Какой иммунитет создают анатоксины
Препараты для иммунопрофилактики и иммунотерапии инфекционных заболеваний делятся на:
1) вакцины и анатоксины – для индукции специфического иммунного ответа с формированием активного противоинфекционного иммунитета за счет мобилизации механизмов иммунологической памяти;
2) иммунные сыворотки и Ig – содержат готовые специфические АТ (Ig), введение которых в Ò приводит к немедленному приобретению пассивного гуморального иммунитета, способного защитить организм от интоксикации или инфекции.
ВАКЦИНЫ (Э. Дженнер, Л. Пастер) – биопрепараты, предназначенные для создания активного искусственного иммунитета. Делятся на живые, убитые, химические, анатоксины и ассоциированные. Готовят т/же аутовакцины – из штаммов мкÒ, выделенных непосредственно из Ò чка.
ЖИВЫЕ ВАКЦИНЫ создают напряженный иммунитет, сходный с постинфекционным. Готовятся из АТТЕНУИРОВАННЫХ штаммов (т.е. вирулентные свойства утрачены, но при введении в Ò способны прижиться и вызвать выработку ВСЕХ ВИДОВ иммунитета). В большинстве случаев достаточно однократной вакцинации живой вакциной, т.к. вакцинный штамм может размножаться и персистировать в Ò. Применение живых вакцин опасно для людей (особенно детей) с врожденными или приобретенными иммунодефицитными состояниями → тяжелые инфекционные осложнения. Для получения используют следующие методы:
1) селекционный метод, направленный на выращивание мкÒ в неблагоприятных условиях отбор микробов со ↓ вирулентностью – классический метод получения живых вакцин (Пастер – сиб язва).
2) Адаптация мкÒ к Ò невосприимчивого Ж! или пассирование через ткани и органы, к/е не являются входными воротами для данного мкÒ.
3) Отбор мутантных штаммов со ↓ вирулентностью, выделенных из природы.
4) Методы генной инженерии.
УБИТЫЕ ВАКЦИНЫ готовят из мкÒ, обладающих максимально выраженной иммуногенностью. Их выращивают (на биопредприятиях), затем инактивируют t°С (55-60° в течение 1часа), УФ или хим в-вами (формалин, фенол, спирт и др) в условиях, исключающих денатурацию антигенов. Для профилактики – брюшного тифа, паратифов А и В, коклюша, бруцеллёза, лептоспироза… Для лечения – при вялотекущих и хронических инфекциях: бруцеллёз, туляремия, дизентерия, гоноррея, коклюш… Убитые вакциины создают ненапряжённый иммунитет.
Аттенуированный или убитый возбудитель – это множество различных АГ детерминант, но индуцировать защитный иммунитет могут немногие из них Þ очистить вакцинный препарат от токсичных или аллергизирующих компонентов. Выделение из Б!# АГ компонентов позволило получить вакцины второго поколения – ХИМИЧЕСКИЕ. По сравнению с др вакцинами они менее реактогенны. Аналогами Б! хим вакцин являются вирусные субъединичные (расщепленные) вакцины, содержащие лишь некоторые наиболее иммуногенные компоненты вирионов (противогриппозная вакцина, включающая гемагглютинин и нейраминидазу). Субъединичные вакцины оказались наименее реактогенными, но и наименее иммуногенными.
Для ↑ ИММУНОГЕННОСТИ химических и субъединичных вакцин к ним добавляют разного рода адъюванты (adjuvans – помогающий, поддерживающий): гидрооксид алюминия, алюминиево-калиевые квасцы, фосфат алюминия и др. Те же адъюванты добавляют для повышения иммуногенности и к препаратам анатоксинов.
АНАТОКСИНЫ получают путем обработки токсинов формалином (0,3% раствор) при температуре 37°С в течение 30 дней. При этом токсин утрачивает ядовитость, но сохраняет способность индуцировать синтез АТ. Анатоксинами широко пользуются для выработки активного антитоксического иммунитета при специфической профилактике столбняка, дифтерии и других инфекций, возбудители которых продуцируют экзотоксины.
ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ:
1) получение в чистом виде эпитопов и их связывание с молекулой-носителем (природные белки, синтетические полиэлектролиты).
2) Генноинженерные методы: определяют гены, контролирующие нужные АГ детерминанты, переносят в геном других мкÒ и клонируют в них, добиваясь экспрессии этих генов в новых условиях.
3) На основе антиидиотипических антител.
4) Использование липосом для введения АГ. Благодаря их сходству с клеточными мембранами они не токсичны для Ò, заключенное в них вещество защищено от растворения в крови и они могут адсорбироваться на клетках. Такие «липосомные» вакцины вызывали тысячекратное усиление иммунного ответа.
Часть вакцин используется для обязательной ПЛАНОВОЙ ВАКЦИНАЦИИ детей: противотуберкулезная вакцина BCG, полиомиелитная вакцина, коревая, паротитная, АКДС.
Другие вакцины обязательны для введения определенным контингентам в определенных районах (например, вакцина против клещевого энцефалита) или при опасности профессиональных контактов с возбудителем.
Общие требования к вакцинам: высокая иммуногенность, ареактогенность (отсутствие выраженных побочных реакций), безвредность и минимальное сенсибилизирующее действие.
Препараты для иммунопрофилактики и иммунотерапии инфекционных заболеваний делятся на:
1) вакцины и анатоксины – для индукции специфического иммунного ответа с формированием активного противоинфекционного иммунитета за счет мобилизации механизмов иммунологической памяти;
2) иммунные сыворотки и Ig – содержат готовые специфические АТ (Ig), введение которых в Ò приводит к немедленному приобретению пассивного гуморального иммунитета, способного защитить организм от интоксикации или инфекции.
ВАКЦИНЫ (Э. Дженнер, Л. Пастер) – биопрепараты, предназначенные для создания активного искусственного иммунитета. Делятся на живые, убитые, химические, анатоксины и ассоциированные. Готовят т/же аутовакцины – из штаммов мкÒ, выделенных непосредственно из Ò чка.
ЖИВЫЕ ВАКЦИНЫ создают напряженный иммунитет, сходный с постинфекционным. Готовятся из АТТЕНУИРОВАННЫХ штаммов (т.е. вирулентные свойства утрачены, но при введении в Ò способны прижиться и вызвать выработку ВСЕХ ВИДОВ иммунитета). В большинстве случаев достаточно однократной вакцинации живой вакциной, т.к. вакцинный штамм может размножаться и персистировать в Ò. Применение живых вакцин опасно для людей (особенно детей) с врожденными или приобретенными иммунодефицитными состояниями → тяжелые инфекционные осложнения. Для получения используют следующие методы:
1) селекционный метод, направленный на выращивание мкÒ в неблагоприятных условиях отбор микробов со ↓ вирулентностью – классический метод получения живых вакцин (Пастер – сиб язва).
2) Адаптация мкÒ к Ò невосприимчивого Ж! или пассирование через ткани и органы, к/е не являются входными воротами для данного мкÒ.
3) Отбор мутантных штаммов со ↓ вирулентностью, выделенных из природы.
4) Методы генной инженерии.
УБИТЫЕ ВАКЦИНЫ готовят из мкÒ, обладающих максимально выраженной иммуногенностью. Их выращивают (на биопредприятиях), затем инактивируют t°С (55-60° в течение 1часа), УФ или хим в-вами (формалин, фенол, спирт и др) в условиях, исключающих денатурацию антигенов. Для профилактики – брюшного тифа, паратифов А и В, коклюша, бруцеллёза, лептоспироза… Для лечения – при вялотекущих и хронических инфекциях: бруцеллёз, туляремия, дизентерия, гоноррея, коклюш… Убитые вакциины создают ненапряжённый иммунитет.
Аттенуированный или убитый возбудитель – это множество различных АГ детерминант, но индуцировать защитный иммунитет могут немногие из них Þ очистить вакцинный препарат от токсичных или аллергизирующих компонентов. Выделение из Б!# АГ компонентов позволило получить вакцины второго поколения – ХИМИЧЕСКИЕ. По сравнению с др вакцинами они менее реактогенны. Аналогами Б! хим вакцин являются вирусные субъединичные (расщепленные) вакцины, содержащие лишь некоторые наиболее иммуногенные компоненты вирионов (противогриппозная вакцина, включающая гемагглютинин и нейраминидазу). Субъединичные вакцины оказались наименее реактогенными, но и наименее иммуногенными.
Для ↑ ИММУНОГЕННОСТИ химических и субъединичных вакцин к ним добавляют разного рода адъюванты (adjuvans – помогающий, поддерживающий): гидрооксид алюминия, алюминиево-калиевые квасцы, фосфат алюминия и др. Те же адъюванты добавляют для повышения иммуногенности и к препаратам анатоксинов.
АНАТОКСИНЫ получают путем обработки токсинов формалином (0,3% раствор) при температуре 37°С в течение 30 дней. При этом токсин утрачивает ядовитость, но сохраняет способность индуцировать синтез АТ. Анатоксинами широко пользуются для выработки активного антитоксического иммунитета при специфической профилактике столбняка, дифтерии и других инфекций, возбудители которых продуцируют экзотоксины.
ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ:
1) получение в чистом виде эпитопов и их связывание с молекулой-носителем (природные белки, синтетические полиэлектролиты).
2) Генноинженерные методы: определяют гены, контролирующие нужные АГ детерминанты, переносят в геном других мкÒ и клонируют в них, добиваясь экспрессии этих генов в новых условиях.
3) На основе антиидиотипических антител.
4) Использование липосом для введения АГ. Благодаря их сходству с клеточными мембранами они не токсичны для Ò, заключенное в них вещество защищено от растворения в крови и они могут адсорбироваться на клетках. Такие «липосомные» вакцины вызывали тысячекратное усиление иммунного ответа.
Часть вакцин используется для обязательной ПЛАНОВОЙ ВАКЦИНАЦИИ детей: противотуберкулезная вакцина BCG, полиомиелитная вакцина, коревая, паротитная, АКДС.
Другие вакцины обязательны для введения определенным контингентам в определенных районах (например, вакцина против клещевого энцефалита) или при опасности профессиональных контактов с возбудителем.
Общие требования к вакцинам: высокая иммуногенность, ареактогенность (отсутствие выраженных побочных реакций), безвредность и минимальное сенсибилизирующее действие.
Дата добавления: 2015-01-30; просмотров: 10 | Нарушение авторских прав
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | | 19 | 20 |
lektsii.net — Лекции.Нет — 2014-2020 год. (0.01 сек.)
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав
Препараты для
иммунопрофилактики и иммунотерапии
инфекционных заболеваний делятся на:
вакцины
и анатоксины – для индукции специфического
иммунного ответа с формированием
активного противоинфекционного
иммунитета за счет мобилизации
механизмов иммунологической памяти;иммунные
сыворотки и Ig – содержат готовые
специфические АТ (Ig), введение которых
в
приводит к немедленному приобретению
пассивного гуморального иммунитета,
способного защитить организм от
интоксикации или инфекции.
ВАКЦИНЫ
(Э. Дженнер, Л. Пастер) – биопрепараты,
предназначенные для создания активного
искусственного иммунитета. Делятся на
живые, убитые, химические, анатоксины
и ассоциированные. Готовят т/же аутовакцины
– из штаммов мк,
выделенных непосредственно из
чка.
ЖИВЫЕ
ВАКЦИНЫ
создают напряженный иммунитет,
сходный с постинфекционным. Готовятся
из АТТЕНУИРОВАННЫХ штаммов (т.е.
вирулентные свойства утрачены, но при
введении в
способны прижиться и вызвать выработку
ВСЕХ ВИДОВ иммунитета). В большинстве
случаев достаточно однократной вакцинации
живой вакциной, т.к. вакцинный штамм
может размножаться и персистировать в
.
Применение живых вакцин опасно для
людей (особенно детей) с врожденными
или приобретенными иммунодефицитными
состояниями → тяжелые инфекционные
осложнения. Для получения используют
следующие методы:
селекционный
метод, направленный на выращивание мк
в неблагоприятных условиях отбор
микробов со ↓ вирулентностью –
классический метод получения живых
вакцин (Пастер – сиб язва).Адаптация
мк
к
невосприимчивого Ж! или пассирование
через ткани и органы, к/е не являются
входными воротами для данного мк.Отбор
мутантных штаммов со ↓ вирулентностью,
выделенных из природы.Методы
генной инженерии.
УБИТЫЕ
ВАКЦИНЫ
готовят из мк,
обладающих максимально выраженной
иммуногенностью. Их выращивают (на
биопредприятиях), затем инактивируют
t°С
(55-60° в течение 1часа), УФ или хим в-вами
(формалин, фенол, спирт и др) в условиях,
исключающих денатурацию антигенов. Для
профилактики – брюшного тифа, паратифов
А и В, коклюша, бруцеллёза, лептоспироза…
Для лечения – при вялотекущих и
хронических инфекциях: бруцеллёз,
туляремия, дизентерия, гоноррея, коклюш…
Убитые вакциины создают ненапряжённый
иммунитет.
Аттенуированный
или убитый возбудитель – это множество
различных АГ детерминант, но индуцировать
защитный иммунитет могут немногие из
них
очистить вакцинный препарат от
токсичных или аллергизирующих
компонентов. Выделение из Б!
АГ компонентов позволило получить
вакцины второго поколения – ХИМИЧЕСКИЕ.
По сравнению с др вакцинами они менее
реактогенны. Аналогами Б! хим вакцин
являются вирусные субъединичные
(расщепленные) вакцины, содержащие лишь
некоторые наиболее иммуногенные
компоненты вирионов (противогриппозная
вакцина, включающая гемагглютинин и
нейраминидазу). Субъединичные вакцины
оказались наименее реактогенными, но
и наименее иммуногенными.
Для
↑ ИММУНОГЕННОСТИ химических и
субъединичных вакцин к ним добавляют
разного рода адъюванты (adjuvans
– помогающий,
поддерживающий): гидрооксид алюминия,
алюминиево-калиевые квасцы, фосфат
алюминия и др. Те же адъюванты добавляют
для повышения иммуногенности и к
препаратам анатоксинов.
АНАТОКСИНЫ
получают путем обработки токсинов
формалином (0,3% раствор) при температуре
37°С в течение 30 дней. При этом токсин
утрачивает ядовитость, но сохраняет
способность индуцировать синтез АТ.
Анатоксинами широко пользуются для
выработки активного антитоксического
иммунитета при специфической профилактике
столбняка, дифтерии и других инфекций,
возбудители которых продуцируют
экзотоксины.
ПЕРСПЕКТИВНЫЕ
НАПРАВЛЕНИЯ:
получение
в чистом виде эпитопов и их связывание
с молекулой-носителем (природные белки,
синтетические полиэлектролиты).Генноинженерные
методы: определяют гены, контролирующие
нужные АГ детерминанты, переносят в
геном других мк
и клонируют в них, добиваясь экспрессии
этих генов в новых условиях.На
основе антиидиотипических антител.Использование
липосом для введения АГ. Благодаря их
сходству с клеточными мембранами они
не токсичны для ,
заключенное в них вещество защищено
от растворения в крови и они могут
адсорбироваться на клетках. Такие
«липосомные» вакцины вызывали
тысячекратное усиление иммунного
ответа.
Часть
вакцин используется для обязательной
ПЛАНОВОЙ ВАКЦИНАЦИИ детей:
противотуберкулезная вакцина BCG,
полиомиелитная вакцина, коревая,
паротитная, АКДС.
Другие вакцины
обязательны для введения определенным
контингентам в определенных районах
(например, вакцина против клещевого
энцефалита) или при опасности
профессиональных контактов с
возбудителем.
Общие требования
к вакцинам: высокая иммуногенность,
ареактогенность (отсутствие выраженных
побочных реакций), безвредность и
минимальное сенсибилизирующее действие.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Профилактика инфекций посредством вакцинации доказала свою эффективность, является на протяжении двух столетий неотъемлемой частью при формировании защитного иммунитета у населения. Иммунология начала зарождаться в 18 веке, когда Э. Дженнер установил, что доярки, взаимодействующие с зараженными оспой коровами, не болеют впоследствии черной оспой, поражавшей людей того времени. Не зная ничего об иммунитете, его механизмах, доктор создал вакцину, позволившую снизить уровень заболеваемости.
Последователем Дженнера считают Луи Пастера, который определил наличие микроорганизмов, являющихся возбудителями инфекций, получил вакцину против бешенства. Постепенно ученные создали препараты от коклюша, кори, полиомиелита и других, ранее опасных для жизни, здоровья человечества болезней. В 21 веке иммунопрофилактика остается главным инструментом создания специфического иммунитета среди граждан.
Что такое вакцина
Иммунный препарат в состав, которого входят ослабленные, либо убитые вирусные компоненты возбудителей получил название вакцина. Она служит для выработки в организме человека антител, противостоящих антигенам (чужеродным структурам) на протяжении длительного временного периода, отвечающих за устойчивый иммунный барьер.
Разработаны средства (сыворотки) действующие не более нескольких месяцев, отвечающие за выработку пассивного иммунитета. Они вводятся сразу же после инфицирования, позволяют спасти человека от смерти, серьезных патологий. Вакцинация – механизм, обеспечивающий организм специфическими антителами, которые он получает не болея.
Вакцина до прохождения сертификации проходит длительный экспериментальный путь. К использованию допускают препараты со следующими характеристиками:
- Безопасность — после введения вакцины отсутствуют тяжелые осложнения у граждан.
- Протективность – длительное стимулирование защитного потенциала против введенного возбудителя, сохранение иммунологической памяти.
- Иммуногенность – способность к индукции активного иммунитета с долгосрочным эффектом вне зависимости от специфичности антигена.
- Иммунная активность – направленная стимуляция выработки нейтрализующих антител, эффекторных Т-лимфоцитов.
- Вакцина должна быть: биологически стабильной, неизменчивой при транспортировке, хранении, обладать низкой реактогенностью, доступной стоимостью, удобной при применении.
Перечисленные свойства вакцин позволяют свести к минимуму проявление местных реакций и осложнений. В чем заключается разница между понятиями:
- поствакцинальные реакции или местные – кратковременный ответ организма, возникающий на введение вакцины. Он проявляется в виде припухлости, отечности или покраснения в месте инъекции, общих недомоганий – подъема температуры, головной боли. Продолжительность периода составляет в среднем 3 суток, коррекция состояний носит симптоматический характер;
- осложнения после вакцины – возникают отсрочено, принимают патологические формы. К ним относят: аллергические реакции, процессы нагноения, спровоцированные нарушением правил асептики, обострение хронических болезней, наслоение инфекций, полученных в поствакцинальный период.
Разновидности вакцин
Иммунологи разделяю вакцины на типы, отличающиеся способом получения, механизмом действия, компонентным составом и рядом других признаков. Выделяют:
Аттенуированные – препараты производят из живых, но сильно ослабленных вирусов, либо патогенных штаммов микроорганизмов измененных генетически, либо из родственных штаммов (дивергентные суспензии), которые не в состоянии вызвать заражение человека. Корпускулярные вакцины характеризуются сниженной вирулентностью (уменьшенной способностью антигена заражать) при сохранении иммуногенных свойств, то есть способности вызывать иммунный ответ и формировать устойчивый иммунитет.
Примерами живых вакцин служат средства, используемые при иммунизации против чумы, гриппа, кори, краснухи, эпидемического паротита, бруцеллеза, туляремии, натуральной оспы, сибирской язвы. После некоторых прививок, например БЦЖ, требуется ревакцинация для сохранения иммунитета на протяжении жизненного периода.
Инактивированные – состоят из «мертвых» микробных частиц, выращиваемых в других культурах, например, на куриных эмбрионах, затем, убитых под воздействием формальдегида и очищенных от белковых примесей. К обозначенной категории вакцин относятся:
- корпускулярные – добывают из целостных штаммов (цельновирионные), либо из бактерий вируса (цельноклеточные). Примером первых являются противогриппозные суспензии, от клещевого энцефалита, вторых – лиофилизированные массы против лептоспироза, коклюша, брюшного тифа, холеры. Вакцины не вызывают инфицирование организма, но тем не менее содержат протективные антигены, могут спровоцировать аллергии и сенсибилизацию. Преимуществом корпускулярных составов в их стабильности, безопасности, высокой реактогенности;
- химические – изготавливают из бактериальных единиц, имеющих определенную химическую структуру. Отличительной особенностью считают минимальное наличие балластных частиц. К ним причисляют вакцины от дизентерии, пневмококка, брюшного тифа;
- конъюгированные – содержат комплекс из токсинов и бактериальных полисахаридов. Подобные комбинации усиливают индуцирование иммуногеном иммунитета. Например, сочетание вакцины анатоксина дифтерийного и Ar Haemophilus influenzae;
- сплит или субвирионные расщепленные – состоят из внутренних и поверхностных антигенов. Вакцины хорошо очищены, поэтому переносятся без выраженных побочных проявлений. Примером служат некоторые средства против гриппа;
- субъединичные – образованы из молекул инфекционных частиц, то есть имеют изолированные антигены микробов. Например, Гриппол, Инфлювак. Отдельно обозначают анатоксин – состав, выработанный из обезвреженных токсинов бактерий, который сохранил анти- и иммуногенность. Анатоксины способствуют формированию напряженного иммунитета длительностью до 5 лет и больше;
- рекомбинантные генно-инженерные – получают при содействии рекомбинантных ДНК, переносимых из вредоносного микроорганизма. Например, вакцина от ВГВ.
Сравнительный анализ вакцин
Таблица №1
Особенности поствакцинального иммунитета
После тех или иных прививок, у человека вырабатывается иммунитет специфичный по отношению к введенным инфекционным возбудителям, формируется невосприимчивость к ним. Основными характеристиками иммунитета, возникшего от вакцины, считаются:
- выработка антител к специфичным антигенам инфекционного заболевания;
- формирование иммунитета через 2 – 3 недели;
- поддержание способности клеток длительно сохранять информацию, отвечать реакцией при выявлении гомогенного антигена;
- пониженная невосприимчивость к инфицированию при сравнении с иммунитетом, образованным после перенесенного заболевания.
Иммунитет, приобретенный человеком посредством прививок, не наследуется, при грудном кормлении не передается. В своем становлении он проходит 3 этапа:
- Скрытый. На протяжении первых 3 дней формирование протекает латентно, без видимых изменений в иммунном статусе.
- Период роста. Длится в зависимости от препарата, особенностей организма от 3 до 30 дней. Характеризуется увеличением количества антител по отношению к возбудителю, полученному при инъекции.
- Снижения иммунитета. Постепенное уменьшение ответа от прививок штаммов.
Получить полноценный ответ на Т-зависимые антигены, возможно при соблюдении ряда условий: применять следует протективные, правильно дозированные вакцины, обеспечивающие продолжительный контакт с иммунной системой. Длительность взаимодействия обеспечивают путем создания «депо», введением суспензии по схеме с соблюдением указанных интервалов, своевременной ревакцинацией. Устойчивость организма к инфекциям обеспечивается отсутствием стрессов, ведением подвижного образа жизни, сбалансированные питанием.
Вакцинацию откладывают при высоких показателях температуры, хронических заболеваниях в обостренной фазе, воспалительных процессах, иммуннодефиците, гемобластозе. Следует оценить риски вакцинации при планировании и в период беременности, аллергических состояниях при введении предыдущих вакцин.
Глобализация применения вакцин
Каждый гражданин должен понимать, что предотвратить распространение инфекции можно лишь профилактическими мероприятиями, которые отражены в календаре прививок отдельно взятого государства. В документе указана информация о перечне вакцин, эпидемиологически оправданных для конкретной территории, сроках их постановки.
ВОЗ создала расширенную программу иммунизации (РПИ) в 1974 году, направленную на предупреждение возникновения инфекций, сокращение их распространения.
Благодаря РПИ выделяют несколько значимых этапов, позволивших сократить возникновение очагов ряда заболеваний:
- 1974 – 1990 гг. – активная иммунизация против кори, столбняка, полиомиелита, туберкулеза, коклюша;
- 1990 – 2000 гг. – ликвидация краснухи беременных, полиомиелита, столбняка новорожденных. Снижение инфицирования корью, свинкой, коклюшем, параллельная разработка, применение суспензий, сывороток против японского энцефалита, желтой лихорадки;
- 2000 – 2025 гг. – реализуется введение ассоциированных препаратов, планируется ликвидация дифтерии, краснухи, кори, гемофильной инфекции, паротита.
Масштабный охват вызывает некоторые опасения со стороны населения, среди молодых родителей, опасающихся мельчайших признаков нездоровья ребенка. Следует помнить, что средства, формирующие иммунитет, защитят от специфичных заболеваний, предотвратят осложнения, патологические изменения, смерть при инфицировании в ситуациях отказа от прививки. Даже здоровый образ жизни не способен обезопасить организм от воздействия вирусов, бактерий.
В случаях заражения после прививки, например при ненадлежащем хранении средства, нарушениях введения препарата, болезнь протекает легко и без последствий, благодаря наличию иммунитета. Плановая вакцинация экономически оправдана, так как лечение в случае инфицирования потребует больше средств, чем стоимость вакцины.