Как был открыт иммунитет

Как был открыт иммунитет thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2020;
проверки требуют 8 правок.

Иммуните́т (лат. immunitas — освобождение) человека и животных — способность организма поддерживать свою целостность и биологическую индивидуальность пу­тём рас­по­зна­ва­ния и уда­ле­ния чу­же­род­ных ве­ществ и кле­ток[1] (в том числе болезнетворных бактерий и вирусов). Характеризуется изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.

Назначение[править | править код]

Простейшие защитные механизмы, имеющие своей целью распознавание и обезвреживание патогенов, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые препятствуют заражению бактерии вирусом[2]. Одноклеточные эукариотные организмы применяют токсичные пептиды, чтобы предотвратить проникновение бактерий и вирусов в свои клетки[3].

По мере эволюции сложно организованных многоклеточных организмов у них формируется многоуровневая иммунная система, важнейшим звеном которой становятся специализированные клетки, противостоящие вторжению генетически чужеродных объектов[4].

У таких организмов иммунный ответ происходит при столкновении данного организма с самым различным чужеродным в антигенном отношении материалом, включая вирусы, бактерии и другие микроорганизмы, обладающие иммуногенными свойствами молекулы (прежде всего белки, а также полисахариды и даже некоторые простые вещества, если последние образуют комплексы с белками-носителями — гаптены[5]), трансплантаты или мутационно изменённые собственные клетки организма. Как отмечает В. Г. Галактионов, «иммунитет есть способ защиты организма от всех антигенно чужеродных веществ как экзогенной, так и эндогенной природы; биологический смысл подобной защиты — обеспечение генетической целостности особей вида в течение их индивидуальной жизни»[6]. Биологическим смыслом такой защиты является обеспечение генетической целостности особей вида на протяжении их индивидуальной жизни, так что иммунитет выступает как фактор стабильности онтогенеза[7].

Характерные признаки иммунной системы[8]:

  • способность отличать «своё» от «чужого»;
  • формирование памяти после первичного контакта с чужеродным антигенным материалом;
  • клональная организация иммунокомпетентных клеток, при которой отдельный клеточный клон способен, как правило, реагировать лишь на одну из множества антигенных детерминант.

Классификации[править | править код]

Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют молекулы, находящиеся в плазме крови, а не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы.

Иммунитет также классифицируют на врождённый и адаптивный.

Врождённый (неспецифический, наследственный[9]) иммунитет обусловлен способностью идентифицировать и обезвреживать разнообразные патогены по наиболее консервативным, общим для них признакам, дальности эволюционного родства, до первой встречи с ними. В 2011 году была вручена Нобелевская премия в области медицины и физиологии за изучение новых механизмов работы врождённого иммунитета (Ральф Стайнман, Жюль Хоффман и Брюс Бётлер)[10].

Осуществляется большей частью клетками миелоидного ряда, не имеет строгой специфичности к антигенам, не имеет клонального ответа, не обладает памятью о первичном контакте с чужеродным агентом.

Адаптивный (устар. приобретённый, специфический) иммунитет имеет способность распознавать и реагировать на индивидуальные антигены, характеризуется клональным ответом, в реакцию вовлекаются лимфоидные клетки, имеется иммунологическая память, возможна аутоагрессия.

Классифицируют на активный и пассивный.

  • Приобретённый активный иммунитет возникает после перенесённого заболевания или после введения вакцины.
  • Приобретённый пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорождённому с молозивом матери или внутриутробным способом.

Другая классификация разделяет иммунитет на естественный и искусственный.

  • Естественный иммунитет включает врождённый иммунитет и приобретённый активный (после перенесённого заболевания), а также пассивный иммунитет при передаче антител ребёнку от матери.
  • Искусственный иммунитет включает приобретённый активный после прививки (введение вакцины) и приобретённый пассивный (введение сыворотки).

Органы иммунной системы[править | править код]

Выделяют центральные и периферические органы иммунной системы. К центральным органам относят красный костный мозг и тимус, а к периферическим — селезёнку, лимфатические узлы, а также местноассоциированную лимфоидную ткань: бронхассоциированную (БАЛТ), кожноассоциированную (КАЛТ), кишечноассоциированную (КиЛТ, пейеровы бляшки).

Красный костный мозг — центральный орган кроветворения и иммуногенеза. Содержит самоподдерживающуюся популяцию стволовых клеток. Красный костный мозг находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. Здесь происходит дифференцировка В-лимфоцитов из предшественников. Содержит также Т-лимфоциты.

Тимус — центральный орган иммунной системы. В нём происходит дифференцировка Т-лимфоцитов из предшественников, поступающих из красного костного мозга.

Лимфатические узлы — периферические органы иммунной системы. Они располагаются по ходу лимфатических сосудов. В каждом узле выделяют корковое и мозговое вещество. В корковом веществе есть В-зависимые зоны и Т-зависимые зоны. В мозговом есть только Т-зависимые зоны.

Селезёнка — паренхиматозный зональный орган. Является самым крупным органом иммунной системы, кроме того, выполняет депонирующую функцию по отношению к крови. Селезёнка покрыта капсулой из плотной соединительной ткани, которая содержит гладкомышечные клетки, позволяющие ей при необходимости сокращаться. Паренхима представлена двумя функционально различными зонами: белой и красной пульпой. Белая пульпа составляет 20 %, представлена лимфоидной тканью. Здесь имеются В-зависимые и Т-зависимые зоны. И также здесь есть макрофаги. Красная пульпа составляет 80 %. Она выполняет следующие функции:

  1. Депонирование зрелых форменных элементов крови.
  2. Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов.
  3. Фагоцитоз инородных частиц.
  4. Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.

Иммунокомпетентные клетки[править | править код]

К иммунокомпетентным клеткам относят макрофаги и лимфоциты. Эти клетки совместно участвуют в инициации и развитии всех звеньев адаптивного иммунного ответа (система трёхклеточной кооперации).

Клетки, участвующие в иммунном ответе[править | править код]

T-Лимфоциты[править | править код]

Субпопуляция лимфоцитов, отвечающая главным образом за клеточный иммунный ответ. Включает в себя субпопуляции Т-хелперов (дополнительно разделяются на Th1, Th2, а также выделяют Treg, Th9, Th17, Th22,), цитотоксических Т-лимфоцитов,NKT. Включает в себя эффектор, регуляторы и долгоживущие клетки-памяти. Функции разнообразны: как регуляторы и администраторы иммунного ответа (Т-хелперы), так и киллеры (цитотоксические Т-лимфоциты).

B-Лимфоциты[править | править код]

Субпопуляция лимфоцитов, синтезирующая антитела и отвечающая за гуморальный иммунный ответ.

Натуральные киллеры[править | править код]

Натуральные киллеры (NK-клетки) — субпопуляция лимфоцитов, обладающая цитотоксичной активностью, то есть они способны: контактировать с клетками-мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз. Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.

Нейтрофилы[править | править код]

Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 65-70 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим (мурамидаза), липопероксидаза и другие антибиотические белки. Нейтрофилы способны самостоятельно мигрировать к месту нахождения антигена, так как у них есть рецепторы хемотаксиса (двигательная реакция на химическое вещество). Нейтрофилы способны «прилипать» к эндотелию сосудов и далее мигрировать через стенку к месту нахождения антигенов. Далее проходит фагический цикл, и нейтрофилы постепенно заполняются продуктами обмена. Далее они погибают и превращаются в клетки гноя.

Читайте также:  Лучшие продукты для иммунитета

Эозинофилы[править | править код]

Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Эозинофилы узнают гельминтов и экзоцитируют в зону контакта вещества — перфорины. Эти белки встраиваются в билипидный слой клеток гельминта. В них образуются поры, внутрь клеток устремляется вода, и гельминт погибает от осмотического шока.

Базофилы[править | править код]

Базофилы составляют 0,5-1 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в ткани. Тучные клетки располагаются в различных тканях, лёгких, слизистых и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). При этом происходит взаимодействие с иммуноглобулином Е (IgE). Таким образом они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа.

Моноциты[править | править код]

Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани, существуют несколько видов макрофагов в зависимости от типа ткани, в которой они находятся, в том числе:

  1. Некоторые антигенпредставляющие клетки, в первую очередь дендритные клетки, роль которых — поглощение микробов и «представление» их Т-лимфоцитам.
  2. Клетки Купфера — специализированные макрофаги печени, являющиеся частью ретикулоэндотелиальной системы.
  3. Альвеолярные макрофаги‬‏ — специализированные макрофаги лёгких.
  4. Остеокласты — костные макрофаги, гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена.
  5. Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.
  6. Кишечные макрофаги и т. д.

Функции их разнообразны и включают в себя фагоцитоз, взаимодействие с адаптивной иммунной системой и инициацию и поддержание иммунного ответа, поддержание и регулирование процесса воспаления, взаимодействие с нейтрофилами и привлечение их в очаг воспаления, выделение цитокинов, регуляция репарации, регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления, синтез компонентов системы комплемента.

Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают прохождение врождённого иммунного ответа, который является неспецифичным (в патологии неспецифичный ответ на альтерацию называют воспалением, воспаление является неспецифической фазой последующих специфических иммунных).

Иммунно привилегированные области[править | править код]

В некоторых частях организма млекопитающих и человека появление чужеродных антигенов не вызывает иммунного ответа. К таким областям относятся мозг и глаза, семенники, эмбрион и плацента. Нарушение иммунных привилегий может становиться причиной аутоиммунных заболеваний.

Иммунные заболевания[править | править код]

Аутоиммунные заболевания[править | править код]

При нарушении иммунной толерантности или повреждении тканевых барьеров возможно развитие иммунных реакций на собственные клетки организма. Например, патологическая выработка антител к ацетилхолиновым рецепторам собственных мышечных клеток вызывает развитие миастении[11].

Иммунодефицит[править | править код]

См. также[править | править код]

  • Иммунная система
  • Врождённый иммунитет
  • Приобретенный иммунитет
  • Иммунотерапия рака
  • Иммунитет растений
  • Химера (биология)

Примечания[править | править код]

  1. ↑ ИММУНИТЕТ • Большая российская энциклопедия — электронная версия. bigenc.ru. Дата обращения 8 апреля 2020.
  2. Bickle T. A., Krüger D. H.  Biology of DNA restriction // Microbiological Reviews. — 1993. — Vol. 57, no. 7. — P. 434—450. — PMID 8336674.
  3. Черешнев В.А. Черешнева М.В. Иммунологические механизмы локального воспаления. Медицинская иммунология 2011 т.13 №6 стр.557-568 РО РААКИ. cyberleninka.ru. Дата обращения 16 мая 2020.
  4. Travis J.  On the Origin of the Immune System // Science. — 2009. — Vol. 324, no. 5927. — P. 580—582. — doi:10.1126/science.324_580. — PMID 19407173.
  5. ↑ Genetics of the Immune Response / Ed. by E. Möller and G. Möller. — New York: Plenum Press, 2013. — viii + 316 p. — (Nobel Foundation Symposia, vol. 55). — ISBN 978-1-4684-4469-8. — P. 262.
  6. Галактионов В.Г. Проблемы эволюционной иммунологии. cyberleninka.ru. Медицинская иммунология 2004 т.6 №3-5 РО РААКИ. Дата обращения 16 мая 2020.
  7. ↑ Галактионов, 2005, с. 8.
  8. ↑ Галактионов, 2005, с. 8, 12.
  9. ↑ Иммунитет // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
  10. ↑ Нобелевская премия по физиологии и медицине 2011 (англ.). www.nobelprize.org.
  11. ↑ Галактионов, 2005, с. 392.

Литература[править | править код]

  • Галактионов В. Г. . Эволюционная иммунология. — М.: Академкнига, 2005. — 408 с. — ISBN 5-94628-103-8.
  • Хаитов Р. М. . Иммунология. — М.: ГЕОТАР, 2006. — 320 с. — ISBN 978-5-9704-1288-6.
  • Ярилин А. А. . Иммунология. — М.: ГЕОТАР, 2010. — 737 с. — ISBN 978-5-9704-1319-7.

Источник

Добавлено в закладки: 0

Как был открыт иммунитет

Каждый человек знаком с загадочным словом «иммунитет» — механизмом защиты организма от вредоносных и чужеродных объектов. Но как работает иммунная система, справляется ли она и как мы можем ей помочь? Как происходили открытия в этой области и что они дали и дают?

Илья Мечников и его открытие

Илья Мечников

Еще в древности люди понимали, что организм имеет особую защиту. Во время эпидемий оспы, чумы и холеры, когда похоронные команды не успевали убирать с улиц трупы, были и те, кто справлялся с болезнью или те, кого она вообще не коснулась. Значит, в организме человека существует механизм, защищающий его от инфекций извне. Его назвали иммунитетом (от латинского immunitas — освобождение, избавление от чего либо) — это способностью организма сопротивляться, обезвреживать и разрушать чужеродные клетки, различные инфекции и вирусы.

Еще в древнем Китае лекарями было подмечено, что единожды переболевший человек больше не заболевал оспой (эпидемия оспы впервые прокатилась по Китаю в IV веке). Эти наблюдения привели к первым попыткам защититься от инфекции при помощи искусственного заражения инфекционным материалом. Лекари стали вдувать в нос здоровым людям измельченные оспенные струпья, делали «инъекции» здоровым людям из содержимого пузырьков больных оспой. В Турции первыми «подопытными кроликами» были девочки, которых растили для гарема, чтобы их красота не страдала от рубцов после оспы.

Ученые долго бились над объяснением этих явлений.

Отцом-основателем иммунологии в конце 19 века является известный французский врач Луи Пастер, который считал, что невосприимчивость организма к микробам и болезням определяется тем, что тело человека не подходит микробам как питательная среда, но описать механизм иммунного процесса он не смог.

Впервые это сделал великий русский биолог и патолог Илья Мечников, который с детства проявлял интерес к естествознанию. Окончив за 2 года 4-х годичный курс естественного отделения Харьковского университета, он занимался исследованиями в эмбриологии беспозвоночных и в 19 лет стал кандидатом наук, а в 22 года — доктором наук и возглавил вновь организованный Бактериологический институт в Одессе, где изучал действие защитных клеток собаки, кролика и обезьяны на микробы, вызывающие различные инфекционные заболевания.

Читайте также:  Напитки в домашних условиях для иммунитета

Позже, Илья Мечников, изучая внутриклеточное пищеварение беспозвоночных, наблюдал под микроскопом за личинкой морской звезды и его осенила новая мысль. Подобно тому, как у человека происходит воспаление при занозе, когда клетки противодействуют инородному телу, он предположил, что нечто подобное должно происходить и при занозе, вставленной в любое тело. Он ввел шип розы в подвижные прозрачные клетки морской звезды (амебоциты) и через некоторое время увидел, что амебоциты скопились вокруг занозы и пытались либо поглотить инородное тело, либо создавали вокруг него защитный слой.

Так Мечникову пришла мысль, что существуют клетки, которые выполняют в организме защитную функцию.

В 1883 году Мечников выступил на съезде естествоиспытателей и врачей в Одессе с докладом «Целебные силы организма», где впервые озвучил свое представление о специальных органах защиты организма. В своем докладе он впервые предположил, что  к системе целебных органов позвоночных следует отнести селезенку, лимфатические железы и костный мозг.

Сказано это было более 130 лет назад, когда врачи всерьез считали, что организм освобождается от бактерий только с помощью мочи, пота, желчи и кишечного содержимого.

В 1987 году Мечников с семьей покинул Россию и по приглашению микробиолога Луи Пастера стал заведовать лабораторией в частном институте Пастера в Париже (Луи Пастер известен тем, что разработал прививки против бешенства, используя высушенный мозг зараженных бешенством кроликов, против сибирской язвы, холеры кур, краснухи свиней).

Мечников и Пастер ввели новое понятие «иммунитет», под которым понимали невосприимчивость организма к различного рода инфекциям, любым генетически чужеродным клеткам.

Мечников назвал клетки, которые либо поглощали, либо обволакивали инородное тело,  попавшее в организм, фагоцитами, что в переводе с латинского значит «пожиратели», а само явление — фагоцитозом. Более 20 лет понадобилось ученому, чтобы доказать свою теорию.

К клеткам-фагоцитам относятся лейкоциты, которых Мечников делил на микрофаги и макрофаги. «Радары» фагоцитов засекают в организме вредоносный объект, уничтожают его (разрушают, переваривают) и выставляют на поверхность своей клеточной мембраны антигены переваренной частицы. После этого, вступая в контакт с другими клетками иммунитета, фагоцит передает им информацию о вредоносном объекте – бактериях, вирусах, грибах и других патогенах. Эти клетки «запоминают» представленный антиген, чтобы при повторном его попадании суметь дать отпор. Такова была его теория.

Говоря об Илье Мечникова добавлю, что он создал первую русскую школу микробиологов, иммунологов и патологов, был многогранен в своих знаниях (его, например, интересовали вопросы старения) и умер на чужбине в 1916 году после перенесенных инфарктов в возрасте 71 года. Мечникову пришлось пережить смерть первой жены от туберкулеза, яростное научное противостояние с немецкими микробиологами Паулем Эрлихом и Робертом Кохом, которые напрочь отвергали теорию фагоцитоза. Тогда Мечников приехал в руководимый Кохом Гигиенический институт в Берлине, чтобы показать некоторые итоги работы по фагоцитозу, но это не убедило Коха и только спустя 19 лет после первой встречи с русским исследователем, в 1906 году Кох публично признал свою неправоту. Мечников также работал над вакциной от туберкулеза, брюшного тифа и сифилиса. Он разработал профилактическую мазь, которую испытал на себе, специально заразившись сифилисом. Эта мазь защитила множество солдат, среди которых распространенность болезни доходила до 20%. Сейчас ряд бактериологических и иммунологических институтов России носит имя И.И.Мечникова).

За открытие фагоцитарной (клеточной) теории иммунитета Илья Мечников получил Нобелевскую премию по физиологии и медицине вместе с Паулем Эрлихом — автором гуморальной теории иммунитета.

Пауль Эрлих доказывал, что главная роль в защите от инфекций принадлежит не клеткам, а открытым им антителам — специфическим молекулам, которые образуются в сыворотке крови в ответ на внедрение агрессора. Теория Эрлиха получила название теории гуморального иммунитета (эта та часть иммунной системы, которая осуществляет свою функцию в жидких средах организма — крови, межтканевых жидкостях).

Присуждая в 1908 году ученым — противникам Мечникову и Эрлиху престижную премию на двоих, тогдашние члены Нобелевского комитета даже не предполагали, что их решение было провидческим: оба ученых в своих теориях оказались правы.

Они вскрыли лишь некоторые ключевые моменты «первой линии обороны» — системы врождённого иммунитета.

Два вида иммунитета их взаимосвязь

Как оказалось, в природе существуют две линии защиты или два вида иммунитета. Первая — система врождённого иммунитета, которая нацелена на разрушение клеточной мембраны чужеродной клетки. Она присуща всем живым существам — от блошки дрозофилы до человека. Но если всё же какой-либо белковой молекуле-чужаку удалось прорваться сквозь «первую линию обороны», с ней расправляется «вторая линия» — приобретённый иммунитет. Врожденный иммунитет передаются младенцу еще во время беременности, по наследству.

Приобретенный (специфический) иммунитет — это высшая форма защиты, которая присуща только позвоночным. Механизм приобретённого иммунитета очень сложен: при попадании в организм чужеродной белковой молекулы, белые кровяные клетки (лейкоциты) начинают производить антитела — на каждый белок (антиген) вырабатывается своё определённое антитело. Сначала активируются так называемые T-клетки (T-лимфоциты), которые начинают производить активные вещества, запускающие синтез антител B-клетками (B-лимфоциты). Сила или слабость иммунной системы обычно оценивается по количеству именно B- и T-клеток. Затем выработанные антитела «садятся» на вредоносные белки-антигены, которые находятся на поверхности вируса или бактерии и развитие инфекции в организме блокируется.

Как и врождённый иммунитет, приобретённый иммунитет разделяют на клеточный (T-лимфоциты) и гуморальный (антитела, продуцируемые B-лимфоцитами).

Процесс выработки защитных антител запускается не сразу, у него есть определённый инкубационный период, зависящий от типа патогена. Но если процесс активации пошёл, то при попытке инфекции вновь проникнуть в организм, B-клетки, могущие долго пребывать в «спящем состоянии», моментально реагируют выработкой антител и инфекция будет уничтожена. Поэтому на некоторые виды инфекций у человека вырабатывается иммунитет на всю оставшуюся жизнь.

Система врождённого иммунитета неспецифична и не обладает «долгосрочной памятью», она реагирует на молекулярные структуры, входящие в состав клеточной мембраны бактерий, присущих всем патогенным микроорганизмам.

Именно врождённый иммунитет руководит запуском и последующей работой приобретенного иммунитета. Но каким образом система врождённого иммунитета подаёт знак системе приобретённого иммунитета на выработку специфических антител?  За решение этого ключевого вопроса иммунологии  была присуждена Нобелевская премия 2011 года.

Читайте также:  Доктор комаровский как повысить иммунитет ребенка видео

В 1973 году Ральф Штайнман открыл новый вид клеток, которые назвал дендритными, поскольку внешне они напоминали дендриты нейронов, имеющих разветвленное строение. Клетки обнаружились во всех тканях организма человека, которые соприкасались с внешней средой: в коже, лёгких, слизистой оболочке желудочно-кишечного тракта.

Штайнман доказал, что дендритные клетки служат посредниками между врождённым и приобретённым иммунитетом. То есть «первая линия обороны» подаёт через них сигнал, который активирует T-клетки и запускает каскад выработки антител B-клетками.

Главная задача дендроцитов состоит в том, чтобы захватывать антигены и преподносить их Т- и В-лимфоцитам. Они могут даже высовывать «щупальца» сквозь поверхность слизистой оболочки, чтобы собирать антигены снаружи. Переварив чужеродные вещества, они выставляют их фрагменты на своей поверхности и перемещаются в лимфоузлы, где и происходит их встреча с лимфоцитами. Те инспектируют предъявленные фрагменты, опознают «образ врага» и развивается мощный иммунный ответ.

Ральф Штайнман сумел доказать, что у иммунитета существует особый «дирижер». Это специальные клетки-часовые, которые постоянно заняты поиском чужеродных вторжений в организм. Обычно они расположены на коже, слизистых покровах и ждут своего часа, чтобы начать действовать. Обнаружив «чужих», дендритные клетки начинают бить в барабан — подают сигнал Т-лимфоцитам, которые в свою очередь предупреждают другие иммунные клетки о готовности к отражению атаки. Дендритные клетки могут забирать белки у патогенов и предъявлять их врожденной иммунной системе для опознания.

Дальнейшие исследования Штайнмана и других ученых показали, что дендроциты регулируют активность иммунной системы, препятствуя атакам на собственные молекулы организма и развитию аутоиммунных болезней

Штайнман понял, что «дирижеры» иммунной системы могут сработать не только в борьбе с инфекциями, но и в лечении аутоиммунных заболеваний и опухолей. На основе дендритных клеток он создал вакцины от нескольких видов рака, которые проходят клинические испытания. В лаборатории Штайнмана сейчас работают над вакциной против ВИЧ. На них возлагают надежды и онкологи.

Главным испытуемым в борьбе с онкологическим заболеванием стал он сам.

Рокфеллеровский университет заявил, что изобретенное Штайнманом лечение рака действительно продлило ему жизнь. Ученый сумел прожить четыре с половиной года при том, что шансы продлить жизнь хотя бы на год для этого вида рака составляют не больше 5 процентов. За неделю до смерти он продолжал работать у себя в лаборатории, а умер за несколько часов до решения Нобелевского комитета о присуждении ему престижной премии (хотя по правилам Нобелевская премия посмертно не присуждается, но в данном случае было сделано исключение и денежные средства получила семья ученого).

Нобелевская премия 2011 года была присуждена не только Ральфу Штайнману за открытие дендритных клеток и их роли в активации адаптивного иммунитета, но и Брюсу Бойтлеру и Жюлю Хоффманну за открытие механизмов активации врождённого иммунитета.

Как был открыт иммунитет

Теория иммунитета

Дальнейший вклад в теорию иммунитета внес американский иммуннобиолог русско-узбекского происхождения Руслан Меджитов, который после окончания Ташкентского университета и аспирантуры в МГУ, в дальнейшем стал профессором Йельского университета (США) и научным светилой в мировой иммунологии.

Он обнаружил на клетках человека белковые рецепторы и проследил их роль в иммунной системе.

В 1996 году после нескольких лет совместной работы Меджитов и Джейнуэй совершили настоящий прорыв. Они предположили, что чужие молекулы должны распознаваться врожденным иммунитетом при помощи специальных рецепторов.

И они обнаружили эти рецепторы, приводящие в готовность ветвь иммунной системы — Т-клетки и В-клетки, отражающие атаки болезнетворных микроорганизмов и получившие название Толл- рецепторов. Рецепторы в первую очередь располагаются на клетках-фагоцитах, отвечающих за врождённый иммунитет.

Под большим увеличением электронного микроскопа со сканирующей приставкой на поверхности В-лимфоцитов видны многочисленные микроворсинки. На этих микроворсинках располагаются молекулярной величины структуры — рецепторы (чувствительные аппараты), распознающие антигены — сложные вещества, вызывающие в организме иммунную реакцию. Эта реакция заключается в образовании антител клетками лимфоидного ряда. Количество (плотность расположения) таких рецепторов на поверхности В-лимфоцитов очень велика.

Оказалось, что в иммунных клетках человека каждый рецептор специализируется на определённом классе патогенов — один действует на белки одноклеточных паразитов, другой – на грибковые, третий – на вирусы и так далее. Они распознают структурные компоненты патогенов и запускают механизм ответной реакции организма. Природа позаботилась о том, чтобы каждый из рецепторов распознавал довольно большой класс патогенов. Во врожденной же системе, напротив, формируется чрезвычайно разнообразный набор рецепторов под один специфический патоген.

Было установлено, что врожденная иммунная система заложена в геноме организма. Для всех сущих на Земле врождённый иммунитет — главный. И только у наиболее «продвинутых» по лестнице эволюции организмов — высших позвоночных — в дополнение возникает иммунитет приобретённый. Однако именно врождённый руководит его запуском и последующей работой.

Работы Руслана Меджитова признаны в мире. Он удостоен ряда престижных научных премий, в том числе премии Шао в области медицины в 2011году, которую в научных кругах зачастую называют «Нобелевской премией Востока». Эта ежегодная премия предназначена для прижизненного награждения «учёных, вне зависимости от расы, гражданства и религиозных воззрений, которые совершили значительные открытия в академических и научных исследованиях и разработках, и чья работа оказала существенное положительное влияние на человечество». Премия Шао учреждена с 2002 года под покровительством филантропа с полувековым стажем Шао Ифу — одного из основателей кинематографа Китая и ряда других стран Юго-Восточной Азии.

В этом же году журнал Форбс (Forbes) опубликовал рейтинг 50-ти русских, «завоевавших мир». В него вошли ученые, бизнесмены, деятели культуры и спорта, интегрировавшиеся в мировое сообщество и добившиеся успеха за пределами России. Руслан Меджитов был включен в рейтинг 10-ти известнейших ученых русского происхождения.

В 2012 году Руслану Меджитову вручили диплом и медаль Почётного профессора Московского государственного университета, где он регулярно читает свои лекции по иммунологии.

В следующем сообщении расскажем об органах иммунной системы, о сбоях в ней, можно ли поправить иммунитет, а также о важной теме — иммунитет и рак.

74002

Автор публикации

Как был открыт иммунитет
7 864

Во многом мы сами можем позаботиться о своем здоровье, имея полезные знания в этой области. Подписывайтесь на мои новости — интересные статьи о продуктах питания, растениях и здоровом образе жизни.

Комментарии: 72Публикации: 58Регистрация: 24-03-2017

Источник