Материнский иммунитет механизмы значение
Материнский иммунитет новорожденного. Материнские антитела.Ведущая роль в защите новорожденных животных от инфекционных заболеваний принадлежит пассивному материнскому иммунитету, медиаторами которого главным образом являются антитела, поступающие с молозивом и молоком матери или желтком яиц птиц. Поэтому в некоторых случаях вакцины используют в большей мере для защиты потомства, чем самих вакцинированных животных. Смертность в неонатальный период, особенно от вирусных желудочно-кишечных и респираторных заболеваний, выше, чем в другие периоды жизни, и имеется строгая корреляция с недостаточностью колострального иммунитета. Целенаправленная вакцинация матерей — эффективный способ создания иммунной защиты у новорожденных млекопитающих. Это особенно ценно потому, что подобная вакцинация перекрывает период формирования собственной иммунной системы новорожденных, когда они не способны адекватно отвечать на введение антигена. Новорожденные с первых минут постна-тального существования подвергаются воздействию множества патогенов, в то время как их организм еще не достаточно иммунокомпетентен. Для того, чтобы они могли выдержать переход из сравнительно безопасной внутриутробной жизни в окружающий мир с его многочисленными инфекционными агентами, особенно опасными для новорожденных, им нужно оказывать пассивную, то есть исходящую от материнского организма, защиту от инфекций. В данном случае, иммуноглобулины молозива и молока, а также желтка яиц следует рассматривать как «концентрат иммунологических познаний» матерей, который они приобретают в течение жизни, контактируя с многочисленными патогенными вирусами окружающей среды. Факторы материнского иммунитета в защите новорожденных могут реализоваться еще в период пренатального развития плода, а также непосредственно после его рождения. Материнские антитела (МАТ) могут передаваться с желтком у птиц, через плаценту у приматов или через молозиво и/или молоко у других млекопитающих. Различные виды млекопитающих существенно различаются способом передачи МАТ, зависящим от строения плаценты. У одних видов она тонкая, имеет 1-3 плацентарных слоя и способна пропускать IgG (но не IgM), и материнский иммунитет передается главным образом этим путем. У человека антитела, например IgG к полиовирусу, могут передаваться трансплацентарно. Однако плацента большинства домашних животных (крупный и мелкий рогатый скот, свиньи, лошади) более сложная (5-6 слоев) и, вероятно, служит барьером для IgG. У них материнские антитела передаются новорожденным через молозиво и значительно меньше с молоком. Различные виды млекопитающих различаются по классам и субклассам иммуноглобулинов, которые они передают с молозивом новорожденным. У птиц также имеется селективная передача IgG от матери потомству. Уровень IgG в желтке яиц составляет 25 г/л. Куры-несушки производят и передают потомству с желтком яиц около 100 г IgG в год. IgG вителлина включаются в циркуляцию с 12 дня инкубации яиц, некоторое количество IgG поступает также в амниотическую жидкость. Период полураспада колостральных антител составляет примерно 21 день у КРС и лошадей, 8—9 дней у собак и кошек. Через сутки после рождения концентрация иммуноглобулинов в сыворотке крови поросят примерно такая же, как и у их матерей, а иногда и выше. Пассивный иммунитет обеспечивают IgG, период полураспада которых составляет 14-21 день. У людей, приматов, грызунов, собак и кошек основным иммуноглобулином молозива и молока является IgA (~90%) при низкой концентрации IgG. Общее содержание иммуноглобулинов в постколостральную лактацию значительно снижается, однако при этом секреторный иммуноглобулин IgA по-прежнему остается основным. Практически у всех видов новорожденных млекопитающих пассивный локальный иммунитет в кишечнике обеспечивается иммуноглобулинами класса А (за исключением крупного рогатого скота и других жвачных). У них, по-видимому, IgA не доминирует ни при активном, ни при пассивном иммунитете. Существенное значение приобретает IgGl, происходящий из сыворотки крови. Неизвестно, в какой степени у жвачных формируется иммунологическая кооперация GALT — молочная железа, однако логично предположить, что она существует, но не так ярко выражена, как у других видов животных и человека. Известно, что с молозивом и молоком выделяется большое количество различных клеток. Среди них идентифицированы В- и Т-лимфоциты, а также нейтрофильные лейкоциты. Их функция, особенно у домашних животных, во многом не ясна. Имеются данные, свидетельствующие о возможности передачи клеточных факторов иммунитета новорожденным. Однако пассивная защита телят от ротавирусной инфекции при скармливании в течение первых пяти дней иммунного молозива, свободного от лимфоцитов, была более выраженной, чем пе-роральное введение 107 мононуклеарных клеток, полученных от тех же вакцинированных коров. — Также рекомендуем «Профилактика неонатальных вирусных инфекций. Вакцинация беременных.» Оглавление темы «Развитие и образование противовирусного иммунитета.»: |
Иммунологическая толерантность при беременности — отсутствие у матери иммунной реакции на развивающийся плод и плаценту, что может рассматриваться как успешная аллотрансплантация тканей, так как плод и плацента генетически отличаются от материнского организма[1]. В связи с этим самопроизвольный аборт нередко можно считать реакцией отторжения трансплантата из-за отсутствия иммунологической толерантности со стороны материнского организма[1]. Явление иммунологической толерантности при беременности является предметом изучения репродуктивной иммунологии[en].
Механизмы[править | править код]
Плацентарные механизмы[править | править код]
Плацента функционирует как иммунологический барьер между матерью и эмбрионом
Плацента является иммунологическим барьером между матерью и плодом, создавая для последнего иммунные привилегии. Для этого известно несколько механизмов:
- секреция нейрокинина В[en], связывающегося с фосфохолином[en], который подавляет идентификацию посторонних агентов иммунной системой. Такой же механизм используют некоторые нематоды, паразитирующие в теле хозяина, чтобы избежать столкновения с иммунной системой последнего[2];
- у плода имеются малые лимфоциты-супрессоры, подавляющие ответ материнских Т-киллеров на интерлейкин 2[1];
- в отличие от других клеток организма, клетки трофобласта плаценты не экспрессируют классические изотипы[en] главного комплекса гистосовместимости (МНС) I класса HLA-A[en] и HLA-В[en], из-за чего они не опознаются Т-киллерами как чужеродные. В то же время они имеют особые изотипы HLA-E[en] и HLA-G[en], которые препятствуют работе материнских натуральных киллеры, уничтожающих клетки, не экспресиирующие МНС I класса[en][3]. При этом трофобласты экспрессируют также типичный изотип HLA-C[en][3].
- Образование синцития без какого-либо межклеточного пространства между плодом и матерью ограничивает передвижение в плод подвижных иммунных клеток матери. Эпителия в данном случае недостаточно, поскольку некоторые иммунные клетки способны проходить между соседними эпителиальными клетками. По-видимому, слияние клеток вызывается вирусными гибридными белками[en] эндосимбиотического эндогенного ретровируса[en][4]. Первоначально одним из факторов вирулентности[en] этого вируса была его способность избегать контакта с иммунной системой путём создания изолированного синцития. Кроме того, это позволяло распространяться вирусу путём слияния заражённой клетки с незаражённой. Предполагается, что предки живородящих млекопитающих появились после инфицирования этим вирусом, и в результате плод получил ещё один уровень защиты от материнского иммунитета[5].
Тем не менее, плацента пропускает в плод материнские антитела класса IgG, осуществляющие его защиту от инфекций. Однако эти антитела не действуют на клетки плода, пока какие-либо его клетки не прошли через плаценту, где они могут встретиться с материнскими B-лимфоцитами, после чего последние начнут производить антитела против клеток плода. Кроме того, материнский организм вырабатывает антитела против клеток других групп крови по системе ABO, однако эти антитела обычно относятся к классу IgM[6] и поэтому не проникают через плаценту. В редких случаях возможна ABO-несовместимость, при которой антитела типа IgG, направленные против плода с другой группой крови, проникают через плаценту; такие случаи имеют место при сенсибилизации матерей (обычно с группой крови 0) антигенами из пищи или бактериями[7].
Другие механизмы[править | править код]
Плацентарные механизмы не объясняют всех наблюдаемых явлений, сопровождающих иммунологическую толерантность при беременности. Например, клетки крови плода проникают в кровоток матери за барьер, создаваемый плацентой[8].
Существует также гипотеза фетоэмбрионической защитной системы эутериев[en] (англ. Eutherian fetoembryonic defense system (eu-FEDS)), согласно которой растворённые в цитоплазме и заякоренные в мембране гликопротеины, экспрессирующиеся в гаметах, подавляют любой иммунный ответ на плод или плаценту[9]. Согласно этой модели, к этим иммуносупрессирующим гликопротеинам ковалентно приосединены специфические олигосахариды, выступающие в качестве «функциональных групп» при подавлении иммунного ответа. В этой модели в качестве главных гликопротеинов матки и плода у человека считают альфа-фетопротеин, CA-125 и гликоделин-А, также известный как белок плаценты 14 (англ. placental protein 14, PP14).
Другие гипотезы предполагают участие в механизмах толерантности регуляторных Т-лимфоцитов[10] и гуморального иммунитета[11]. Также предполагается, что при беременности на границе материнский организм — плод происходит подавление клеточного иммунитета и активация гуморального иммунитета[11].
Недостаточность толерантности[править | править код]
Самопроизвольный аборт нередко можно считать реакцией отторжения трансплантата[1], а хроническое отсутствие иммунологической толерантности по отношению к плоду может привести к бесплодию. Кроме того, известны такие состояния, как преэклампсия и резус-конфликт.
- Резус-конфликт вызывается появлением в материнском организме антител (в том числе класса IgG) против резус-фактора (Rh) — одного из антигенов эритроцитов. Это происходит, когда у эритроцитов матери резус-фактора нет, а у плода он есть, при этом небольшое количество резус-положительной крови от прошлых беременностей попало в кровоток матери, и в результате этого в материнском организме стали вырабатываться антитела типа IgG против Rh-антигена. Материнские IgG способны проходить в плод через плаценту, и, если содержание этих антител будет достаточным, может произойти разрушение эритроцитов резус-положительного плода, в результате чего развивается гемолитическая желтуха новорождённых. Степень развития этого заболевания будет тем выше, чем больше в прошлом у матери было резус-конфликтных беременностей.
- Одной из причин преэклампсии является иммунный ответ против плаценты. Считается, что это состояние можно предотвратить путём введения семенной жидкости партнёра, которая обладает иммуномодулирующими свойствами[12][13].
Беременности, при которых плод развивается из донорской яйцеклетки[en], то есть когда женщина, вынашивающая плод, менее генетически ему родственна, чем биологическая мать, часто осложняются гипертензией беременных и различными патологиями плаценты[en][14]. При такой беременности также более выражены локальные и системные иммунологические изменения, чем при нормальной беременности, поэтому было высказано предположения, что частые осложнения таких беременностей обусловлены сниженной иммунологической толерантностью со стороны вынашивающей плод женщины[14].
Другими нарушениями иммунологической толерантности, приводящими к бесплодию и выкидышам, является наличие антифосфолипидных и антиядерных антител[en].
Антифосфолипидные антитела действуют на фосфолипиды клеточных мембран. Было показано, что антитела против таких мембранных фосфолипидов, как фосфатидилсерин, фосфатидилхолин, фосфатидилглицерол[en], фосфатидилинозитол и фосфатидилэтаноамин[en] действуют на предзародыш[en]. Антитела против фосфатидилсерина и фосфатидилэтаноамина направлены против трофобласта[15]. Эти фосфалипиды играют важную роль в удержании клеток зародыша связанными с клетками матки и прохождении имплантации. Если у женщины имеются антитела против этих фосфолипидов, то они будут разрушены в ходе иммунного ответа, и зародыш не сможет прикрепиться к стенке матки. Эти антитела также опасны и для самой матки, поскольку изменяют кровоток в ней[15].
Антиядерные антитела вызывают воспаление в матке, не позволяющее произойти имплантации зародыша. Натуральные киллеры распознают клетки зародыша как раковые и атакуют их. У женщин с такими аномалиями развивается эндометриоз и бесплодие, сопровождаемое выкидышами, обусловленное высоким уровнем антиядерных антител. Итак, наличие антифосфолипидных и антиядерных антител оказывают разрушающее воздействие на имплантацию зародыша, чего не наблюдается при наличии антитироидных антител. Высокий уровень этих антител не имеет такого пагубного эффекта, однако он свидетельствует о риске выкидыша. Высокое содержание антитироидных антител также свидительствует о том, что женщина имеет нарушения в системе Т-лимфоцитов, поскольку оно является индикатором усиленной секреции цитокинов Т-лимфоцитами, что приводит к развитию воспаления в стенке матки[15].
В настоящий момент по-прежнему не существует препаратов, обеспечивающих предотвращение выкидышей путём подавления иммунитета матери[16].
Повышение чувствительности к инфекциям[править | править код]
Изменения иммунитета при беременности могут быть причиной повышенной чувствительности к ряду инфекционных заболеваний, например, к токсоплазмозу и листериозу, а также усугубить проявления и повысить смертность от таких заболеваний, как грипп и ветряная оспа[11].
См. также[править | править код]
- Иммунные привилегии
- Иммунологическая толерантность
- Иммунная система глаза
- Клетки Сертоли
Примечания[править | править код]
- ↑ 1 2 3 4 Clark D. A., Chaput A., Tutton D. Active suppression of host-vs-graft reaction in pregnant mice. VII. Spontaneous abortion of allogeneic CBA/J x DBA/2 fetuses in the uterus of CBA/J mice correlates with deficient non-T suppressor cell activity (англ.) // J. Immunol. (англ.)русск. : journal. — 1986. — March (vol. 136, no. 5). — P. 1668—1675. — PMID 2936806.
- ↑ Placenta ‘fools body’s defences’. BBC News (10 ноября 2007). Архивировано 22 апреля 2012 года.
- ↑ 1 2 Robert K. Creasy, Robert Resnik, Jay D. Iams. Maternal — Fetal Medicine: Principles and Practice. — 2003. — С. 31—32. — ISBN 978-0-7216-0004-8.
- ↑ Mi S., Lee X., Li X., et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis (англ.) // Nature : journal. — 2000. — February (vol. 403, no. 6771). — P. 785—789. — doi:10.1038/35001608. — PMID 10693809.
- ↑ Luis P. Villarreal. Can Viruses Make Us Human? (англ.) // Proceedings of the American Philosophical Society (англ.)русск. : journal. — 2004. — September (vol. 148, no. 3). — P. 314. Архивировано 14 августа 2011 года.
- ↑ Yves Barbreau, Olivier Boulet, Arnaud Boulet, Alexis Delanoe, Laurence Fauconnier, Fabien Herbert, Jean-Marc Pelosin, Laurent Soufflet. Magnetic immunodiagnostic method for the demonstration of antibody/antigen complexes especially of blood groups. — 2009. Архивировано 29 февраля 2012 года.
- ↑ David A. Paul. Perinatal Anemia // Merck manuals. — 2010.
- ↑ Williams Z., Zepf D., Longtine J., et al. Foreign fetal cells persist in the maternal circulation (англ.) // Fertil. Steril. : journal. — 2008. — March. — doi:10.1016/j.fertnstert.2008.02.008. — PMID 18384774.
- ↑ Clark G. F., Dell A., Morris H. R. e. a. The species recognition system: a new corollary for the human fetoembryonic defense system hypothesis // Cells Tissues Organs, 2001, 168 (1—2). — P. 113—121. — PMID 11114593.
- ↑ Trowsdale J., Betz A. G. Mother’s little helpers: mechanisms of maternal-fetal tolerance. (англ.) // Nature immunology. — 2006. — Vol. 7, no. 3. — P. 241—246. — doi:10.1038/ni1317. — PMID 16482172. [исправить]
- ↑ 1 2 3 Jamieson D. J., Theiler R. N., Rasmussen S. A. Emerging infections and pregnancy. // Emerg Infect Dis.. — 2006. — doi:10.3201/eid1211.060152.
- ↑ Sarah Robertson. Role of seminal fluid signalling in the female reproductive tract. Архивировано 22 апреля 2012 года.
- ↑ Sarah A. Robertson, John J. Bromfield, and Kelton P. Tremellen. Seminal ‘priming’ for protection from pre-eclampsia—a unifying hypothesis (англ.) // Journal of Reproductive Immunology : journal. — 2003. — Vol. 59, no. 2. — P. 253—265. — doi:10.1016/S0165-0378(03)00052-4.
- ↑ 1 2 van der Hoorn M. L., Lashley E. E., Bianchi D. W., Claas F. H., Schonkeren C. M., Scherjon S. A. Clinical and immunologic aspects of egg donation pregnancies: a systematic review. (англ.) // Human reproduction update. — 2010. — Vol. 16, no. 6. — P. 704—712. — doi:10.1093/humupd/dmq017. — PMID 20543201. [исправить]
- ↑ 1 2 3 Ann M. Gronowski. Handbook of Clinical Laboratory Testing During Pregnancy. — 2004. — ISBN 1-58829-270-3.
- ↑ Kaandorp S. P., Goddijn M., van der Post J. A., Hutten B. A., Verhoeve H. R., Hamulyák K., Mol B. W., Folkeringa N., Nahuis M., Papatsonis D. N., Büller H. R., van der Veen F., Middeldorp S. Aspirin plus heparin or aspirin alone in women with recurrent miscarriage. (англ.) // The New England journal of medicine. — 2010. — Vol. 362, no. 17. — P. 1586—1596. — doi:10.1056/NEJMoa1000641. — PMID 20335572. [исправить]
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2020;
проверки требуют 8 правок.
Иммуните́т (лат. immunitas — освобождение) человека и животных — способность организма поддерживать свою целостность и биологическую индивидуальность путём распознавания и удаления чужеродных веществ и клеток[1] (в том числе болезнетворных бактерий и вирусов). Характеризуется изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.
Назначение[править | править код]
Простейшие защитные механизмы, имеющие своей целью распознавание и обезвреживание патогенов, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые препятствуют заражению бактерии вирусом[2]. Одноклеточные эукариотные организмы применяют токсичные пептиды, чтобы предотвратить проникновение бактерий и вирусов в свои клетки[3].
По мере эволюции сложно организованных многоклеточных организмов у них формируется многоуровневая иммунная система, важнейшим звеном которой становятся специализированные клетки, противостоящие вторжению генетически чужеродных объектов[4].
У таких организмов иммунный ответ происходит при столкновении данного организма с самым различным чужеродным в антигенном отношении материалом, включая вирусы, бактерии и другие микроорганизмы, обладающие иммуногенными свойствами молекулы (прежде всего белки, а также полисахариды и даже некоторые простые вещества, если последние образуют комплексы с белками-носителями — гаптены[5]), трансплантаты или мутационно изменённые собственные клетки организма. Как отмечает В. Г. Галактионов, «иммунитет есть способ защиты организма от всех антигенно чужеродных веществ как экзогенной, так и эндогенной природы; биологический смысл подобной защиты — обеспечение генетической целостности особей вида в течение их индивидуальной жизни»[6]. Биологическим смыслом такой защиты является обеспечение генетической целостности особей вида на протяжении их индивидуальной жизни, так что иммунитет выступает как фактор стабильности онтогенеза[7].
Характерные признаки иммунной системы[8]:
- способность отличать «своё» от «чужого»;
- формирование памяти после первичного контакта с чужеродным антигенным материалом;
- клональная организация иммунокомпетентных клеток, при которой отдельный клеточный клон способен, как правило, реагировать лишь на одну из множества антигенных детерминант.
Классификации[править | править код]
Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют молекулы, находящиеся в плазме крови, а не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы.
Иммунитет также классифицируют на врождённый и адаптивный.
Врождённый (неспецифический, наследственный[9]) иммунитет обусловлен способностью идентифицировать и обезвреживать разнообразные патогены по наиболее консервативным, общим для них признакам, дальности эволюционного родства, до первой встречи с ними. В 2011 году была вручена Нобелевская премия в области медицины и физиологии за изучение новых механизмов работы врождённого иммунитета (Ральф Стайнман, Жюль Хоффман и Брюс Бётлер)[10].
Осуществляется большей частью клетками миелоидного ряда, не имеет строгой специфичности к антигенам, не имеет клонального ответа, не обладает памятью о первичном контакте с чужеродным агентом.
Адаптивный (устар. приобретённый, специфический) иммунитет имеет способность распознавать и реагировать на индивидуальные антигены, характеризуется клональным ответом, в реакцию вовлекаются лимфоидные клетки, имеется иммунологическая память, возможна аутоагрессия.
Классифицируют на активный и пассивный.
- Приобретённый активный иммунитет возникает после перенесённого заболевания или после введения вакцины.
- Приобретённый пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорождённому с молозивом матери или внутриутробным способом.
Другая классификация разделяет иммунитет на естественный и искусственный.
- Естественный иммунитет включает врождённый иммунитет и приобретённый активный (после перенесённого заболевания), а также пассивный иммунитет при передаче антител ребёнку от матери.
- Искусственный иммунитет включает приобретённый активный после прививки (введение вакцины) и приобретённый пассивный (введение сыворотки).
Органы иммунной системы[править | править код]
Выделяют центральные и периферические органы иммунной системы. К центральным органам относят красный костный мозг и тимус, а к периферическим — селезёнку, лимфатические узлы, а также местноассоциированную лимфоидную ткань: бронхассоциированную (БАЛТ), кожноассоциированную (КАЛТ), кишечноассоциированную (КиЛТ, пейеровы бляшки).
Красный костный мозг — центральный орган кроветворения и иммуногенеза. Содержит самоподдерживающуюся популяцию стволовых клеток. Красный костный мозг находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. Здесь происходит дифференцировка В-лимфоцитов из предшественников. Содержит также Т-лимфоциты.
Тимус — центральный орган иммунной системы. В нём происходит дифференцировка Т-лимфоцитов из предшественников, поступающих из красного костного мозга.
Лимфатические узлы — периферические органы иммунной системы. Они располагаются по ходу лимфатических сосудов. В каждом узле выделяют корковое и мозговое вещество. В корковом веществе есть В-зависимые зоны и Т-зависимые зоны. В мозговом есть только Т-зависимые зоны.
Селезёнка — паренхиматозный зональный орган. Является самым крупным органом иммунной системы, кроме того, выполняет депонирующую функцию по отношению к крови. Селезёнка покрыта капсулой из плотной соединительной ткани, которая содержит гладкомышечные клетки, позволяющие ей при необходимости сокращаться. Паренхима представлена двумя функционально различными зонами: белой и красной пульпой. Белая пульпа составляет 20 %, представлена лимфоидной тканью. Здесь имеются В-зависимые и Т-зависимые зоны. И также здесь есть макрофаги. Красная пульпа составляет 80 %. Она выполняет следующие функции:
- Депонирование зрелых форменных элементов крови.
- Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов.
- Фагоцитоз инородных частиц.
- Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.
Иммунокомпетентные клетки[править | править код]
К иммунокомпетентным клеткам относят макрофаги и лимфоциты. Эти клетки совместно участвуют в инициации и развитии всех звеньев адаптивного иммунного ответа (система трёхклеточной кооперации).
Клетки, участвующие в иммунном ответе[править | править код]
T-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, отвечающая главным образом за клеточный иммунный ответ. Включает в себя субпопуляции Т-хелперов (дополнительно разделяются на Th1, Th2, а также выделяют Treg, Th9, Th17, Th22,), цитотоксических Т-лимфоцитов,NKT. Включает в себя эффектор, регуляторы и долгоживущие клетки-памяти. Функции разнообразны: как регуляторы и администраторы иммунного ответа (Т-хелперы), так и киллеры (цитотоксические Т-лимфоциты).
B-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, синтезирующая антитела и отвечающая за гуморальный иммунный ответ.
Натуральные киллеры[править | править код]
Натуральные киллеры (NK-клетки) — субпопуляция лимфоцитов, обладающая цитотоксичной активностью, то есть они способны: контактировать с клетками-мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз. Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.
Нейтрофилы[править | править код]
Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 65-70 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим (мурамидаза), липопероксидаза и другие антибиотические белки. Нейтрофилы способны самостоятельно мигрировать к месту нахождения антигена, так как у них есть рецепторы хемотаксиса (двигательная реакция на химическое вещество). Нейтрофилы способны «прилипать» к эндотелию сосудов и далее мигрировать через стенку к месту нахождения антигенов. Далее проходит фагический цикл, и нейтрофилы постепенно заполняются продуктами обмена. Далее они погибают и превращаются в клетки гноя.
Эозинофилы[править | править код]
Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Эозинофилы узнают гельминтов и экзоцитируют в зону контакта вещества — перфорины. Эти белки встраиваются в билипидный слой клеток гельминта. В них образуются поры, внутрь клеток устремляется вода, и гельминт погибает от осмотического шока.
Базофилы[править | править код]
Базофилы составляют 0,5-1 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в ткани. Тучные клетки располагаются в различных тканях, лёгких, слизистых и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). При этом происходит взаимодействие с иммуноглобулином Е (IgE). Таким образом они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа.
Моноциты[править | править код]
Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани, существуют несколько видов макрофагов в зависимости от типа ткани, в которой они находятся, в том числе:
- Некоторые антигенпредставляющие клетки, в первую очередь дендритные клетки, роль которых — поглощение микробов и «представление» их Т-лимфоцитам.
- Клетки Купфера — специализированные макрофаги печени, являющиеся частью ретикулоэндотелиальной системы.
- Альвеолярные макрофаги — специализированные макрофаги лёгких.
- Остеокласты — костные макрофаги, гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена.
- Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.
- Кишечные макрофаги и т. д.
Функции их разнообразны и включают в себя фагоцитоз, взаимодействие с адаптивной иммунной системой и инициацию и поддержание иммунного ответа, поддержание и регулирование процесса воспаления, взаимодействие с нейтрофилами и привлечение их в очаг воспаления, выделение цитокинов, регуляция репарации, регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления, синтез компонентов системы комплемента.
Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают прохождение врождённого иммунного ответа, который является неспецифичным (в патологии неспецифичный ответ на альтерацию называют воспалением, воспаление является неспецифической фазой последующих специфических иммунных).
Иммунно привилегированные области[править | править код]
В некоторых частях организма млекопитающих и человека появление чужеродных антигенов не вызывает иммунного ответа. К таким областям относятся мозг и глаза, семенники, эмбрион и плацента. Нарушение иммунных привилегий может становиться причиной аутоиммунных заболеваний.
Иммунные заболевания[править | править код]
Аутоиммунные заболевания[править | править код]
При нарушении иммунной толерантности или повреждении тканевых барьеров возможно развитие иммунных реакций на собственные клетки организма. Например, патологическая выработка антител к ацетилхолиновым рецепторам собственных мышечных клеток вызывает развитие миастении[11].
Иммунодефицит[править | править код]
См. также[править | править код]
- Иммунная система
- Врождённый иммунитет
- Приобретенный иммунитет
- Иммунотерапия рака
- Иммунитет растений
- Химера (биология)
Примечания[править | править код]
- ↑ ИММУНИТЕТ • Большая российская энциклопедия — электронная версия. bigenc.ru. Дата обращения 8 апреля 2020.
- ↑ Bickle T. A., Krüger D. H. Biology of DNA restriction // Microbiological Reviews. — 1993. — Vol. 57, no. 7. — P. 434—450. — PMID 8336674.
- ↑ Черешнев В.А. Черешнева М.В. Иммунологические механизмы локального воспаления. Медицинская иммунология 2011 т.13 №6 стр.557-568 РО РААКИ. cyberleninka.ru. Дата обращения 16 мая 2020.
- ↑ Travis J. On the Origin of the Immune System // Science. — 2009. — Vol. 324, no. 5927. — P. 580—582. — doi:10.1126/science.324_580. — PMID 19407173.
- ↑ Genetics of the Immune Response / Ed. by E. Möller and G. Möller. — New York: Plenum Press, 2013. — viii + 316 p. — (Nobel Foundation Symposia, vol. 55). — ISBN 978-1-4684-4469-8. — P. 262.
- ↑ Галактионов В.Г. Проблемы эволюционной иммунологии. cyberleninka.ru. Медицинская иммунология 2004 т.6 №3-5 РО РААКИ. Дата обращения 16 мая 2020.
- ↑ Галактионов, 2005, с. 8.
- ↑ Галактионов, 2005, с. 8, 12.
- ↑ Иммунитет // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
- ↑ Нобелевская премия по физиологии и медицине 2011 (англ.). www.nobelprize.org.
- ↑ Галактионов, 2005, с. 392.
Литература[править | править код]
- Галактионов В. Г. . Эволюционная иммунология. — М.: Академкнига, 2005. — 408 с. — ISBN 5-94628-103-8.
- Хаитов Р. М. . Иммунология. — М.: ГЕОТАР, 2006. — 320 с. — ISBN 978-5-9704-1288-6.
- Ярилин А. А. . Иммунология. — М.: ГЕОТАР, 2010. — 737 с. — ISBN 978-5-9704-1319-7.