Клонально селекционная теория иммунитета бернета

Клонально селекционная теория иммунитета бернета thumbnail

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной)индивидуальности каждого организма и вида в целом.

Различают несколько основных видов иммунитета.

Теория иммунитета Мечникова — теория, согласно которой решающая роль в антибактериальном иммунитете принадлежит фагоцитозу.

Теория иммунитета Эрлиха — одна из первых теорий антителообразования, согласно которой у клеток имеются антигенспецифические рецепторы, высвобождающиеся в качестве антител под действием антигена.

Также есть ещё некоторые теории.

Теория иммунитета Безредки — теория, объясняющая защиту организма от ряда инфекционных болезней возникновением специфической местной невосприимчивости клеток к возбудителям.

Инструктивные теории иммунитета — общее название теорий антителообразования, согласно которым ведущая роль в иммунном ответе отводится антигену, прямо участвующему в качестве матрицы при формировании специфической конфигурации антидетерминанты либо выступающему в качестве фактора, направленно изменяющего биосинтез иммуноглобулинов плазматическими клетками.

КЛОНАЛЬНО-СЕЛЕКЦИОННАЯ ТЕОРИЯ(теория Бернста) — теория, согласно которой в организме возникают клоны клеток, иммунокомпетентных в отношении различных антигенов; антиген избирательно контактирует с соответствующим клоном, стимулируя выработку им антител.

Данная теория была разработана Франком Берне (Frank MacFarlane Burnet, 1899-1985) для объяснения функционирования иммунной системы.

Предпосылки возникновения. Иммунный ответ должна определять огромное число антигенов. Поэтому человеческий организм должен синтезировать сотни тысяч, а возможно, даже миллионы молекул антител с различными опознавательными областями. Понятно, что у нас не может быть такого огромного количества лимфоцитов, синтезирующих необходимое количество антител каждой определенной специфичности. Как же тогда это происходит?

Основные положения теории

Клонально-селекционная теория утверждает:

● Антитела и лимфоциты с необходимой специфичностью уже существуют в организме до первого контакта с антигеном.

● Лимфоциты, участвующие в иммунном ответе, имеют антигенспецифични рецепторы на поверхности своих мембран. В случае B-лимфоцитов рецепторами являются молекулы той же специфичности, что и антитела, лимфоциты впоследствии продуцируют и выделяют.

● Каждый лимфоцит несет на своей поверхности рецепторы только одной специфичности.

● Лимфоциты, сенсибилизированные антигеном, проходят несколько стадий пролиферации и формируют большое количество клонов плазматических клеток. Плазматические клетки синтезуватимуть антитела только той специфичности, на которую был запрограммирован лимфоцит-предшественник. Сигналами к пролиферации служат цитокины, выделяемые другими клетками. Лимфоциты могут сами начать выделять цитокины.

Благодаря этому механизму клональной селекции антитела могут накапливаться в достаточно высокой концентрации, чтобы эффективно бороться с инфекцией.

Подобный же механизм существует для селекции антигенспецифичних T-лимфоцитов!

Пролиферирующих клонов необходимо время для образования достаточного количества клеток. Вот почему проходит обычно несколько дней после контакта с антигеном, прежде чем в сыворотке крови обнаруживаются антитела. Поскольку эти антитела образовались в результате антигенной действия, мы говорим о приобретенной иммунный ответ.

Интенсивность ответа, осуществляется популяцией лимфоцитов (те что уже контактировали с антигеном), растет, главным образом, за счет увеличения клеток, способных воспринимать антигенный стимул. При этом должна существовать комбинация механизмов, включающих хранение антигена, существование популяции лимфоцитов и постоянную поддержку отдельных клонов клеток, что и приводит к способности иммунной системы запоминать (приобретенного иммунитета).

Один из наиболее эффективных контролирующих механизмов заключается в том, что продукт реакции одновременно служит ее ингибитором. Именно этот тип отрицательной обратной связи имеет место при образовании антител.

2. Строение и функции отд классов иммуноглобулинов, их роль в им реакциях. Первичный и вторичный иммунный ответ.

Иммуноглобулины человека имеют несколько основных классов и подклассов (изотипов), обозначаемых как IgM, IgG (1,2,3,4), IgA (1,2), IgD, IgE. Они отличаются друг от друга по структуре тяжелых цепей, которые соответственно обозначают греч буквами µ,ɣ,α,β,е.

Начало функционирования костного мозга приходится на 11-12 неделю внутриутробного периода. На ранних стадиях онтогенеза первым на мембране В-лимфоцитов появляется IgM, затем начинает выявляться IgD, а после него IgG, IgE, IgA.

Свойства IgM:

· Обнаруживается внутри сосудистого русла;

· Является главным иммуноглобулином первичного иммунного ответа;

· К этому классу относятся Ат к групповым Аг системы АВ0 крови;

· Наличие IgM к Аг конкретного возбудителя указывает на острый инфекционный процесс;

· Это основной класс, синтезируемый у новорожденных и младенцев.

Свойства IgG:

· Обнаруживается в крови, лимфе, внесосудистых жидкостях организма;

· Единственный класс, который проникает через плаценту и обеспечивает пассивный иммунитет плода;

· Участвует в связывании и активации комплемента по классическому пути;

· Вырабатывается на поздних этапах иммунного ответа и является основным при вторичном иммунном ответе;

· Высокие титры IgG указывают на то, что организм находится на стадии выздоровления или конкретное заболевание перенесено недавно.

Свойства IgA:

a) Сывороточный:

· Защищает слизистые оболочки ЖКТ и респираторного тракта от проникновения микроорганизмов;

· Нейтрализует энетеротоксин;

· Активирует комплемент и фагоцитоз;

· Участвует в местном иммунитете;

· Играет основную роль в иммунной защите вскармливаемых грудью детей от кишечных инфекций.

b) Секреторный находятся в секретах биологических жидкостей (слезы, молоко, секрет клеток кишечника).

Свойства IgD:

· Имеется на поверхности В-лимфоцитов;

· Участвует в развитии местного иммунитета;

· Участвует в дифференцировке В-клеток;

· Обладает антивирусной активностью;

· Участвует в аутоиммунных процессах

Строение IgE:

· IgE имеет существенное значение в развитии антигельминтозного иммунитета;

· IgE защищает участки тела, подверженные травматическим повреждениям и микробной атаке. Инициирует острое воспаление;

· Присутствует в малых количествах в сыворотке, связывается с тучными клетками;

· При контакте с аллергеном образуется комплекс: Аг+IgE+тучная клетка;

· Дегрануляция тучной клетки при образовании комплекса способствует появлению в крови БАВ (гистамин), которые и вызывают аллергические реакции.

Читайте также:  Лучший пробиотик для иммунитета

Строение и функции отдельных классов. Иммуноглобулины, или антитела-это продукты гуморального иммунного ответа, они представляют собой глобулины, специфически реагирующие с антигеном, вызвавшим их образование. IgG вырабся как при первичном, так и вторичном иммун ответе. обладают максим способн проникать в ткани, поэтому они наиболее эффективно связывают и удаляют антигены. выделяют 4 подкласса IgG, Подклассы IgG различ по способности связывать комплемент и активир его по альтернат пути, связыв с рецептором к Fc-фрагменту IgG на разных типах клеток IgM выраб при первич иммун ответе.Пентамерная молекула состоит из 5 мономерных молекул,связ дисульф мостиками и J-цепью. не проникают через плаценту.он эффективно связывают комплемент и активируют его по классич пути. к этому классу Ig относятся— естественные антитела к эритроцитарным антигенам A и B. IgA — основной Ig слиз, содержится также в крови. В слиз в виде димеров, в сыворотке —мономеров, димеров и тримеров. Димерный IgA сод секрет компонент, кот обеспеч проник молекулы через эпителий.. IgD в сыворотке в очень низкой концентрации, функции его неизвестны. IgD на поверхности B-лимфоцитов вып функции антигенраспозн рецепторов. IgE. концентрация IgE возрастает при аллерг реакциях немедл типа. При связывании IgE, фиксированных на мембранах тучных клеток или базофилов, с антигеном происходит высвобождение медиаторов воспаления.

Первичный иммунный ответПоявлению антител ( АТ ) предшествует латентный период продолжительностью 3~5 сут. В это время происходит распознавание Аг и образование клонов плазматических клеток. Затем наступает логарифмическая фаза, соответствующая поступлению антител ( АТ ) в кровь; её продолжительность — 7-15 сут. Постепенно титры антител ( АТ ) достигают пика и наступает стационарная фаза, продолжительностью 15-30 сут. Её сменяет фаза снижения титров AT, длящаяся 1-6 мес. В основу пролиферации клеток-продуцентов AT заложен принцип селекции. В динамике антителообразования титры высокоаффинных AT постепенно нарастают: после иммунизации аффинность AT к Аг постоянно увеличивается. Первоначально образуются IgM, но постепенно их образование уменьшается и начинает преобладать синтез IgG. Так как переключение синтезов от IgM к IgG не меняет идиотипа AT (то есть его специфичность по отношению к конкретному Аг), то оно не связано с клональной селекцией. Особенности первичного ответа — низкая скорость антитело -образования и появление сравнительно невысоких титров AT. Вторичный иммунный ответ После антигенной стимуляции часть В- и Т-лимфоцитов циркулирует в виде клеток памяти. Особенности вторичного иммунного ответа — высокая скорость антителообразования, появление максимальных титров антител ( АТ ) и длительное (иногда многолетнее) их циркулирование. Основные характеристики вторичного имунного ответа: • образование антител ( АТ ) индуцируется значительно меньшими дозами Аг; • индуктивная фаза сокращается до 5-6 ч; • среди антител ( АТ ) доминируют IgG с большой аффинностью, пик их образования наступает раньше (3-5 сут); • Антитела ( АТ ) образуются в более высоких титрах и циркулируют в организме длительное время.

Дата добавления: 2016-11-18; просмотров: 2977 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

теория
Бернета —
теория, согласно которой в организме возникают
клоны клеток, иммунокомпетентных в
отношении различных антигенов; антиген избирательно
контактирует с соответствующим клоном,
стимулируя выработку им антител.

Данная
теория была разработана Франком
Бёрнетом (1899—1985)
для объяснения функционирования иммунной
системы.

Иммунный
ответ должен определять огромное
число антигенов .
Поэтому человеческий организм должен
синтезировать сотни тысяч молекул антител с
различными распознающими областями

Клонально-селекционная
теория утверждает:

1.
Антитела и лимфоциты с необходимой
специфичностью уже существуют в организме
до первого контакта с антигеном.

2.
Лимфоциты, участвующие в иммунном
ответе, имеют антигенспецифические
рецепторы на поверхности своей мембраны.

В
случае B-лимфоцитов рецепторами
являются молекулы той же специфичности,
что и антитела, которые лимфоциты
впоследствии продуцируют и секретируют.

3.
Каждый лимфоцит несет на своей поверхности
рецепторы только одной специфичности.

4.
Лимфоциты, сенсибилизированные антигеном,
проходят несколько стадий пролиферации
и формируют большой клон плазматических
клеток .

Плазматические
клетки будут синтезировать антитела
только той специфичности, на которую
был запрограммирован лимфоцит-предшественник.
Сигналами к пролиферации служат цитокины ,
выделяемые другими клетками. Лимфоциты
могут также сами начать выделять
цитокины.

Благодаря
этому механизму клональной селекции
антитела могут накапливаться в достаточно
высокой концентрации, чтобы эффективно
бороться с инфекцией .

Подобный
же механизм существует для селекции
антиген-специфичных T-лимфоцитов .

Пролиферирующему
клону необходимо время для образования
достаточного количества клеток. Вот
почему проходит обычно несколько дней
после контакта с антигеном, прежде чем
в сыворотке обнаруживаются антитела.
Поскольку эти антитела образовались в
результате антигенного воздействия,
мы говорим о приобретенном
иммунном ответе .

Интенсивность
ответа, осуществляемого
популяцией примированных лимфоцитов,
возрастает, главным образом, за счет
увеличения клеток, способных воспринимать
антигенный стимул. При этом должна
существовать комбинация механизмов,
включающих хранение антигена, существование
популяции лимфоцитов и постоянное
поддерживание отдельных клонов клеток,
что и приводит к способности иммунной
системы к длительной памяти(приобретенного
иммунитета).

Один
из наиболее эффективных контролирующих
механизмов заключается в том, что продукт
реакции одновременно служит ее
ингибитором. Именно этот тип отрицательной
обратной связи имеет место при образовании
антител.

10. Иммунологическая память.

При
повторной встрече с антигеном орга­низм
формирует более активную и быструю
иммунную реакцию — вторичный иммунный
ответ. Этот феномен получил
название имму­нологической
памяти.

Иммунологическая
память имеет высо­кую специфичность
к конкретному анти­гену, распространяется
как на гуморальное, так и клеточное
звено иммунитета и обус­ловлена В- и
Т-лимфоцитами. Она обра­зуется
практически всегда и сохраняется годами
и даже десятилетиями. Благодаря ней наш
организм защищен от повторных антигенных
интервенций.

Известно
два наиболее вероятных механизма
формирова­ния иммунологической
памяти.

1.Предполагает
длительное сохранение анти­гена в
организме. Этому имеется множество
примеров: инкапсулированный возбудитель
туберкулеза, персистируюшие вирусы
кори, полиомиелита, ветряной оспы и
некоторые другие патогены длительное
время, иногда всю жизнь, сохраняются в
организме, под­держивая в напряжении
иммунную систему.

Читайте также:  Витамишки для иммунитета с какого возраста

2.Предусматривается,
что в про­цессе развития в организме
им­мунного ответа часть антигенореактивных
Т- или В-лимфоцитов
дифференцируется в малые по­коящиеся
клетки, или клетки
иммунологической памяти. Они
отличаются высокой спе­цифичностью
к конкретной антигенной детер­минанте
и большой продолжительностью жизни (до
10 лет и более), активно циркулируют в
организме, но постоянно возвращаются
в места своего про­исхождения за счет
хоминговых рецепторов. Это обеспечивает
постоянную готовность иммунной системы
реагировать на повторный контакт с
антигеном по вторичному типу.

Феномен
иммунологической памяти широко
используется в практике вакцинации
людей. Осуществляют это 2-3-кратными
при­вивками при первичной вакцинации
и перио­дическими повторными введениями
вакцинно­го препарата — ревакцинациями .

Однако
феномен иммунологической памяти имеет
и отрицательные стороны. Например,
повторная попытка трансплантировать
уже однажды отторгнутую ткань вызывает
— криз
отторжения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #

Источник

Самые сладкие (или, как выразился автор одной англоязычной статьи, «самые сексуальные») новости науки на сегодняшний день — это сообщения о достижениях геномики и успехах технологии редактирования ДНК в живых клетках. И едва ли открытия в других областях биологии и медицины могут составить им конкуренцию. А ведь не так давно, каких-нибудь тридцать лет назад, вполне успешной соперницей молекулярной генетики была клеточная иммунология.

Клонально селекционная теория иммунитета бернета

Фрэнк Бёрнет

Источник: discovery.wehi.edu.au

Клонально селекционная теория иммунитета бернета

Василий Манских

Гистолог, патоморфолог, доктор медицинских наук, научный сотрудник Московского государственного университета им М. В. Ломоносова.

Например, именно с ней, а не с генетикой связывали тогда возможность полной победы над злокачественными опухолями — году этак к 2016-му (Да, вот такая была вера в эту науку и такой оптимизм.) Нельзя сказать, что сегодня в иммунологии ничего не происходит. Нет, там идёт очень активная работа, но это скорее генерация частных фактов (иногда очень противоречивых), за которыми уже давно не видно объединяющей, простой и стройной концепции. А вот в золотой век изучения иммунитета была концепция, которая подчиняла себе каждый новый открытый факт, имя ей — клонально-селекционная теория. Для иммунологии это что-то вроде теории относительности. Всё учение об иммунитете делится на «до» и «после» клонально-селекционной теории.

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Клонально-селекционная теория

Концепция, согласно которой иммунные клетки — лимфоциты — способны только один раз в жизни так изменить свои гены, чтобы точно настроиться на ответ против какой-то одной чужеродной субстанции — части микроба или вируса (такие субстанции называют антигенами). И что важно: это происходит у зародыша, и совершенно случайным образом, еще до первой встречи с этими микробами и вирусами. Дальше, когда контакт с микробами уже неизбежен — идёт только отбор (селекция) будущих защитников организма и их интенсивное размножение. Все потомки одного отобранного лимфоцита и называются клоном. Противоположные (инструктивные) теории считали, что лимфоциты могут как угодно настраиваются-перенастраиваться самими антигенами.

«До» были многочисленные однообразные попытки определять содержание антител в крови и наблюдать, как лейкоциты поедают микробов, — и только. Исследователи непрерывно хватали иммунитет то за «лапки», то за «хвостик». Однако о работе «головы» и «тела» иммунной системы — сложной сети разнообразных клеток-лимфоцитов, которая и отвечает за распознавание своего и чужого, — не знали практически ничего. Неудивительно, что впечатление от появления клонально-селекционной теории было сродни эффекту от полной парадоксов теории относительности. Ещё бы, оказалось, что иммунные клетки, реагирующие на нечто чужое (химические компоненты микроба, вируса, аллергены и тому подобное), возникают путём случайных мутаций ещё у зародыша и готовы бороться даже с такими химическими соединениями, коих пока нет в природе! Более того, клонально-селекционная теория легко объясняла многие, казавшиеся очень странными явления: отторжение пересаженных органов или возникновение аутоиммунных заболеваний. А главное — стало понятно, как усмирить иммунную систему и заставить её не отвечать на чужеродные элементы (например, ткани будущего донора), если ввести эти элементы в определённый период эмбрионального развития.

Появление Бёрнета производило такое впечатление, будто в комнату вошёл огромный мозг

Так вот, эта блестящая теория вышла из-под пера австралийского вирусолога и патолога сэра Фрэнка Макфарлейна Бёрнета. Нобелевскую премию в 1960-м ему дали именно за теорию, а не за экспериментально установленные факты, что в медицине большая редкость. Фрэнк Бёрнет был эталонным гением. Как рассказывал мне Алексей Оловников, авторитетный биохимик, ведущий научный сотрудник Института биохимической физики имени Н. М. Эмануэля РАН, тот самый учёный, который в 1970-е придумал теломерную теорию старения: «Появление Бёрнета производило такое впечатление, будто в комнату вошёл огромный мозг». В молодости, когда Оловников ещё не был классиком науки о старении и скромно мыл во множестве тазов агар-агар для приготовления гелей, ему довелось познакомиться с этим «гениальным мозгом». (Гели нужны были для выделения из крови антител. Досадно, что получать их приходилось самому исследователю. Но в СССР, как известно, учёные всё необходимое для работы делали своими руками, кроме разве что космических ракет.)

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Клонально селекционная теория иммунитета бернета

Алексей Оловников

Теломерная теория старения

говорит о том, что в каждой клетке, на концах хромосом имеются специальные области — теломеры, с которыми связаны процессы старения. Во всех клетках организма (кроме половых и раковых), после каждого деления в теломерах остаётся отметка в виде укорочения ДНК. Таким образом, клетки регистрируют каждый раунд деления. Число таких раундов заранее ограничено — оно называется лимитом Хейфлика, достигая которого, клетки перестают делиться и гибнут. Сокращение числа клеток из-за достижения лимита Хейфлика влечёт за собой ослабление функций разных органов и в конечном счёте, согласно теломерной теории, ведет к старению.

Читайте также:  Самый мощный который повышает иммунитет

Оловников вспоминал, как однажды к нему в кабинет зашёл шеф, знаменитый вирусолог Лев Зильбер, вместе с Фрэнком Бёрнетом. Австралийский учёный буквально впился взглядом в заставленный эмалированными тазами пол и, демонстрируя полное недоумение и даже презрение — мол, что это такое и зачем оно здесь? — стал осторожно через них перешагивать. Он явно опасался опрокинуть на ботинки содержимое этих посудин, похожее на белую мутную чачу, или уронить в них тетрадку — непременную спутницу настоящего теоретика. Правда в тот день Оловников заметил, что вместо новых грандиозных идей на страничке этой тетради были записаны только два слова печатными буквами и по-русски: «БУЛОЧКА», «СОК».

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Спустя годы Оловников был переводчиком главной книги Бёрнета — его opus magnum — «Клеточной иммунологии» (издана в оригинале — в 1969 году, в русском переводе в 1971). Паролем для читателей этой работы навсегда останется впечатляющая метафора «мешок с червями». Так образно Бёрнет представлял лимфатический узел — одно из временных пристанищ непоседливых лимфоцитов и одну из главных сцен иммунных событий. Эта необычайно ясная и богатая идеями книга не что иное, как последовательное изложение всей тогдашней иммунологии с точки зрения клонально-селекционной теории. И написана она была очень необычно, по сути это две книги в одной: первая — изложение идей без перегрузки фактами, вторая — те же главы, но с подробными ссылками на факты.

Клонально селекционная теория иммунитета бернета

Лев Зильбер

Он совершенно не признавал молекулярную биологию, считал такие исследования модным поветрием, которое скоро пройдёт

Но вот что поразительно и абсолютно контринтуитивно: Фрэнк Бёрнет, этот удивительный гений, суперреволюционер в клеточной иммунологии нередко проявлял себя как жёсткий консерватор в смежных областях науки! Например, он совершенно не признавал молекулярную биологию, считал такие исследования модным поветрием, которое скоро пройдёт. И это притом что в области эксперимента Бёрнет был одним из ведущих исследователей вирусных инфекций, где молекулярная биология, казалось бы, должна царствовать и править. Кроме того, он крайне скептически относился к идее прочесть геном какого-либо организма — считал, что нить ДНК «распутать» невозможно. Когда этот нобелевский лауреат ушёл с поста руководителя Института медицинских исследований Уолтера и Элизы Холл (одного из старейших научных институтов Австралии), оказалось, что это невероятно отсталое и не приспособленное к современной науке учреждение. Орудиями труда местных учёных служили в основном пипетки да пробирки, будто на дворе стояли 1940-е, а не конец 1960-х.

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Такое ощущение, что само мышление Бёрнета было каким-то удивительно «немолекулярным». Его элементарной теоретической единицей — фигурой на шахматной доске — была клетка: лимфоцит, макрофаг и им подобные. А свойства этих клеток — фагоцитоз, синтез антител и так далее — возможными ходами шахматных фигур. И как развитие шахматной партии не определяется тем, из чего сделаны фигуры (из слоновой кости или из жёваного хлеба тюремной пайки), так и Бёрнет, по-видимому, не считал особо важными тонкости процессов, происходящих внутри клеток. Этого мира для него словно не существовало (несмотря на то, что в «Клеточной иммунологии» ДНК и РНК формально присутствуют).

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Впрочем, если задуматься, Бёрнет с этим его особым отношением к науке вовсе не уникален. Хоть на таких случаях и не принято делать специальные акценты, всё же, вспомним, как один из прадедов молекулярной биологии, а точнее, известный «генетик фенотипов» (то есть внешних проявлений действия генов) Николай Тимофеев-Ресовский непочтительно называл молекулярную генетику «дээнкаканьем». А бактерии и фаги отказывался причислять к генетическим объектам, полагая, что ими должны заниматься только врачи.

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Или вот ещё. «Глаза б мои этого не видели!» — с такими словами знаменитый физиолог и первый русский нобелевский лауреат Иван Павлов швырял на стол журналы со статьями об электрических процессах в нервных клетках. Вернер Гейзенберг, создатель матричной механики, говорил, что всегда представлял электрон в виде маленького шарика, который, конечно, можно иногда не без пользы называть волной, но это лишь математическая абстракция, не имеющая отношения к реальности (привет Эрвину Шрёдингеру).

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

Лев Ландау честно признавался, что даже думать не хочет о несохранении чётности в слабых взаимодействиях (это такая штука, за которую потом дали Нобеля), поскольку возможность этого явления предполагает настолько «скособоченный» мир, что ему от этого противно.

Великий физик Гендрик Лоренц, чьи достижения — неотрывная часть специальной теории относительности — саму теорию не любил и жалел, что не умер до её появления на свет. Да и Альберта Эйнштейна, с поразительным упорством до конца жизни не признававшего квантовую теорию Нильса Бора, можно поставить в один ряд с неоднозначными великими персонами. Не значит ли всё это, что гениям (пусть и не всем, но многим) в принципе свойственна странная ограниченность взглядов? Что они не могут, подобно гётевскому Вагнеру, с одинаковой радостью поглощать «за томом том, страницу за страницей»? Во всяком случае, вершинная фигура иммунологии — сэр Фрэнк Макфарлейн Бёрнет — прекрасно иллюстрирует это парадоксальное утверждение.

Клонально селекционная теория иммунитета бернета

Лев Ландау

Клонально селекционная теория иммунитета бернета

Гендрик Лоренц

Клонально селекционная теория иммунитета бернета

Источник: discovery.wehi.edu.au

“Ну, жив-мертв, жив-мертв — это знакомая считалочка. Но вот свой-чужой, свой-чужой — это что-то новенькое”.

Источник