Кровь иммунитет и кровеносные системы
Состав крови
Кровеносная, она же сердечно-сосудистая система обеспечивает циркуляцию крови и лимфы в организме человека. Среди всех органов тела только поверхность глаз может получать кислород непосредственно из воздуха. Все остальные органы и ткани, даже кожа, получают кислород с током крови.
Кровь относится к соединительной ткани, клетки в ней занимают гораздо меньший объем, чем межклеточное вещество. Кровь состоит из жидкости с растворенными веществами (плазмы) и форменных элементов: лейкоцитов, эритроцитов и тромбоцитов. Плазма крови образует внутреннюю среду организма: жидкость из крови «выдавливается» в ткани и становится тканевой жидкостью, избыток тканевой жидкости попадает в лимфатические сосуды, становясь лимфой. Лимфа в итоге попадает в кровоток, возвращая жидкость в кровь.
Плазма крови содержит 0,9% хлорида натрия (поваренная соль), поэтому для внутривенных вливаний используют водный 0,9% раствор NaCl («физиологический», или изотонический раствор). Другие соли и органические вещества в сумме занимают около 9% массы плазмы. Большую роль играют белки плазмы, особенно альбумины.
Для поддержания постоянной кислотности в плазме присутствуют буферные системы. Водородный показатель крови человека (pH) в среднем равен 7,4. При его смещении в кислотную или основную сторону происходят химические реакции в буферных системах, которые уравновешивают изменения кислотности.
Поддерживать постоянство внутренней среды (гемостаз) необходимо для нормальной жизни клеток. Клеточная мембрана проницаема для молекул воды, поэтому если снаружи концентрация раствора повышается (гипертонический раствор), вода стремится выйти из клетки по закону осморегуляции. Клетка при этом скукоживается, становится неправильной формы, многие ее органеллы перестают правильно работать.
Если же концентрация соли в окружающем растворе слишком мала (гипотонический раствор), вода стремится внутри клетки, чтобы «разбавить» ее содержимое. В этом случае клетки разбухают, мембрана может не выдержать и лопнуть. Таким образом, изменение солености крови может привести к необратимым изменениям в организме.
Клетки составляют около 45% объема крови. Выделяют «белую» кровь – лейкоциты и «красную» кровь – эритроциты. Эритроциты имеют небольшой размер и двояковогнутую дисковидную форму. Такая форма дает большую площадь поверхности при минимальном объеме, что повышает эффективность газообмена. Эритроциты человека не имеют ядра, они теряют его в процессе созревания.
Эритроциты
В 1 мл крови содержится 4-6 млн эритроцитов. Их главная функция – перенос кислорода, за это отвечает крупный белок – гемоглобин. Одна молекула гемоглобина состоит из четырех полипептидных цепей (глобина) и железосодержащих групп (гема). Каждая молекула гемоглобина может перенести четыре молекулы кислорода, причем способность связывать и отдавать кислород зависит от условий среды: в более щелочной среде (легких) гемоглобин лучше связывает кислород, в то время как в более кислой среде (тканях), он лучше отдает его.
Помимо кислорода с гемоглобином могут связываться другие газы, самым опасным из которых является угарный (СО). Он образуется при неполном сгорании органики в условиях нехватки кислорода и не имеет цвета и запаха. Сродство гемоглобина к угарному газу гораздо выше, чем к кислороду, поэтому, однажды связавшись с гемоглобином, угарный газ будет еще долго циркулировать в крови. При этом свободных сайтов связывания кислорода станет меньше и ткани начнут страдать от его нехватки. Тяжелое отравление угарным газом требует немедленной специализированной помощи.
Лейкоциты
Лейкоциты являются основой клеточного иммунитета, это сферические клетки с достаточно крупным ядром. 1 мл крови содержит 4-11 тысяч лейкоцитов. Из всех клеток организма они наиболее уязвимы к действию радиации.
В зависимости от свойств лейкоциты делятся на несколько типов: содержащие гранулы, или гранулоциты (эозинофилы, нейтрофилы, базофилы) и не содержащие – агранулоциты.
Тромбоциты
Также кровь содержит тромбоциты, которые представляют собой отшнуровавшиеся куски гигантской клетки. Сами тромбоциты клетками не являются, они выглядят как мелкие пластинки неправильной формы и содержат только цитоплазму с гранулами. В гранулах находятся ферменты свертывающей системы, которые активируются при повреждении сосуда: образуется сгусток крови (тромб), который закупоривает поврежденный участок. 1 мл крови содержит 200-500 тысяч тромбоцитов.
Начало всем форменным элементам крови дают стволовые клетки красного костного мозга. Клетки крови постоянно обновляются, но у разных типов клеток обновление происходит с разной периодичностью. Эритроциты могут циркулировать 120-130 суток, в то время как лейкоциты и тромбоциты обычно живут не дольше 5-7 суток.
Иммунитет
Иммунная система защищает организм от воздействия бактерий, вирусов, грибов и паразитов, вредных веществ. В случае сбоя в работе иммунитета могут возникать аутоиммунные заболевания, в организме человека есть несколько механизмов, чтобы их предотвратить.
Основными органами иммунной системы являются селезенка, тимус (вилочковая железа) и костный мозг, где появляются и начинают созревать иммунные клетки. Клетки иммунитета циркулируют с кровью, располагаются в лимфоузлах и тканях, особенно много их в местах контакта с внешней средой (кожа, ЖКТ, дыхательные пути). Некоторые органы защищены от иммунного ответа барьерами, они называются иммунологически привилегированными органами. Это мозг, камеры глаза, семенники, плацента и плод и т.д. При травмах иммунологически привилегированных органов, когда нарушается целостность барьера, могут возникнуть аутоиммунные реакции.
Макрофаги
Другие клетки неспецифического иммунитета, которые первыми отвечают на воздействие, – макрофаги. Это крупные клетки, которые способны к активному передвижению и фагоцитозу, они пожирают бактерии и инородные тела. Самостоятельно распознавать чужеродные белки макрофаги не способны, их действие не избирательно. «Ориентируют» макрофагов на уничтожение конкретных клеток антитела.
Другими клетками иммунитета являются нейтрофилы и эозинофилы. Они, как и макрофаги, являются фагоцитами (то есть способны к фагоцитозу). Кроме того, в их цитоплазме есть гранулы с едкими веществами, которые высвобождаются при активации клетки. Запускается каскад химических реакций, в ходе которых образуются активные формы кислорода, это называется кислородным взрывом. Нейтрофилы и эозинофилы, а также окружающие здоровые клетки тоже погибают в результате кислородного взрыва, их остатки фагоцитируют макрофаги. Эозинофилы играют основную роль в развитии аллергий.
Фагоциты способны к направленному движению (хемотаксису), их можно обнаружить во многих тканях и органах, даже на поверхности кожи. Благодаря их постоянной активности большая часть атакующих агентов не вызывает инфекции, то есть системного ответа организма. Инфекция возникает в том случае, если иммунитет ослаблен (переутомление, переохлаждение, голодание и т.д.) или если инфекционный агент не был вовремя распознан фагоцитами.
Различают два вида иммунитета: клеточный и гуморальный. Гуморальный иммунитет – это система комплемента и циркулирующие с плазмой крупные молекулы – антитела. Белки системы комплемента «помечают» чужеродные агенты, вызывая направленное движение клеток иммунитета. Также система комплемента может формировать поры в мембране бактерий, что будет вести к их разрушению.
Антитела
Каждое антитело имеет на конце вариабельные домены (участки), комплементарные к чужеродному белку и специфические для конкретного возбудителя. Они прикрепляются к комплементарным участкам белков, «помечая» их для других клеток иммунного ответа, например, для фагоцитов. Также антитела могут слипаться между собой, что вызывает агглютинацию возбудителя. Особенно эффективны антитела против бактерий.
Клеточный иммунитет состоит из Т и В-лимофцитов. Т-лимофоциты могут быть двух видов: Т-хелперы и Т-киллеры. Т-киллеры клетки-убийцы, они запускают процессы апоптоза, то есть запрограммированной гибели клеток, их самоуничтожения. Это необходимо, если клетки организма заражены вирусами или бактериями или если при делении в геноме появились мутации (то есть Т-киллеры борются также с раковыми клетками).
В-лимфоциты синтезируют антитела и таким образом управляют гуморальным иммунитетом. При миграции В-клеток из крови в ткань они дифференцируются в плазматические клетки.
Лимфоциты действуют избирательно, они «настроены» на уничтожение возбудителя с конкретными антигенами. Чтобы правильно «настроить» лимфоциты, нужны антиген-презентирующие клетки (АПК). АПК фагоцитируют чужеродных агентов и выставляют на своей поверхности участки их молекул в комплексе с МНС II (главный комплекс гистосовместимости II). Т-хелперы способны распознавать чужие молекулы на поверхности АПК и активировать иммунный ответ.
Специфический иммунитет очень эффективен, но требует времени на развертывание. От попадания возбудителя в кровь до выработки антител может пройти несколько дней.
К неспецифическому иммунитету относят в основном фагоциты, которые пытаются поглотить или разрушить любое инородное тело или подозрительную клетку, которую встречают.
Немаловажную роль в иммунной защите организма играет воспаление. Это сложный стадийный процесс, который имеет следующие признаки: отек, местное повышение температуры, покраснение, боль и утрата функции органа. Благодаря отеку затрудняется распространение возбудителей по организму, место проникновения ограничивается. При повышении температуры повышается активность некоторых белков гуморального иммунитета, в то время как активность бактерий и скорость их размножения снижаются. Воспалительный процесс особенно эффективен против паразитов.
N-киллеры (натуральные киллеры), как и Т-киллеры могут запускать процессы клеточной гибели. Однако они, в отличии от Т-клеток, не требуют специальной подготовки – презентации антигена и активации. N-киллеры хорошо борются с опухолями.
Интерфероны – белки крови, которые составляют основу противовирусного гуморального иммунитета. Вирусы проникают в клетки организма, после чего здоровые клетки перестают синтезировать необходимые белки и начинают воспроизводить белки и генетическую информацию вирусов. Чтобы остановить распространение вирусных частиц и выиграть время на формирование специфического иммунитета, интерфероны замедляют или даже останавливают синтез белка в зараженных клетках.
Неспецифический иммунитет не требует времени на развертывание, его действие начинается уже в первые минуты после воздействия. Однако и точность неспецифического иммунитета низкая, при развитии иммунного ответа могут страдать здоровые клетки.
Синтез клеток специфического иммунитета (лимфоцитов) включает в себя элемент случайности, только так можно достигнуть неимоверного разнообразия иммунных клеток. Чтобы в кровоток не выходили клетки, которые способны атаковать собственный организм, они проходят строгий отбор в органах иммунной системы, где происходит созревание лимфоцитов (тимус, лимфоузлы). Если в результате отбора оказывается, что юный лимфоцит распознает клетки своего организма в качестве «врагов», в нем запускается процесс апоптоза, самоуничтожения.
Группы крови. Гемотрансфузия.
На поверхности эритроцитов могут находиться белки-агглютиногены А и В. В зависимости от того, какие агглютиногены есть в организме, выделяют: I группу крови (без агглютиногенов), II (только А), III (только В) и IV (оба агглютиногена).
При гемотрансфузии (переливании крови) необходимо учитывать группу, чтобы избежать возникновения иммунного конфликта. Если человеку с I группой крови перелить любую другую, клетки его иммунитета распознают чужеродные белки-агглютиногены и выработают антитела. В результате все чужие эритроциты «слипнутся» (агглютинируют), что может быть очень опасно для организма хозяина. Поэтому людям с I группой крови можно переливать только кровь такой же группы.
Если же перелить кому-нибудь эритроциты I группы крови, не имеющие белков-агглютиногенов, реакции иммунитета не последует. Можно сказать, что обладатели I группы самые «щедрые», потому что могут поделиться своей кровью со всеми. Также их называют универсальными донорами.
Обратная ситуация с IV группой: в крови таких людей нет антител ни к агглютиногену А, ни к агглютиногену В, поэтому им можно перелить кровь любой группы. Однако при попадании эритроцита группы IV в организм с другой группой произойдет агглютинация, поэтому обладателей IV группы крови можно назвать самыми «жадными» или универсальными реципиентами. Соответственно, II группу крови нельзя перелить обладателю III и наоборот.
Помимо агглютиногенов А и В существует много других белков, которые могут привести к возникновению иммунного конфликта. Международное общество трансфузиологов в настоящее время признает всего 36 систем деления крови на группы. Наиболее часто применяют систему АВО, в которой также учитывают резус-фактор. Впервые этот белок был описан у макак-резусов, за что и получил свое название.
Большая часть людей резус-положительна (Rh+), то есть имеет на эритроцитах белок-резус. Им можно переливать кровь с любым резусом. Людям же с резус-отрицательной кровью (Rh-) можно переливать только резус-отрицательную кровь.
Резус-фактор может стать причиной резус-конфликта между матерью и плодом. Если у резус-отрицательной матери будет резус-положительный ребенок, то при попадании крови плода в кровоток матери сформируются антитела к Rh+ белку. Чаще всего смешение крови происходит при родах и не несет опасности для ребенка. Если же антитела каким-то образом появились до родов, они могут проникнуть через плаценту и вызвать агглютинацию эритроцитов плода, что приведет к его гибели. Такая опасность часто возникает при повторной беременности резус-отрицательных женщин.
Распространенность групп крови варьирует в разных популяциях. На картинке приведена частота встречаемость разных групп по системе АВО в мире.
Кровь – это одна из базовых жидкостей человеческого организма, благодаря которой органы и ткани получают необходимое питание и кислород, очищаются от токсинов и продуктов распада. Эта жидкость может циркулировать в строго определённом направлении благодаря системе кровообращения. В статье мы поговорим о том, как устроен этот комплекс, благодаря чему поддерживается ток крови, и каким образом система кровообращения взаимодействует с другими органами.
Кровеносная система человека: строение и функции
Нормальная жизнедеятельность невозможна без эффективной циркуляции крови: она поддерживает постоянство внутренней среды, переносит кислород, гормоны, питательные компоненты и другие жизненно необходимые вещества, принимает участие в очищении от токсинов, шлаков, продуктов распада, накопление которых рано или поздно привело бы к гибели отдельно взятого органа или всего организма. Этот процесс регулируется кровеносной системой – группой органов, благодаря совместной работе которых осуществляется последовательное перемещение крови по телу человека.
Давайте рассмотрим, как устроена кровеносная система, и какие функции в организме человека она выполняет.
Строение кровеносной системы человека
На первый взгляд, кровеносная система устроена просто и понятно: она включает сердце и многочисленные сосуды, по которым течёт кровь, поочерёдно достигая всех органов и систем. Сердце – это своеобразный насос, который подстёгивает кровь, обеспечивая её планомерный ток, а сосуды играют роль путеводных трубок, которые определяют конкретный путь перемещения крови по организму. Именно поэтому кровеносную систему называют ещё сердечно-сосудистой, или кардиоваскулярной.
Поговорим более подробно о каждом органе, который относится к кровеносной системе человека.
Органы кровеносной системы человека
Как и любой организменный комплекс, кровеносная система включает ряд различных органов, которые классифицируются в зависимости от строения, локализации и выполняемых функций:
- Сердце считается центральным органом кардиоваскулярного комплекса. Оно представляет собой полый орган, образованный преимущественно мышечной тканью. Сердечная полость разделена перегородками и клапанами на 4 отдела – по 2 желудочка и предсердия (левые и правые). Благодаря ритмичным последовательным сокращениям сердце проталкивает кровь по сосудам, обеспечивая её равномерную и непрерывную циркуляцию.
- Артерии несут кровь от сердца к другим внутренним органам. Чем дальше от сердца они локализованы, тем тоньше их диаметр: если в области сердечной сумки средняя ширина просвета составляет толщину большого пальца, то в районе верхних и нижних конечностей его диаметр примерно равен простому карандашу.
Несмотря на визуальную разницу, и крупные и мелкие артерии имеют сходное строение. Они включают три слоя – адвентиций, медиа и интима. Адвентиций – наружный слой – образован рыхлой фиброзной и эластической соединительной тканью и включает множество пор, через которые проходят микроскопические капилляры, питающие сосудистую стенку, и нервные волокна, регулирующие ширину просвета артерии в зависимости от посылаемых организмом импульсов.
Медиа, занимающая срединное положение, включает эластические волокна и гладкие мышцы, благодаря которым поддерживается упругость и эластичность сосудистой стенки. Именно этот слой в большей степени регулирует скорость кровотока и артериальное давление, которое может варьироваться в допустимом диапазоне в зависимости от внешних и внутренних факторов, влияющих на организм. Чем больше диаметр артерии, тем выше процент эластических волокон в срединном слое. По этому принципу сосуды классифицируют на эластические и мышечные.
Интима, или внутренняя выстилка артерий, представлена тонким слоем эндотелия. Гладкая структура этой ткани облегчает циркуляцию крови и служит пропускным каналом для питания медии.
По мере истончения артерий эти три слоя становятся менее выраженными. Если в крупных сосудах адвентиций, медиа и интима хорошо различимы, то в тонких артериолах заметны только мышечные спирали, эластические волокна и тонкая эндотелиальная выстилка.
- Капилляры – самые тонкие сосуды кардиоваскулярной системы, которые являются промежуточным звеном между артериями и венами. Они локализованы в самых отдалённых от сердца участках и содержат не более 5% от общего объёма крови в организме. Несмотря на малый размер, капилляры крайне важны: они окутывают тело плотной сетью, снабжая кровью каждую клеточку организма. Именно здесь происходит обмен веществами между кровью и прилегающими тканями. Тончайшие стенки капилляров легко пропускают молекулы кислорода и питательных компонентов, содержащихся в крови, которые под воздействием осмотического давления переходят в ткани других органов. Взамен кровь получает содержащиеся в клетках продукты распада и токсины, которые по венозному руслу отправляются обратно к сердцу, а затем к лёгким.
- Вены – разновидность сосудов, которые переносят кровь от внутренних органов к сердцу. Стенки вен, как и артерий, образованы тремя слоями. Единственное отличие заключается в том, что каждый из этих слоёв менее выражен. Эта особенность регулируется физиологией вен: для циркуляции крови здесь не требуется наличия сильного давления сосудистых стенок – направление кровотока поддерживается благодаря наличию внутренних клапанов. Большее их количество содержится в венах нижних и верхних конечностей – здесь при низком венозном давлении без попеременного сокращения мышечных волокон кровоток был бы невозможен. В крупных венах, напротив, клапанов очень мало или нет вовсе.
В процессе циркуляции часть жидкости из крови просачивается через стенки капилляров и сосудов к внутренним органам. Эта жидкость, визуально чем-то напоминающая плазму, является лимфой, которая попадает в лимфатическую систему. Сливаясь воедино, лимфатические пути образуют довольно крупные протоки, которые в области сердца впадают обратно в венозное русло кардиоваскулярной системы.
Кровеносная система человека: кратко и понятно о кровообращении
Замкнутые циклы кровообращения образуют круги, по которым кровь движется от сердца к внутренним органам и обратно. Человеческая кардиоваскулярная система включает 2 круга кровообращения – большой и малый.
Кровь, циркулирующая по большому кругу, начинает путь в левом желудочке, затем переходит в аорту и по прилегающим артериям попадает в капиллярную сеть, распространяясь по всему организму. После этого происходит молекулярный обмен, а затем кровь, лишённая кислорода и наполненная диоксидом углерода (конечным продуктом при клеточном дыхании), попадает в венозную сеть, оттуда – в крупные полые вены и, наконец, в правое предсердие. Весь этот цикл у здорового взрослого человека занимает в среднем 20–24 секунды.
Малый круг кровообращения начинается в правом желудочке. Оттуда кровь, содержащая большое количество углекислого газа и прочих продуктов распада, попадает в лёгочный ствол, а затем в лёгкие. Там кровь насыщается кислородом и отправляется обратно к левому предсердию и желудочку. Этот процесс занимает порядка 4 секунд.
Помимо двух основных кругов кровообращения, в некоторых физиологических состояниях у человека могут появляться иные пути для циркуляции крови:
- Венечный круг является анатомической частью большого и отвечает исключительно за питание сердечной мышцы. Он начинается на выходе венечных артерий из аорты и заканчивается венозным сердечным руслом, которое образует венечный синус и впадает в правое предсердие.
- Виллизиев круг призван компенсировать недостаточность мозгового кровообращения. Он располагается в основании головного мозга, где сходятся позвоночные и внутренние сонные артерии.
- Плацентарный круг появляется у женщины исключительно во время вынашивания ребёнка. Благодаря ему плод и плацента получают от материнского организма питательные вещества и кислород.
Функции кровеносной системы человека
Основная роль, которую играет кардиоваскулярная система в организме человека, заключается в передвижении крови от сердца к другим внутренним органам и тканям и обратно. От этого зависит множество процессов, благодаря которым возможно поддержание нормальной жизнедеятельности:
- клеточное дыхание, то есть перенос кислорода от лёгких к тканям с последующей утилизацией отработанного углекислого газа;
- питание тканей и клеток поступающими к ним веществами, содержащимися в крови;
- поддержание постоянной температуры тела с помощью распределения тепла;
- обеспечение иммунного ответа после попадания в организм болезнетворных вирусов, бактерий, грибков и других чужеродных агентов;
- выведение продуктов распада к лёгким для последующей экскреции из организма;
- регуляция активности внутренних органов, которая достигается за счёт транспортировки гормонов;
- поддержание гомеостаза, то есть баланса внутренней среды организма.
Кровеносная система человека: кратко о главном
Подводя итоги, стоит отметить важность поддержания здоровья кровеносной системы для обеспечения работоспособности всего организма. Малейший сбой в процессах циркуляции крови способен стать причиной недополучения кислорода и питательных веществ другими органами, недостаточного выведения токсических соединений, нарушения гомеостаза, иммунитета и других жизненно важных процессов. Чтобы избежать серьёзных последствий, необходимо исключить факторы, провоцирующие заболевания кардиоваскулярного комплекса – отказаться от жирной, мясной, жареной пищи, которая забивает просвет сосудов холестериновыми бляшками; вести здоровый образ жизни, в которой нет места вредным привычкам, стараться в силу физиологических возможностей заниматься спортом, избегать стрессовых ситуаций и чутко реагировать на малейшие изменения в самочувствии, своевременно принимая адекватные меры по лечению и профилактике сердечно-сосудистых патологий.