичных или вторичных иммунодефицитов, а также при контроле иммуностимулирующего лечения.
Исследование основных популяций при помощи маркеров CD3, 8, 19, 16+5б, а также соотношение между хелперами и киллерами, позволяет комплексно оценить иммунный статус. Для исследования используют венозную кровь.
Диагностика проводится при выявлении и контроле течения:
- аутоиммунных заболеваний (увеличено содержание CD3, CD4 хелперов);
- лимфолейкозов (повышено количество Т-лимфоцитов CD3);
- злокачественных новообразований (увеличено количество NK);
- ВИЧ (CD3, CD8);
- хронических инфекций, аллергических реакций, бронхиальной астмы и т.д.
Справочно. В зависимости от результатов анализа пациенту может быть рекомендована консультация иммунолога, гематолога, аллерголога, онколога или инфекциониста. С дальнейшим лечением у профильного специалиста по основному заболеванию.
общая характеристика, определение основных понятий
Иммунная система объединяет органы и ткани, в которых происходит образование и взаимодействие клеток — иммуноцитов, выполняющих функцию распознавания генетически чужеродных субстанций (антигенов) и осуществляющих специфические реакции защиты.
Иммунитет — это способ защиты организма от всего генетически чужеродного — микробов, вирусов, от чужих клеток или генетически измененных собственных клеток.
Иммунная система обеспечивает поддержание генетической целостности и постоянства внутренней среды организма, выполняя функцию распознавания «своего» и «чужого». В организме взрослого человека она представлена:
- красным костным мозгом — источником стволовых клеток для иммуноцитов,
- центральным органом лимфоцитопоэза (тимус),
- периферическими органами лимфоцитопоэза (селезенка, лимфатические узлы, скопления лимфоидной ткани в органах),
- лимфоцитами крови и лимфы, а также
- популяциями лимфоцитов и плазмоцитов, проникающими во все соединительные и эпителиальные ткани.
Все органы иммунной системы функционируют как единое целое благодаря нейрогуморальным механизмам регуляции, а также постоянно совершающимся процессам миграции и рециркуляции клеток по кровеносной и лимфатической системам.
Главными клетками, осуществляющими контроль и иммунологическую защиту в организме, являются лимфоциты, а также плазматические клетки и макрофаги.
Постоянно перемещающиеся лимфоциты осуществляют «иммунный надзор». Они способны «узнавать» чужие макромолекулы бактерий и клеток различных тканей многоклеточных организмов и осуществлять специфическую защитную реакцию.
Для понимания роли отдельных клеток в иммунологических реакциях необходимо прежде всего дать определение некоторым понятиям иммунитета.
Антигены
Антигены — это сложные органические вещества, способные при поступлении в организм человека и животных вызывать специфический иммунный ответ. Свойствами антигенов обладают бактерии, вирусы, паразиты, чужеродные клетки и ткани, мутировавшие собственные клетки тела (например, раковые), продукты жизнедеятельности чужеродных клеток — белки, полисахариды, полипептиды, а также искусственные высокополимерные соединения. Другими словами, антигены – все те вещества, которые несут признаки генетической чужеродности и при введении в организм вызывают развитие специфических иммунологических реакций.
Антитела
Антитела — это сложные белки, синтезируемые В-лимфоцитами и плазмоцитами, способные специфически соединяться с соответствующими антигенами (например, с бактериальными) и обезвреживать их. Обнаружение антител в глобулиновой (гамма-) фракции белков крови обусловило их название — иммуноглобулины (Ig). Выявлено несколько классов иммуноглобулинов — IgG, IgM, IgA, IgD, IgE.
Молекула антитела имеет форму Y [рогатки] и состоит из четырех полипептидных цепей — двух идентичных тяжелых цепей — Н-цепей (heavy chains) и параллельно расположенных двух идентичных легких цепей — L-цепей (англ. light chains), соединенных дисульфидными (S—S) мостиками. Каждая Н- и L-цепь иммуноглобулиновой молекулы имеет вариабельные области V (variable), располагающиеся на обоих ветвях Н- и L-цепей [т.е. на обоих вершинах рогатки], и постоянные области С (constant) [в основании рогатки]. В двух вариабельных областях находятся антигенсвязывающие участки — два Fab-фрагмента (fragment antigen bilding) — места распознавания и связывания антигена. Постоянные области находятся в Fc-фрагменте (fragment crysralline), образованном лишь Н-цепями. Эти области обеспечивают связывание компонентов комплемента и/или клеточных рецепторов.
Выявлено 5 типов тяжелых цепей (µ, γ, α, ε, δ ) и 2 типа легких цепей (κ, λ), различные сочетания которых обеспечивают образование множества разновидностей антител с уникальными участками связывания антигенов.
Антитела в высоких концентрациях находятся в крови и лимфе, а также в жидких секретах (молоко, слезы, пот, вагинальный секрет, секрет предстательной железы и др.).
Антитела инактивируют вирусы, токсины, бактерии. С их помощью на микроорганизмах фиксируются белки плазмы крови системы комплемента, что приводит к активации поглощения микробов фагоцитами и их последующей гибели. Фиксация антител на чужеродных клетках (например, на опухолевых) способствует уничтожению последних Т-лимфоцитами—киллерами.
Система комплемента
Комплементом является группа белков, содержащихся в свежей сыворотке крови человека и животных и активизирующихся в тех случаях, когда антитело связывается с антигеном. Этот процесс приводит к лизису определенных типов клеток (лизис, опосредованный комплементом) или к образованию биологически активных веществ из белков комплемента, которые, прикрепляясь к бактериям, облегчают их фагоцитоз нейтрофилами. Такие вещества называют опсонинами.
Комплекс гистосовместимости
Антигены гистосовместимости — это гликопротеины, существующие на поверхности всех клеток. Первоначально были определены как главные антигены-мишени в реакциях на трансплантат. Пересадка ткани взрослого донора особи того же вида (аллотрансплантация) или иного вида (ксенотрансплантация) приводит обычно к ее отторжению. Эксперименты по пересадке кожи между разными линиями мышей показали, что отторжение трансплантата обусловлено иммунной реакцией на чужеродные антигены, находящиеся на поверхности его клеток. Позднее было показано, что в этих реакциях участвуют Т-клетки. Реакции направлены против генетически «чужеродных» вариантов гликопротеинов клеточной поверхности, получивших название молекул гистосовместимости (т.е. совместимости тканей).
Главные молекулы гистосовместимости — семейство гликопротеинов, кодируемое генами, составляющими главный комплекс гистосовместимости (МНС — major histocompatibility complex). В пределах МНС локализованы гены, контролирующие главные трансплантационные антигены и гены, определяющие интенсивность иммунного ответа на тот или иной конкретный антиген, — так называемые Ir-гены (immune response). Молекулы МНС имеются на поверхности клеток всех высших позвоночных. Впервые они были найдены у мышей и названы антигенами Н2 (histocompatibility-2). У человека они носят название HLA (лейкоцитарных, human leucocyte-associated), так как были первоначально обнаружены на лейкоцитах.
Существует два основных класса молекул МНС, каждый из которых представляет собой набор гликопротеинов клеточной поверхности. Молекулы МНС класса I экспрессируются практически на всех клетках, молекулы класса II — на клетках, участвующих в иммунных ответах (лимфоцитах, макрофагах). Молекулы класса I узнаются цитотоксическими Т-клетками (киллерами), которые должны взаимодействовать с любой клеткой организма, оказавшейся зараженной вирусом, тогда как молекулы класса II узнаются Т-хелперами (Тх), которые взаимодействуют в основном с другими клетками, участвующими в иммунных ответах, такими как В-лимфоциты и макрофаги (антигенпредставляющие клетки).
Согласно клонально-селекционной теории иммунитета, в организме существуют многочисленные группы (клоны) лимфоцитов, генетически запрограммированные реагировать на один или несколько антигенов. Поэтому каждый конкретный антиген оказывает избирательное действие, стимулируя только те лимфоциты, которые имеют сродство к его поверхностным детерминантам.
При первой встрече с антигеном (т.н. первичный ответ) лимфоциты стимулируются и подвергаются трансформации в бластные формы, которые способны к пролиферации и дифференцировке в иммуноциты. В результате пролиферации увеличивается число лимфоцитов соответствующего клона, «узнавших» антиген. Дифференцировка приводит к появлению двух типов клеток — эффекторных и клеток памяти. Эффекторные клетки непосредственно участвуют в ликвидации или обезвреживании чужеродного материала. К эффекторным клеткам относятся активированные лимфоциты и плазматические клетки. Клетки памяти — это лимфоциты, возвращающиеся в неактивное состояние, но несущие информацию (память) о встрече с конкретным антигеном. При повторном введении данного антигена они способны обеспечивать быстрый иммунный ответ большей интенсивности (т.н. вторичный ответ) вследствие усиленной пролиферации лимфоцитов и образования иммуноцитов.
В зависимости от механизма уничтожения антигена различают клеточный иммунитет и гуморальный иммунитет.
При клеточном иммунитете эффекторными клетками являются цитотоксические Т-лимфоциты, или лимфоциты-киллеры (убийцы). Они непосредственно участвуют в уничтожении чужеродных клеток других органов или патологических собственных (например, опухолевых) клеток, и выделяют литические вещества. Такая реакция лежит в основе отторжения чужеродных тканей в условиях трансплантации или при действии на кожу химических (сенсибилизирующих) веществ, вызывающих повышенную чувствительность (т.н. гиперчувствительность замедленного типа) и другие реакции.
При гуморальном иммунитете эффекторными клетками являются плазматические клетки, которые синтезируют и выделяют в кровь антитела.
Некоторые термины из практической медицины:
- агаммаглобулинемия (agammaglobulinaemia; а- + гаммаглобулины + греч. haima кровь; син.: гипогаммаглобулинемия, синдром дефицита антител) — общее название группы болезней, характеризующихся отсутствием или резким снижением уровня иммуноглобулинов в сыворотке крови;
- аутоантигены (ауто- + антигены) — собственные нормальные антигены организма, а также антигены, возникающие под действием различных биологических и физико-химических факторов, по отношению к которым образуются аутоантитела;
- аутоиммунная реакция — иммунная реакция организма на аутоантигены;
- аллергия (allergia; греч. allos другой, иной + ergon действие) — состояние измененной реактивности организма в виде повышения его чувствительности к повторным воздействиям каких-либо веществ или к компонентам собственных тканей; в основе аллергии лежит иммунный ответ, протекающий с повреждением тканей;
- иммунитет активный иммунитет, возникающий в результате иммунного ответа организма на введение антигена;