Компоненты врожденного иммунитета физические барьеры

Компоненты врожденного иммунитета физические барьеры thumbnail

Врожденный иммунитет человека: факторы влияния, механизмы поддержания

Наиболее важный фактор противоинфекционной защиты — иммунная система, к которой относят нормальную микрофлору организма человека, механические барьеры (например, кожу), а также антибактериальные белки и фагоциты. В большинстве случаев реакция на патогенные агенты обусловлена особыми «распознающими» молекулами (например, Toll-подобные рецепторы — TLR), взаимодействие которых с бактериальными компонентами приводит к активации фагоцитов и формированию иммунного ответа.

Например, TLR-4 способен распознавать липополисахариды, a TLR-9 — последовательность цитозин — фосфат—гуанозин ДНК. Индивидуальная устойчивость к воздействию различных инфекционных агентов зависит от выраженности и эффективности того или иного компонента.

Нормальная микрофлора и врожденный иммунитет

В организме человека количество прокариотных (бактериальных) клеток во много раз превышает число собственных клеток. С помощью антибактериальных (бактерицидных) веществ, препятствующих размножению патогенных бактерий, нормальная микрофлора конкурирует с ними за жизненное пространство. Например, выделяемые анаэробами токсичные продукты жизнедеятельности и жирные кислоты отрицательно влияют на другие микроорганизмы, а лактобактерии влагалища продуцируют молочную кислоту и понижают рН, препятствуя размножению патогенных бактерий.

Отрицательное воздействие антибиотиков на нормальную микрофлору приводит к активному размножению микроорганизмов, устойчивых к их действию (например, Candida albicans). Приём некоторых антибактериальных препаратов способствует повышению восприимчивости к заболеваниям, вызываемым Salmonella typhi. Кроме того, нарушается баланс между численностью отдельных представителей микрофлоры, что приводит к усиленному размножению некоторых из них, например, при инфекции, вызванной Clostridium difficile и сопровождаемой тяжёлой острой диареей.

Барьеры иммунной системы человека — врожденного иммунитета

Основной механический барьер иммунной системы — кожа. Жирные кислоты и секрет сальных желёз препятствуют внедрению патогенных микроорганизмов, тормозят рост и размножение бактерий. Некоторые микроорганизмы проникают через кожный барьер через укус переносчика (например, возбудитель лихорадки денге попадает в организм человека при укусе комара Aedes aegyptl) или через повреждённые участки кожи (Leptospira и Treponema). Некоторые возбудители способны колонизировать слизистые оболочки.

При нарушении целостности кожного покрова (например, при внутривенной катетеризации, инъекциях) возникает риск заражения вирусами, содержащимися в крови (ВИЧ, гепатит В). Кроме того, проникновению возбудителя в организм человека (например, Streptococcus pyogenes) способствуют различные заболевания кожи (экзема, ожоги).

Механизм мукоцилиарного клиренса иммунитета. Перед попаданием в лёгкие воздух увлажняется и согревается в дыхательных путях, проходя через носовые раковины и пазухи. При этом мелкие частицы, содержащиеся в нём, оседают на липкой слизистой оболочке дыхательного эпителия и посредством движения специального ресничного (цилиарного) эпителия попадают обратно в ротоглотку.

врожденный иммунитет

При этом в альвеолы проникают лишь частицы диаметром не более 5 нм. Таким образом, дыхательные пути, расположенные ниже трахейной шпоры (carina tracheae), абсолютно стерильны.

Секреция антибактериальных веществ иммунитетом. Слизь содержит полисахариды, схожие по антигенной структуре с полисахаридами слизистой оболочки. Патогенные микроорганизмы вместе со слизью удаляются из организма. Кроме того, существует множество других антибактериальных секретов: лизоцим слёзной жидкости разрушает пептидогликан грамположительных бактерий; лактоферрин грудного молока связывает железо, ингибируя рост бактерий; лейкоцитарный фермент лактопероксидаза участвует в образовании ионов супероксида, токсичных для различных микроорганизмов.

Соляная кислота желудочного сока защищает организм от кишечных возбудителей. Снижение желудочной секреции способствует повышению риска развития кишечных заболеваний.

Экскреция мочи. Вымывающее действие экскретируемой мочи защищает мочевыводящие пути от патогенных микроорганизмов. Благодаря этому они стерильны (за исключением мочеиспускательного канала). Обструкция мочевыводящих путей, связанная с образованием камней, опухолей, доброкачественной гиперплазией предстательной железы, рубцеванием уретры и мочевого пузыря, может привести к снижению тока мочи и стазу, с последующим развитием бактериальной инфекции.

Фагоциты и врожденный иммунитет

Нейтрофилы и макрофаги способны поглощать мелкие частицы, в том числе бактерии, вирусы и грибы. Увеличению фагоцитарной активности способствуют опсонины (компоненты комплемента и антитела). Так, например, Streptococcus pneumoniae устойчив к фагоцитозу до тех пор, пока против него не вырабатываются антикапсулярные антитела. Основное звено ретикулоэндотелиальной системы, защищающее организм от патогенных микроорганизмов и простейших (например, от S. pneumoniae, возбудителя малярии), — макрофаги.

Врождённая недостаточность функции нейтрофилов приводит к развитию хронических гнойных, бронхолёгочных заболеваний, а также бронхоэктазии. После спленэктомии у больных наблюдают не только недостаточность функции макрофагов, но и ослабление способности удалять из крови инкапсулированные микроорганизмы.

Комлемент и врожденный иммунитет человека

Комплемент — комплекс белков плазмы крови, препятствующий возникновению и развитию бактериальной инфекции. Комплемент активируется комплексом «антиген—антитело» в результате каскадной реакции (классический путь) либо при непосредственном взаимодействии с компонентами бактериальной клеточной стенки (альтернативный путь). Продукты, образующиеся в результате обоих процессов, притягивают фагоциты к очагу инфекции (хемотаксис) и активируют их, а также способствуют расширению сосудов и стимулируют фагоцитоз бактерий (опсонизация).

В результате ферментативно-каскадной реакции происходит образование «мембраноатакующего комплекса», вызывающего лизис грамположительных бактерий. При недостаточности системы комплемента повышается восприимчивость к острым гнойным заболеваниям, в особенности вызванным Neisseria meningitidis, N. gonorrhoeae и Streptococcus pneumoniae.

Трансферрин — белок, участвующий в транспорте железа. Он ограничивает доступ патогенной микрофлоры к ионам железа в очаге инфекции. Кроме того, другие белки острой фазы воспаления обладают прямым антибактериальным действием. Так, белок, связывающий маннозу, а также С-реактивный белок (CRP) соединяется с бактериальной стенкой и активирует систему комплемента.

— Читайте далее «Типы патогенных микроорганизмов. Токсины»

Оглавление темы «Бактерии. Инфекции»:

  1. Строение клетки бактерий. Структура
  2. Виды бактерий. Классификация
  3. Врожденный иммунитет человека: факторы влияния, механизмы поддержания
  4. Типы патогенных микроорганизмов. Токсины
  5. Механизмы развития инфекционных заболеваний. Патогенез
  6. Лабораторные исследования при инфекционных заболеваниях. Методы
  7. Выбор антибиотика при инфекциях. Рекомендации, критерии
  8. Виды антибиотиков. Показания к применению
  9. Причины устойчивости к антибиотикам. Механизмы
  10. Источники инфекций. Распространение инфекционных болезней

Источник

ЧАСТЬ II. ВРОЖДЕННЫЙ ИММУНИТЕТ

ГЛАВА 1. ОСНОВНЫЕ КОМПОНЕНТЫ ВРОЖДЕНОЙ ИММУННОЙ СИСТЕМЫ. АНАТОМИЧЕСКИЕ БАРЬЕРЫ

ВРОЖДЕННОГО ИММУНИТЕТА

Врожденный иммунитет, его основные компоненты и их функции. Анатомические барьеры врожденного иммунитета. Физические, химические и клеточные факторы кожи и слизистых, обеспечивающие врожденную защиту организма от патогенов.

Врожденный иммунитет является наиболее древней защитной системой позвоночных, ведущей функцией которой является борьба с инфекционными агентами (бактериями, вирусами, грибами, простейшими), которые объединяются термином «патогены». Некоторые формы врожденного иммунитета обнаружены у всех многоклеточных растений и животных, в то время как адаптивный иммунитет в эволюции возникает позднее – у челюстных позвоночных – и дополняет хорошо развитую у них систему врожденного иммунитета.

Читайте также:  Привилегии иммунитеты специальных миссий

Врожденный иммунитет осуществляет защиту против инфекций путем практически немедленной активации при поступлении патогена в организм.

Система врожденного иммунитета не имеет своих специализированных органов, ее составляющие рассредоточены по всему организму.

Основными компонентами врожденной иммунной системы являются:

· Анатомические физико-химические барьеры — кожа и слизистые оболочки, которые физически препятствуют проникновению патогенов в организм. В этих барьерных органах содержится и целый ряд химических агентов, оказывающих подавляющее и токсическое действие на клетки инфекционных агентов (кислая среда содержимого желудка, целый ряд растворимых молекул, обладающих антимикробной активностью).

· Паттерн-распознающие рецепторы врожденного иммунитета (ПРР) – растворимые и клеточные, к которым в первую очередь относятся NOD-рецепторы и Толл-подобные рецепторы. ПРР обеспечивают детектирование ассоциированных с патогенами молекулярных структур (ПАМС) и молекулярных структур, ассоциированных с опасными для жизнедеятельности клеток ситуациями (ОАМС), которые формируются в результате гибели или повреждения клеток.

· Гуморальные факторы врожденного иммунитета, которые включают: антимикробные пептиды, белки острой фазы, цитокины, хемокины, медиаторы воспаления и систему комплемента.

· Клетки системы врожденного иммунитета, которые представляют большой набор клеток различного происхождения (нейтрофилы, эозинофилы, базофилы, тучные клетки, NK-клетки, а также эпителиальные клетки кожи, слизистых оболочек и эндотелия сосудов). Все эти клетки обладают ПРР, с помощью которых они детектируют патогены, а затем осуществляют их уничтожение. Клетки врожденной иммунной системы, относящиеся к профессиональным антигенпредставляющим клеткам (моноциты/макрофаги и дендритные клетки) осуществляют процессинг и презентацию антигенов, способствуют индукции адаптивного иммунного ответа и участвуют в его регуляции.

Анатомические барьеры врожденного иммунитета

К анатомическим барьерам врожденного иммунитета относятся кожа и слизистые оболочки, в состав которых входит слизистый эпителий, выстилающий респираторный, желудочно-кишечный и урогенитальный тракты, изолируя внутреннюю среду организма от патогенов, содержащихся в окружающей среде.

Кожасостоит из двух слоев: тонкого слоя плотно упакованных эпителиальных клеток – эпидермисаи дермы, которая состоит из соединительной ткани и содержит кровеносные сосуды, волосяные фолликулы, потовые и сальные железы. В дерме содержится также значительное количество клеточных элементов, в том числе незрелые ДК – клетки Лангерганса, МФ и лимфоциты. Кожа является не просто пассивной преградой для патогенов и повреждающих воздействий на организм, она может осуществлять и активную биохимическую защиту против инфекций благодаря синтезу антимикробных пептидов и белков с противобактериальной и противовирусной активностью.

Антимикробные пептидыдействуют локально, подавляя рост бактерий, грибов, простейших и некоторых оболочечных вирусов. Они обнаружены у растений, насекомых, беспозвоночных и позвоночных животных.

В настоящее время идентифицировано более 800 различных антимикробных пептидов. Большинство из них – это катионные (положительно заряженные) пептиды, размер которых колеблется от 6 до 59 аминокислотных остатков. У млекопитающих и человека антимикробные пептиды синтезируются эпителиальными клетками кожи, слизистых, а также нейтрофилами, что облегчает киллинг микробов после фагоцитоза.

Антимикробные пептиды подразделяются на две основные группы: дефенсины и кателицидины. Все антимикробные пептиды обладают широким спектром активности по отношению к микроорганизмам, однако активность каждого из них различна по отношению к разным типам патогенов: одни более эффективны против определенных бактерий, другие – против грибов и простейших. Подробнее структура и функции антимикробных пептидов будут рассмотрены в ч.II гл. 3 «Гуморальные факторы врожденного иммунитета».

Клетками эпителия кожи продуцируется также недавно обнаруженный небольшой белок – псориасин, обладающий сильной антимикробной активностью по отношению к E.coli. Его действие в значительной мере обеспечивает резистентность кожи человека к колонизации этими бактериями, несмотря на постоянный контакт с ними. Другие бактерии менее чувствительны к действию псориасина.

Большую роль в защите о вирусов играют белки, относящиеся к семейству интерферонов. Интерфероны I типа (IFN-α и IFN-β) синтезируются в инфицированных вирусами клетках эпителия и защищают от вирусов соседние клетки, ограничивая распространение инфекции.

Слизистые оболочкивыстилают респираторный, желудочно-кишечный и урогенитальный тракты, они состоят из внешнего эпителиального слоя и подлежащего слоя соединительной ткани. Многие патогены попадают в организм, приникая через слизистые. Противостоят этому проникновению многие неспецифические защитные механизмы врожденного иммунитета. Например, слюна, слезы и другие секреты слизистых механически смывают попадающие на них микробы, вирусы, пылевые и другие чужеродные частицы. В них также содержатся обладающие антибактериальной и противовирусной активностью соединения: гидролитические ферменты, такие как муцин и лизоцим, интерфероны, антимикробные пептиды, а также коллектины и фиколины.

Коллектины и фиколины– это два семейства растворимых белков, которые содержатся на поверхности слизистых оболочек, а также в крови. Они обладают непрямой антибактериальной активностью, так как распознают определенные конфигурации углеводов на поверхности микробных клеток, связываясь с которыми, выполняют функции опсонинов (стимулируя тем самым фагоцитоз бактерий) или вызывают активацию комплемента (лектиновый путь), что ведет к лизису бактериальных клеток.

Проникновению бактерий через слизистую желудка препятствуют низкие значения рН содержимого желудка, гидролитические пищеварительные ферменты, а также гидрофобные жирные кислоты и соли желчной кислоты, покрывающие некоторые участки слизистой желудка и тонкого кишечника и затрудняющие прикрепление бактерий к клеткам эпителия слизистой. Колонизации слизистых патогенными микроорганизмами противостоит нормальная микрофлора, которая конкурирует с патогенной за субстраты, а также за места прикрепления к слизистой.

Защите от патогенов, попадающих в организм через дыхательные пути, способствуют также особенности строения клеток эпителия слизистой нижних дыхательных путей, на которых имеются реснички – волосковые выросты клеточной мембраны. Синхронное движение этих ресничек обеспечивает движение наружу слизи, продуцируемой в нижних отделах респираторного тракта, в которой содержатся попадающие в легкие микробы и вирусы, а также другие мелкие чужеродные частицы. Помимо других противовирусных и противобактериальных соединений, препятствуют проникновению инфекционных возбудителей в легкие и белки сурфактанта легких, которые являются коллектинами и участвуют во врожденной иммунной защите.

Некоторые бактерии и вирусы в процессе эволюции приобрели способность преодолевать барьеры кожи и слизистых. Не все бактерии легко убиваются антимикробными пептидами. Так, синегнойная палочка, относящаяся к грамм-отрицательным бактериям, путем ацилирования липида А модифицирует липополисахариды на своей поверхности, что делает ее устойчивой к воздействию катионных антимикробных пептидов. Вирус гриппа имеет поверхностные молекулы, обеспечивающие его прочную адгезию к клеткам слизистой оболочки респираторного тракта, не позволяя ресничатому эпителию удалять его с потоком слизи. Недавно было обнаружено, что примерно у 4% населения имеются врожденные дефекты молекул коллектинов, что коррелирует с повышением чувствительности таких людей к менингококковой инфекции. Число подобных примеров достаточно велико.

Читайте также:  Повышение иммунитета при кормлении

Когда патогены по той или иной причине все же преодолевают барьеры кожи и слизистых, в борьбу с ними вступают другие гуморальные и клеточные механизмы врожденного иммунитета. В результате их активации развиваются главные защитные процессы: воспалительные ответ, фагоцитоз и активация комплемента. Им предшествует процесс распознавания патогенов с помощью специальных рецепторов.

Дата добавления: 2015-05-19 | Просмотры: 2731 | Нарушение авторских прав

1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 |

Источник

Оглавление

Введение

Определение понятия иммунитета

Виды иммунитета

Физиологические барьеры

Иммунопрофилактика и иммунотерапия

Вывод

Список литературы

Введение

Современная иммунология, изучающая вопросы иммунологической защиты против различных чужеродных веществ антигенной природы, перестала быть узкой наукой. Она оказалась тесно связанной с общей патологией, патофизиологией, цитологией, биохимией, генетикой и другими отраслями.

Начавшись с инфекционной иммунологии, компетенцией которой были изучение иммунитета к инфекционным агентам, разработка вакцинных и серологических препаратов как средств профилактики и терапии инфекций, серологическая идентификация патогенных микроорганизмов и диагностика заболеваний, эта наука и настоящее время дополнилась новой, более обширной ветвью — неинфекционной иммунологией. Последняя изучает закономерности и особенности трансплантационного иммунитета и специфической иммунологической толерантности на чужеродные антигены, генетику иммунитета и различных антигенов организма, химию иммуноглобулинов и биосинтез антител, клеточные основы иммунологических реакций и органы, где они осуществляются, иммунологические процессы, участвующие в регуляции эмбриогенеза, механизмы противоопухолевого иммунитета, различные патологические реакции иммунитета, приводящие к возникновению аутоиммунных заболеваний и др.

Благодаря всем этим исследованиям стало ясно, что иммунитет —это очень важное и сложное звено биологии живого и его можно рассматривать как одну из сторон единого биологического закона охраны индивидуальности (Р.В. Петров).

Определение понятия иммунитета

Иммунитет — универсальная способность живых существ противостоять действию повреждающих агентов, сохраняя свою целостность и биологическую индивидуальность. Это защитная реакция, благодаря которой организм становится невосприимчивым к болезнетворным микроорганизмам (вирусам, бактериям, грибкам, простейшим, гельминтам) и продуктам их жизнедеятельности, а также тканям и веществам (например, ядам растительного и животного происхождения), обладающим чужеродными (антигенными) свойствами. Органы иммунной системы: Центральные: костный мозг и тимус. Периферические: селезенка, лимфатические узлы, лимфоидная ткань ассоциированная со слизистыми. В центральных органах (вилочковой железе и костном мозге) будущие защитники организма — так называемые иммунные клетки-предшественники проходят азы курса молодого бойца, превращаясь в зрелые, сведущие в искусстве охраны (говоря языком специалистов — иммунокомпетентные) лимфоциты. Затем они отправляются доучиваться боевому искусству на следующую ступень. В периферических органах (селезенке, небных миндалинах, лимфатических узлах и их близких «родственников» — лимфатических фолликулах пищеварительного и дыхательного тракта) лимфоциты проходят последние этапы целенаправленного развития, чтобы научиться нести боевую службу применительно к местным условиям.

Рис. 2. Органы и ткани иммунной системы (слева), основные клетки крови (справа).

Виды иммунитета

Как правило, иммунный ответ заключается, во-первых, в распознавании возбудителя или иного чужеродного материала, и во-вторых, в развертывании цепи реакций, направленных на их устранение. Все разнообразные формы иммунного ответа можно разделить на два типа — врожденные и приобретенные реакции. Основное различие между этими двумя типами иммунореактивности состоит в том, что приобретенный иммунитет высокоспецифичен в отношении каждого конкретного возбудителя. Кроме того, повторная встреча с тем или иным патогенным микроорганизмом не приводит к изменениям врожденного иммунитета, но повышает уровень приобретенного: иммунная система как бы «запоминает» возбудителя, чтобы впоследствии предотвратить вызываемую им инфекцию. Две главные характеристики приобретенного иммунитета — специфичность и иммунологическая память. Иммунный ответ осуществляют, прежде всего, лейкоциты, которые представлены несколькими разновидностями.

Фагоциты и врожденный иммунитет. Одну из важнейших групп лейкоцитов составляют фагоцитирующие клетки: моноциты, макрофаги и полиморфноядерные нейтрофилы. Они способны связывать микроорганизмы на своей поверхности, а затем поглощать и уничтожать их. Это функция основана на простых, неспецифических механизмах распознавания, позволяющих связывать самые разнообразные микробные продукты, и относится к проявлениям врожденного иммунитета. Фагоциты образуют первую линию защиты против инфекции.

Лимфоциты и приобретенный иммунитет. Другая важнейшая группа лейкоцитов — это лимфоциты. Им принадлежит ведущая роль во всех реакциях приобретенного иммунитета, поскольку они специфически распознают конкретный возбудитель, где бы он не находился, внутри или вне клеток, в тканевой жидкости или в крови. Существуют различные типы лимфоцитов, но основных популяций две: Т-лимфоциты и В-лимфоциты. Последние противодействуют внеклеточным возбудителям и влиянию их продуктов, образуя антитела, молекулы которых способны специфически распознавать и связывать определенные молекулы-мишени-антигены. Антигенами могут служить молекулы на поверхности клеток микроорганизмов либо образуемые ими токсины. Т-лимфоциты, точнее разные их популяции вместе, обладают широким набором активностей. Одни Т-клетки участвуют в регуляции дифференцировки В-лимфоцитов и образования антител. Другие взаимодействуют с фагоцитами, помогая им в разрушении поглощенных микробных клеток. Третья группа Т-лимфоцитов распознает и разрушает клетки, инфицированные вирусами.

Взаимодействие между лимфоцитами и фагоцитами. Масштабы таких взаимодействий весьма значительны. Например, определенные типы фагоцитирующих клеток способны после захвата антигенов представлять их Т-лимфоцитам в форме, подходящей для распознавания. Этот процесс назван представлением (презентацией) антигена. Распознав антиген, Т-лимфоциты в свою очередь выделяют растворимые факторы (цитокины), которые активируют фагоциты и вызывают разрушение ими поглощенных микробов. При взаимодействии другого характера фагоциты используют образуемые В-лимфоцитами антитела для собственного более эффективного распознавания возбудителей. В результате иммунный ответ на инфекцию чаще всего складывается из различных взаимосвязанных эффектов как врожденного, так и приобретенного иммунитета. На ранних стадиях инфекции доминируют механизмы врожденного иммунитета, но позднее лимфоциты начинают осуществлять специфический ответ, свойственный приобретенному иммунитету. При этом они «запоминают» возбудителя и если впоследствии организм вновь подвергается заражению этим микробом, они «вспоминают» его и осуществляют более эффективный и быстрый иммунный ответ.

Читайте также:  Чтобы повысить иммунитет мочевого пузыря

Какая из форм иммунного ответа будет эффективной, зависит в значительной мере от локализации инфекции и типа возбудителя. Наиболее существенно при этом, проникают микробы внутрь клеток организма-хозяина или нет. Для того чтобы ликвидировать внутриклеточную инфекцию — такую вызывают все вирусы, некоторые бактерии и ряд паразитических простейших — иммунная система должна распознать и разрушить инфицированные клетки. В случае внеклеточного размножения инфицирующего агента в тканях, жидкостях или полостях организма — это характерно для многих бактерий и более крупных возбудителей — иммунный ответ совершенно иной. При развитии инфекции, однако, даже внутриклеточные возбудители, чтобы достичь соответствующих клеток-мишеней, передвигаются с током крови и тканевой жидкости, и в это время они уязвимы для тех факторов иммунной системы, которые в основном рассчитаны на внеклеточных возбудителей.

Рис. 4. Взаимодействие между фагоцитами (МФ) и лимфоцитами (Т и В) посредством цитокинов после обнаружения чужеродного агента (антиген), в результате чего плазматические клетки (ПК) продуцируют антитела.

Под неспецифическим иммунитетом подразумевают систему предсуществующих защитных факторов организма, присущих да

нному виду как наследственно обусловленное свойство. Так, собаки никогда не болеют чумой человека, а куры — сибирской язвой. Иммунитет, создаваемый анатомическими, физиологическими, клеточными и молекулярными факторами, которые являются естественными составляющими элементами организма, иначе называют конституционным. Такие факторы защищают организм от разных экзогенных и эндогенных агрессий, они передаются наследственно, их защитные функции лишены избирательности и они не способны сохранять память от первичного контакта с чужеродностью.

Условно факторы неспецифической защиты можно разбить на четыре типа: физические (анатомические); физиологические; клеточные, осуществляющие эндоцитоз или прямой лизис чужеродных клеток; молекулярные (факторы воспаления).

Физические (анатомические) барьеры

Кожа. Неповрежденная кожа представляет собой обычно непроницаемый барьер для микроорганизмов. Лишь при некоторых инфекционных болезнях, например, лептоспирозах, прямое проникновение возбудителя через неповрежденную кожу, возможно, является первичным путем заражения. Здоровая неповрежденная кожа обладает отчетливой бактерицидной активностью в отношении тех микроорганизмов, которые не являются представителями ее нормальной микрофлоры.

Слизистые оболочки. На уровне слизистых оболочек существует множество разных механизмов защиты внутренней среды организма, в том числе от проникновения в нее микроорганизмов (слизь, реснички мерцательного эпителия, лизоцим, пероксидазы, секреторные антитела, фагоцитирующие клетки лимфоциты).

Нормальная микрофлора организма. Микроорганизмы, которые населяют кожу и слизистые оболочки, сообщающиеся с внешней средой, составляют нормальную микрофлору организма. Эти микроорганизмы способны противостоять действию патогенных микроорганизмов и губительно действовать на них, тем самым участвуя в защите организма.

Физиологические барьеры

Этот тип защиты включает температуру тела, и напряженность кислорода в районе колонизации микроорганизмами, а также различные растворимые факторы, воспаление.

Клеточные факторы

К клеточным факторам неспецифической защиты относятся фагоцитирующие клетки и натуральные киллеры.

Фагоцитирующие клетки. Одним из мощных факторов резистентности является фагоцитоз. И.И. Мечников установил, что фагоцитарными свойствами обладают зернистые лейкоциты крови и лимфы, главным образом полиморфноядерные нейтрофилы (микрофаги — нейтрофилы, эозинофилы и базофилы) и по-другому обозначаются как полиморфноядерные лейкоциты, или гранулоциты, а также моноциты и различные клетки ретикулоэндотелиальной системы, которую он назвал макрофагами. В настоящее время под макрофагами понимают клетки, которые обладают высокой фагоцитарной активностью. Они различаются по форме и размерам, в зависимости от тканей, где они обнаруживаются. По классификации ВОЗ все макрофаги объединены в систему мононуклеарных фагоцитов(СМФ).

Фагоцитам присущи три функции:

· Защитная. Фагоцитозом уничтожаются чужеродные объекты, т.е. происходит очистка организма от инфекционных агентов, продуктов распада, отмирающих клеток, неметаболизируемых органических веществ.

· Секреторная. Взаимодействие объекта фагоцитоза с фагоцитом стимулирует бактерицидные системы последнего. К основным системам бактерицидности относят окислительную (О2-зависимую) и неокислительные (ферментные). Окислительная бактерицидная система убивает микроб за счет прямого действия продуцируемых фагоцитом О2, ОН и Н2О2 или галогенизацию. Из ферментных систем самым сильным бактериологическим потенциалом обладают лизоцим и катепсин.

Кроме того фагоциты синтезируют и секретируют множество цитокинов — биологически активных веществ, необходимых для поддержания иммунного ответа организма на чужеродное вещество.

· Представляющая. Переработка антигена (процессинг) и представление его иммунокомпетентным клеткам, принимающим участие в формировании иммунного ответа.

Процесс фагоцитоза складывается из следующих стадий:

· Хемотаксис — продвижение фагоцита к объекту фагоцитоза, осуществляется с помощью псевдоподий.

· Адгезия (прикрепление). На мембране фагоцитов размещены различные рецепторы для захвата микроорганизмов.

· Эндоцитоз (поглощение). Принципы поглощения бактерий идентичны таковым у амеб: захваченные частицы погружаются в протоплазму и в результате образуется фагосома с заключенным внутри объектом.

· Внутриклеточное переваривание. К фагосоме устремляются лизосомы, затем оболочки фагосомы и лизосомы сливаются и ферменты лизосом изливаются в фаголизосому. Фагоцитированные микроорганизмы подвергаются атаке комплекса различных микробицидных факторов.

Рис. 2. Последовательность фагоцитоза.

Завершенность фагоцитарных реакций. Микробицидный потенциал фагоцитирующих клеток эффективен против большей части патогенных микроорганизмов (завершенный фагоцитоз), но некоторые возбудители резистентны к его действию и способны длительно существовать внутри фагоцитов. Многие факультативные и облигатные внутриклеточные паразиты не только сохраняют жизнеспособность, но и способны размножаться внутри клеток. В этом случае фагоцитоз остается незавершенным.

Для полноценного фагоцитоза нужен фагоцитарный стимул определенной силы:

А. Микробные факторы. При низком соотношении микроб/фагоцит (1:1) реакция почти отсутствует. Увеличение соотношения до 25:1 несколько стимулирует процесс, при соотношении до 60:1 фагоцитируется около 80% микробов, но дальнейшее увеличение соотношения резко подавляет фагоцитоз.

Б. Универсальными стимуляторами фагоцитов являются опсонизированные частицы и иммунные комплексы.

Опсонизация — процесс, облегчающий фагоцитоз. Обусловлен связыванием опсонинов (антител и компонента С3b комплемента) с поверхностными антигенами бактерий.

В. Лимфокины, гамма-интерферон — медиаторы, продуцируемые активированными Т-лимфоцитами в местном клеточно-опосредованном иммунном ответе, активируют макрофаги и привлекают другие провоспалительные клетки.

Для характеристики активности фагоцитоза введен фагоцитарный показатель. Для определения его подсчитывают под микроскопом число бактерий, поглощенных одним фагоцитом.

Натуральные киллеры

Натуральные киллеры (НК или NK) или естественные киллеры (ЕК) представляют собой популяцию лимфоидных клеток, лишенных признаков Т- и В-лимфоцитов. Их участие в неспецифическом иммунном ответе состоит в способности оказывать прямое цитотоксическое действие на злокачественнотрансформированные и вирусинфицированные клетки, а также клетки, поглотившие некоторые внутриклеточные бактериальные патогены. В процессе цитолиза различают три основных стадии: распознавание, выделение цитотоксинов («летальный удар») и лизис клетки-мишени.

Источник