Как влияет гипоксия на иммунитет
Особенности функционирования иммунной системы в условиях горной гипоксии мало освещены в литературе. Горный климат имеет ряд специфических особенностей, отличающих его от климата равнинных регионов. Одним из важнейших факторов в воздействии на организм горного климата является низкое атмосферное давление и соответствующее ему сниженное парциальное давление кислорода, которое проявляет свое действие на фоне низкой температуры воздуха и его сухости, высокой ультрафиолетовой радиации, резких суточных и сезонных перепадов температур и многих других природных факторов.
В то время как низкое парциальное давление кислорода является общим для любого горного комплекса, другие климатические факторы в разных широтах неоднородны и изменчивы. Поэтому на одинаковых высотах различных горных районов климат заметно отличается. Очевидно, в природных условиях речь может идти только об интегральном влиянии компонентов горного климата при ведущем значении низкого парциального давления кислорода (Миррахимов М.М., Гольдберг П.Н., 1978).
Значительный интерес представляет зависимость между горными условиями и связанными с ними медико-биологическими эффектами. Большинство исследователей соответственно влиянию на организм ведущего гипоксического фактора подразделяет горные уровни на низкогорье, среднегорье и высокогорье.
Клинические исследования свидетельствуют о том, что акклиматизация к высотной гипоксии повышает выносливость организма к ряду экстремальных факторов и может быть использована в целях профилактики и лечения многих заболеваний (Миррахимов М.М., 1977; Березовский В.А., Дейнега В.Г., 1988). Однако положительная сторона горного климата проявляется в основном на высотах до 2000 м, а высоты, превышающие 3000 м, могут оказывать отрицательное влияние на здоровье населения вплоть до развития дизадаптационной патологии (Миррахимов М.М., Гольдберг П.Н., 1978).
Иммунитет рассматривается сегодня не только как способ защиты от инфекции, но и как комплекс механизмов, направленных на сохранение постоянства антигенного состава внутренней среды организма и тем самым его целостности (Петров Р.В., 1976).
Одна из основных функций иммунитета состоит в осуществлении иммунологического надзора, т.е. в распознавании «своих» и «чужих» антигенов и элиминации последних из организма. Поэтому при изучении общих закономерностей перестройки реактивности в гипоксических условиях важным является исследование способности организма реагировать на генетически чужеродную антигенную информацию. По мнению I.L. Trapani (1966), иммунные реакции являются адекватной моделью для исследования влияния окружающей среды на реактивность организма.
Высотная гипоксия и устойчивость организма к инфекции
Влияние высотной гипоксии на противоинфекционную резистентность организма наиболее полно исследовано в условиях натурных и модельных экспериментов на животных.
Умеренная барокамерная гипоксия, по мнению многих авторов, приводит к активации механизмов иммунитета, устойчивость экспериментальных животных к инфекции при этом не снижается или возрастает. При высокой же и длительной гипоксии у адаптируемых к «высоте» животных резистентность к бактериальной и протозойной инфекции, напротив, заметно уменьшается (Капланский А.С., 1974). Имеются надежные данные о том, что в условиях продолжительной и глубокой барокамерной гипоксии, имитирующей высоту 5000 – 6000 метров, возрастает чувствительность экспериментальных животных к стрептококковой, стафилококковой, пневмококковой, брюшнотифозной, сальмонеллезной инфекциям, к трипаносомам и плазмодиям малярии, возбудителям туляремии, газовой гангрены (Сиротинин Н.Н., 1951; Кроткова М.П., 1966.) У таких животных тяжелее протекает катар верхних дыхательных путей, пневмония (Сиротинин Н.Н., 1951), сальмонеллез (Berry L.J., 1957; Seres-SturmL., PeterM., 1965), септицемия и эндокардиты (Highman В., AltlandP., 1964). Адаптация животных к гипоксии снижает превентивные свойства иммунных сывороток животных, иммунизированных живой туляремийной вакциной в отношении Bact. Tularensis (Ступницкий В.П., Музалевский А.Е., 1967). При этом можно считать установленным, что величина и «знак» наблюдаемых эффектов зависит, прежде всего, от степени гипоксии. Среди бактериозов исключение составляет туберкулезная инфекция, резистентность к которой в горных условиях на высоте свыше 4500 м несколько повышается (Trapani I.L., 1966). Согласно наблюдениям В.М. Давыдовой (1963, 1964), ежедневная, в течение месяца прерывистая барокамерная гипоксия с четырехчасовыми «подъемами» па «высоту» 4500 м смягчает у белых мышей течение экспериментального туберкулеза и увеличивает продолжительность жизни. По данным Г.С. Кана (1966), предварительная адаптация в течение 1 месяца к барокамерной гипоксии («высота» 4500 м и 7600 м) повышает резистентность белых мышей к последующему заражению туберкулезом за счет активации неспецифических механизмов противоинфекционной резистентности. Средняя продолжительность жизни таких животных на 48% превышает наблюдаемую в контрольной группе.
В то же время предварительная вакцинация мало сказывается на устойчивости животных к кислородному голоданию (Вайншельбаум Е.В., 1963).
Горные высоты выше 4700 м не снижают специфической вакцинирующей активности БЦЖ и не влияют на вызываемый ею защитный эффект (Trapani I.L., Cohn M.L., 1963). В эксперименте на морских свинках, вакцинированных БЦЖ, показано, что специфические факторы иммунитета в горных районах Тянь-Шаня (3200 м) формируются на уровне, обеспечивающем достаточно высокую устойчивость организма к туберкулезной инфекции (Есенаманов Т.А., 1977). Высокогорная гипоксия не влияет существенно на приживаемость и иммуногенность вакцины БЦЖ, т.е. на факторы, определяющие целесообразность применения вакцины с профилактической целью. Вакцина БЦЖ создает у экспериментальных животных в высокогорье выраженную защиту от туберкулеза (Есенаманов Т.А., 1980).
Кроме туберкулеза, в клинических условиях было показано благоприятное для организма влияние разреженного воздуха на течение коклюша. Терапевтический эффект в этом случае связан, по мнению Н.Н. Сиротинина (1951), с активацией механизмов общей резистентности.
Своеобразная картина выявляется в случае вирусных инфекций. В отличие от патологических процессов, вызываемых бактериями и простейшими, пребывание экспериментальных животных в условиях высокогорья повышает их резистентность к вирусным инфекциям. Об этом, в частности, говорят данные I.L. Trapani (1969), свидетельствующие об относительно высокой, связанной с интенсивным синтезом иммуноглобулинов 7S, устойчивости животных к некоторым вирусам при гипоксии (4500–4700 м). Объектом исследования служили линейные мыши, интраназально зараженные вирусом гриппа. При нормальном атмосферном давлении (контрольная группа) 50% животных погибли на 6-й, а на высоте – лишь на 28-й день после заражения. Титры антивирусных антител в горах были выше, чем на равнине, причем максимума они достигали через две недели после заражения. Эти данные согласуются с результатами Т.А. Крупиной с соавт. (1974), наблюдавшей у здоровых лиц, находившихся кратковременно на высоте 2100–2300 м, нарастание уровня антител, специфичных к вирусу гриппа. Барокамерная тренировка также повышала устойчивость животных к вирусной инфекции (Berry L.J., 1957).
Другие исследователи (Katler S.S., 1955) сообщают о том, что невысокая барокамерная гипоксия (3000 м) немного задерживает размножение вируса гриппа, а «подъем на высоту» 7000 м утяжеляет течение гриппозной пневмонии (Сиротинин Н.Н, 1951). Конкретные пути реализации указанных явлений остаются пока невыясненными, непонятно, например, почему у адаптирующихся к гипоксии животных снижение сопротивляемости к бактериальной и протозойной инфекциям сочетается с ее нарастанием по отношению к туберкулезу и заболеваниям вирусной этиологии.
Сравнительно высокую чувствительность животных к острым бактериальным инфекциям при значительных степенях разрежения воздуха можно связать с недостаточным снабжением кислородом системы иммунокомпетентных клеток и, вследствие этого, с угнетением синтеза антител, однако сам вопрос о наличии прямой корреляции между устойчивостью животных к инфекции и содержанием в крови антител далек от своего решения (Капланский А.С, 1971). Достаточно проблематична и высказанная Н.Н. Сиротининым (1951) точка зрения о том, что снижение устойчивости организма к патогенным анаэробам может быть следствием их усиленного размножения и повышения инвазивности в атмосфере с низким парциальным давлением кислорода, т. к. эти физические условия явно недостаточны для обеспечения развития таких облигатных анаэробов, как группа Perfringens. Более вероятным является объяснение снижения защиты от бактериальной инфекции частичным подавлением иммунобиологический реактивности организма вследствие нарушения при гипоксии окислительных процессов в цикле Кребса. Усиление резистентности к вирусной инфекции также, возможно, связано с энергетическим голоданием при блокаде цикла Кребса, приводящим к торможению репродукции вирусов (Berry L.J. с соавт., 1955). Большое значение для интерпретации указанных явлений имеет изучение влияния гипоксии на выработку интерферона, ингибирующего репродукцию вирусов, однако эта сторона вопроса в литературе пока не освещена.
Степень влияния гипоксии на противоинфекционную резистентность зависит в большей мере от генотипа животных. Показано, что при подъеме на одну и ту же высоту 3500 м. устойчивость различных линий мышей к инфекции, вызываемой Е. Coli, меняется по-разному. Однако в рамках экологической иммунологии использование только чистолинейных животных вряд ли оправдано, так как эксперимент при этом отрывается от естественных условий смешанных популяций (Васильев Н.В., 1974).
Учитывая, что в горах низкое парциальное давление кислорода проявляется на фоне интегрального действия многих других климатических факторов, представляет интерес изучить устойчивость животных к инфекции в условиях природной гипоксии. При этом следует помнить, что особенности противоинфекционного иммунитета у горцев могут быть связаны не только с горной гипоксией, но и с генетическими факторами, а также с рядом социально-бытовых моментов.
Источник
Согласно другим исследованиям, у
аборигенов западных Гималаев (3692 м) и уроженцев
уровня моря, проживающих на той же высоте
в течение 2 лет, имеет место усиление бласттрансформации
лимфоцитов с ФГА и интенсификация иммунного
ответа на внутрикожное введение динитрохлорбензола,
по сравнению с постоянными жителями уровня
моря. Нарастание титра ВИ-агглютининов
после введения ТАБ – вакцины у них также выше, чем у жителей
уровня моря.
Есть серьезные основания полагать,
что сложная картина иммунологических
сдвигов, выявленная у жителей высокогорья,
не может быть интерпретирована прямолинейно
и упрощенно в терминах «повышение»
или «понижение». Речь идет скорее о
перестройке системы иммунитета
и формирования новой «нормы», адекватной
средовым условиям. При этом, естественно,
одни звенья иммунологической реактивности
могут быть снижены, а другие, напротив,
повышены.
Хорошо известно, что в природных
условиях высокогорья происходит интегральное
влияние на организм многих слагающих
компонентов горного климата
при ведущем значении горной гипоксии.
Нами изучались особенности функционирования
иммунной системы у постоянных жителей
различных горных высот (Китаев М.И.,
Собуров К.А., Гончаров А.Г., 1998).
Иммунологическое обследование включало
определение в крови Т-и В-лимфоцитов
и субпопуляций Т-клеток методом непрямой
поверхностной иммунофлюоресценции с
помощью моноклональных антител. Оценку
фагоцитарной активности моноцитов проводили
в тесте с монодисперсными частицами латекса.
Для постоянных жителей высокогорья Тянь-Шаня
и Памира (3200–3600 м) оказалось характерным
снижение содержания в крови Т-лимфоцитов
с экспрессированными на них мембранными
антигенами СД 5+ (все Т-лимфоциты), СД 3+
(зрелые Т-лимфоциты), СД4+ (Т-хелперы-индукторы),
что свидетельствует о более низком уровне
функционирования у них Т-звена иммунитета
по сравнению с таковым у жителей низкогорной
и среднегорной местности.
Т-лимфопения у горцев, проживающих на
высоте 3600 м, сочеталась со снижением функциональной
активности Т-клеток в ФГА-тесте. У аборигенов
высокогорья выявлено также существенное
снижение содержания в крови В-лимфоцитов,
несущих СД22+ антиген, которое сочеталось
с интенсификацией синтеза иммуноглобулинов
А и G.
В основе иммунологической недостаточности
при высокогорной гипоксии может
лежать угнетение Т-хелперов (СД 4+),
обеспечивающих совместно с макрофагами
включение В-лимфоцитов (СД22+) в дифференцировку
с накоплением иммунопродуцентов
и возрастанием удельного содержания
в крови Т-супрессоров (СД8+), которые тормозят
антителогенез. В данном случае, очевидно,
можно говорить о перестройке функционирования
системы иммунитета у горцев соответственно
экологическим особенностям высокогорной
местности. Гипореактивность аборигенов
высокогорья можно рассматривать как
механизм приспособления к гипоксии, когда
снижается потребность организма в кислороде
и органы иммунитета функционируют в более
экономном режиме.
Таким образом, для постоянных жителей
высокогорной местности характерно
снижение в общей циркуляции содержания
лимфоцитов с экспрессированными на
них СДЗ+, СД4+, СД5+, СД22+ антигенами, что
свидетельствует об относительно низком
уровне функционирования Т-и В-звеньев
иммунитета (Китаев М.И. и соавт., 1990).
Для горцев также характерна тенденция
к снижению содержания в крови
моноцитов и их функциональной активности
по показателям фагоцитоза. Такого
рода сдвиги у коренных жителей различных
горных высот сочетались с достоверным
уменьшением в общей циркуляции
фагоцитарного показателя (ФП), фагоцитарного
числа (ФЧ) и интегрального фагоцитарного
индекса (ИФИ) соответственно высоте местности
проживания.
Известно, что исход фагоцитоза
во многом зависит от состояния кислородзависимой
системы бактерицидности, тесно связанной
с супероксидными радикалами, которые
оцениваются по НСТ-тесту. У коренных жителей
высокогорья обнаружено снижение в общей
циркуляции диформазанпозитивных моноцитов
по сравнению с таковой у жителей низкогорной
и среднегорной местностей. Интенсивность
восстановления нитросинего тетразолия
моноцитами горцев Памира (3600 м) была значительно
ниже по сравнению со всеми другими группами
(р<0,05).
В том же направлении менялось у
горцев состояние кислороднезависимых
факторов микробицидности по состоянию
суммарного индекса люминесценции лизосом
(СИЛ). Установлено соответствие между
снижением содержания лизосом в цитоплазме
моноцитов и высотой местности проживания
горцев (рис. 2). Наиболее низкий их уровень
был у горцев, проживающих на высоте 3600 м.
Все это свидетельствует о снижении кислородзависимых
и кислороднезависимых механизмов микробицидности
у аборигенов высокогорных регионов.
Несомненно важной в фагоцитарной
характеристике моноцитов является
оценка состояния их наружной цитоплазматической
мембраны, которая является активно
функционирующей структурой (Фрейдлин И.С,
1984). При изучении функции этой структуры
выявлено, что адгезия и распластывание
моноцитов у коренных жителей среднегорья
и высокогорья ниже, чем у жителей низкогорной
местности.
У аборигенов, проживающих на высоте
3600 м, величина этих показателей ниже, чем
у жителей других горных высот. Все это
свидетельствует о том, что способность
к адгезии и распластыванию снижается
соответственно увеличению высоты местности
проживания над уровнем моря.
Активное участие в осуществлении
фагоцитоза, адгезии и межклеточного
взаимодействия принимает рецепторный
аппарат поверхностных мембран
фагоцитов. Исследования экспрессии Fc-рецепторов
на мембране моноцитов в тесте
ЕА-РОМ и С3-рецепторов для комплемента
в тесте ЕАС-РОМ показали, что
наиболее низкими эти показатели
были у жителей среднегорья и особенно
высокогорья Восточного Памира (3600 м). Таким
образом, экспрессия этих рецепторов у
горцев с повышением высоты местности
снижается.
Все это свидетельствует о том,
что у горцев соответственно высоте
местности проживания, наряду со снижением
в общей циркуляции лимфоцитов с
экспрессированными на них СД 3+, СД 4+, СД
5+, СД22+антигенами, наблюдается также снижение
содержания моноцитов в крови и их функциональной
активности по показателям поглотительной
способности, НСТ-тесту, содержанию лизосом,
адгезии и распластыванию, экспрессии
С 3-и Fc-рецепторов. Результаты проведенных
исследований позволяют сделать вывод,
что у горцев, проживающих в условиях высокогорной
гипоксии, напряжение иммунитета по целому
ряду показателей ниже, чем у жителей низкогорной
местности. В данном случае, очевидно,
можно говорить о своеобразной перестройке
иммунной системы соответственно экологическим
особенностям высокогорной местности.
Адаптация к высотной гипоксии
и естественные факторы иммунитета
Известно, что защитные механизмы
организма включают в себя неспецифические
саморегулирующие системы, выработанные
в процессе эволюции, которые осуществляют
защиту от инфекции в тот период,
когда специфический иммунитет
не успел еще сформироваться.
Кратковременная барокамерная гипоксия
вызывает у экспериментальных животных
стимуляцию фагоцитоза и бактерицидной
активности сыворотки крови, а глубокое
и продолжительное кислородное
голодание приводит к подавлению
фагоцитарной активности нейтрофилов
и макрофагов, снижает комплементарный
титр сыворотки крови. В эксперименте
на белых мышах, помещенных на две недели
в вентилируемую барокамеру при давлении
596 мм. рт. ст., что соответствует высоте
2000 м, обнаружено возрастание числа фагоцитирующих
лейкоцитов, однако подъем животных на
высоту 5500–6500 м приводил к прямо противоположному
эффекту (Дурнова Г.Н. с соавт., 1966; Капланский А.С.
с соавт., 1968,1971).
Адаптация к прерывистой барокамерной
гипоксии кроликов по 6 часов в сутки
на протяжении 3 месяцев при разряжении
воздуха, соответствующем высоте 6000 м,
приводила к активации фагоцитарной функции
моноцитов, усилению кислородзависимых
и кислороднезависимых факторов микробицидности.
Адгезия и распластывание моноцитов в
процессе адаптации к гипоксии снижались
(Китаев М.И.с соавт., 1996).
Сказанное подтверждается и натурными
наблюдениями: по данным Т.Н. Крупиной с
соавт. (1974,1977), кратковременное пребывание
альпинистов в горах Тянь-Шаня и Кавказа
на небольшой высоте (2100–2300 м) приводило
к усилению фагоцитарных реакций нейтрофилов,
активности лизоцима и пропердина сыворотки
крови, свидетельствуя о возрастании неспецифической
реактивности организма. Эти исследования,
однако, проводились у тренированных к
гипоксии людей в период интенсивной физической
нагрузки, которая небезразлична для этих
тестов.
Принципиально иная реакция возникала
при перемещении в экстремальные
условия высокогорья. Результаты проведенных
исследований свидетельствуют о
развитии фазовых сдвигов в данной
ситуации со стороны иммунобиологической
реактивности и у человека, и у
экспериментальных животных (морских
свинок, белых крыс, белых мышей)
в процессе кратковременной адаптации
к высокогорной гипоксии (3200–3800 м). В первые
дни имела место стрессовая реакция на
условия высокогорья – подавление фагоцитарной
активности нейтрофилов и бактерицидной
активности сыворотки крови, активности
комплемента, лизоцима, бета-лизинов, однако
в последующие 25 дней развивалась тенденция
к восстановлению большинства перечисленных
показателей, за исключением мураминидазы,
которая оставалась сниженной в течение
всего периода адаптации и даже в первые
дни постадаптационного периода. Кроме
того, в процессе адаптации к высокогорной
гипоксии у практически здоровых людей
находили увеличение микробной аутофлоры
на коже и снижение индекса ее бактерицидности
(Лихачева Н.П. и соавт., 1975), отражающих
уменьшение бактерицидной функции кожи
и тем самым защитных сил организма.
В первые дни высокогорной адаптации
(3200–3800 м) прослеживалась тенденция к снижению
индекса завершенности фагоцитоза, но
в дальнейшем этот показатель достигал
первоначального значения. Из этого следует,
что кратковременное пребывание в высокогорье
не уменьшает способности фагоцитов к
перевариванию бактерий.
Поскольку способность клеток к
фагоцитозу тесно связана с их
амебоидным движением, наряду с перечисленными
показателями, была исследована двигательная
активность лейкоцитов у практически
здоровых лиц по скорости их спонтанной
миграции в закрытых стеклянных капиллярах
(Китаев М.И. с соавт., 1979). Миграционная
активность лейкоцитов снижалась в первые
дни высокогорной адаптации (3200 м) и восстанавливалась
до исходного уровня в низкогорье (760 м)
к концу месячного пребывания на высоте;
двигательная активность лейкоцитов коррелировала
с их фагоцитарной активностью. Снижение
фагоцитарных реакций в начале адаптации
к высокогорной гипоксии связано, возможно,
с понижением энергетического баланса
лейкоцитов в результате ослабления процессов
гликолиза.
Как видно из проведенных исследований,
высотная гипоксия вызывает в начале
адаптации снижение резистентности
организма, поэтому гипореактивность
можно рассматривать как механизм приспособления
к гипоксии, так как при ней снижается
потребность в кислороде и неспецифические
факторы защиты начинают функционировать
в более «экономном» режиме.
Известно, что защитная функция
крови, помимо макрофагов, определяется
в огромной степени транзиторными
периферическими макрофагами-моноцитами,
функция которых в условиях высокогорья
мало изучена. В связи с этим К.А. Собуровым
(1980) была исследована динамика моноцитограмм
по О.П. Григоровой в ходе адаптации морских
свинок, белых крыс и белых мышей к природной
гипоксии. Оказалось, что на 5-й день адаптации
индексы пролиферации и дифференцировки
резко возрастали, что свидетельствует
об активизации моноцитарной системы.
Значение этого факта неоспоримо, т. к.
моноциты, являясь родоначальниками всей
системы тканевых макрофагов, играют огромную,
а в ряде случаев – решающую роль в процессах
естественного и приобретенного иммунитета.
Таким образом, процесс адаптации
в экстремальных условиях высокогорья
характеризуется начальной стрессовой
реакцией и комплексом сдвигов, направленных
на сохранение иммунологического гомеостаза.
По мнению Н.Б. Бердиева и соавт. (1981), в начале
адаптации к высокогорной гипоксии включаются
реакции естественного иммунитета, имеющие
аварийное значение, затем те, которые
определяют повышенную резистентность
к гипоксии. Такого рода сдвиги имеют адаптационную
природу.
Иммунокомпетентные клетки
в процессе адаптации к высотной гипоксии
Интенсивность иммунной реакции определяется
степенью генетической чужеродности антигенов
и функциональным состоянием системы
иммунитета. Гуморальное звено иммунного
ответа связано при этом с антителопродуцирующими
В-лимфоцитами, а субпопуляции Т-лимфоцитов
реализуют иммунное распознавание, реакции
гиперчувствительности замедленного
типа (ГЗТ),трансплантационного и противоопухолевого
иммунитета и осуществляют контроль за
деятельностью эффекторных звеньев иммунитета.
В последнее время обоснована возможность
существования скрытых дефектов иммунной
системы, проявляющихся в экстремальных
условиях (Лопухин Ю.М., 1978).
Известно, что иммунные реакции
во многом зависят от энергообеспеченности
лимфоидной ткани. В частности, есть основания
полагать, что оксигенация иммунокомпетентных
органов усиливает ответ В-звена иммунитета,
реализующийся в форме пролиферации плазматических
клеток – конечного этапа дифференцировки
В-лимфоцитов. Это относится и к Т-клеткам:
по данным J.M. Kmetz, A. Antony (1972), у линейных мышей, подвергнутых
трехдневной барокамерной гипоксии при
барометрическом давлении 350 мм. рт. ст.,
что соответствует высоте 6000 м, отторжение
кожного гомотрасплантата замедлялось,
а «подъем» животных на «высоту» 5400 м приводил
к угнетению отторжения даже ксенотрансплантата
(Pancini, 1970). Созревание иммунокомпетентных
клеток у куриного эмбриона в условиях
барокамерной гипоксии замедлялось, а
иммунный ответ у вылупившихся птенцов
задерживался (Tengerdy R.P., 1970). Скорее всего,
в основе всех этих явлений лежит инволюция
лимфоидной ткани, закономерно развивающаяся
при «подъеме» на «высоту» 2500–3000 м (Капланский А.С.,
1971) и тем более 6000 м. Согласно наблюдениям
Ф.З. Меерсона с соавт. (1981), при адаптации
к периодическому действию барокамерной
гипоксии («высота» 5000 м) в системе иммуногенеза
линейных крыс происходит изменение соотношения
Т- и В-клеток в сторону преобладания В-лимфоцитов.
Для оценки функционального состояния
В-звена иммунитета большое значение
имеет определение числа антителообразующих
клеток (АОК) в лимфоидных органах методом
локального гемолиза в агаре по Иерне-Нордину.
При изучении содержания АОК в селезенке
белых крыс и мышей в процессе адаптации
к высокогорной гипоксии (3200 м) было обнаружено
резкое уменьшение количества АОК к ВИ-антигену
в первые дни адаптационной перестройки
организма с последующим увеличением
их числа к 30-му дню. Если при фоновом обследовании
(в низкогорье) число АОК в селезенке составляло
305,0±5,6, то на 5-е сутки пребывания в высокогорье
оно снижалось до 77,0±2,0, т.е. примерно в
4 раза, но затем этот показатель постепенно
повышался, существенно превышая к 30-му
дню адаптации фоновые данные. Динамика
рассматриваемого процесса свидетельствует
о снижении активности В-клеток в первые
дни адаптационной перестройки организма
и усилении ее в дальнейшем.
Источник