Мрт головного мозга когда появилось

Мрт головного мозга когда появилось thumbnail

Давайте приоткроем завесу истории развития магнитно-резонансной томографии и заглянем в прошлое. МРТ прошла долгий путь совершенствования и открытий, пока не стала такой, какой мы ее сейчас знаем. Идея магнитно-резонансной томографии является одной из самых выдающихся медицинских инноваций ХХ века, сравнимая лишь с предложением применять рентгеновские лучи в медицинской практике.

Моментом основания МРТ принято считать 1973 год. Именно тогда профессор химии и радиологии Университета штата Нью-Йорк Пол Лотербур опубликовал в научном журнале «Nature» статью под заголовком «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса».

Однако свою историю томография начинает несколькими десятилетиями ранее. Перенесемся в 1946 год, когда двое ученых из США, Феликс Блох из Станфордского университета и Ричард Пурселл из Гарварда, независимо один от другого описали физическое явление, которое основано на магнитных свойствах атомных ядер некоторых элементов периодической системы. Ими было установлено, что находящиеся в магнитном поле ядра поглощают энергию в радиочастотном диапазоне и в последствии переизлучают ее при переходе к их первоначальному энергетическому состоянию. Это явление было названо ядерно-магнитным резонансом. Почему так? Первая часть слова «ядерный» акцентирует особенность взаимодействия магнитных моментов ядер и поля, «магнитный» имеет отношение к ориентации моментов под действием постоянного магнитного поля, слово «резонанс» указывает на строгую связанность и неразрывность указанных параметров.

В 1952 году, «за развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия» оба ученых стали обладателями Нобелевской премии в области физики. В последующие два десятилетия до 70-х годов прошлого века теория по ЯМР развивалась и эффект ядерно-магнитного резонанса использовался в физике и химии для молекулярного анализа. В 1972 году, незадолго до официального года основания магнитно-резонансной томографии, были проведены первые клинические испытания компьютерного томографа, принцип работы которого основан на воздействии на организм рентгеновским излучением. Событие показало, что медицинские учреждения готовы тратить колоссальные деньги на современное и информативное оборудование для визуализации структур организма и проведения качественно новой диагностики, а дата испытания КТ стала важной вехой в истории развития технологии МРТ.

Затем наступил 1973 год, когда, как мы уже упоминали, П. Лотербур опубликовал свою статью, в которой он представил пространственные изображения объектов, полученные по спектрам магнитного резонанса протонов воды из этих объектов. Данная работа легла в основу метода МРТ и стала фундаментом дальнейших исследований. К слову, в статье Лотербур указал на факт, что клетки злокачественных опухолей отличаются от клеток нормальной ткани характеристикой получаемого сигнала, и просил администрацию университета послать заявку на патент, однако руководство не верило в его идею, заявка подана не была, и Лотербур на свое открытие патент не получил.

Позже доктор Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения, за что вместе с П. Лотербуром был удостоен Нобелевской премии в 2003 году в области медицины и физиологии за решающий вклад в изобретение и развитие МРТ. В создание метода большой вклад внес также америко-армянский ученый Реймонд Дамадьян, который является одним из первых исследователей принципа томографии, создателем первого коммерческого сканера и держателем патента на метод магнитно-резонансной томографии. Первый МРТ-аппарат был создан и испытан Дамадьяном с двумя его помощниками — Майклом Голдсмитом и Ларри Минковым в 1977 году. В 1988 году президент Соединенных Штатов Рональд Рэйган вручил Р. Дамадьяну Национальную медаль США в области технологий. Более подробно про физико-математические основы и принципы МРТ можно прочитать здесь.

Однако вернемся снова в 70-е годы ХХ века, чтобы проследить дальнейшее развитие томографии. В 1975 году Ричард Эрнст предложил проведение МРТ с применением  частотного и фазового кодирования – именно тот метод, который существует и в настоящее время. Пятью годами позже, в 1980 г Эдельштейн с сотрудниками продемонстрировали изображение организма человека при помощи МРТ. Для получения одного снимка им требовалось около пяти минут.

Метод томографии развивался буквально семимильными шагами — к 1986 г. длительность отображения было уменьшена до 5 секунд без потери качества изображений.

Несколькими годами позже, в 1988 году Думоулин усовершенствовал  метод МРТ-ангиографии, которая показывала отображение кровотока без применения контрастирующих препаратов. Затем в 1989 г. был представлен метод так называемой планарной томографии, которая применялась для визуализации участков головного мозга, ответственных за двигательную и мыслительную функции.

В 1991 г. Нобелевской премии в области химии был удостоен ученый Ричард Эрнст за достижения в изучении импульсных МРТ и ЯМР и свои работы в области Фурье-ЯМР-спектроскопии.

В 1994 г исследователи Принстонского университета и Нью-Йоркского университета в Стоуни Брок показали отображение гиперполяризированного газа 129Xe для изучения процессов дыхания.

Что касается отечественной науки, в Советском Союзе устройство и способ для ЯМР-исследования предложил В.А. Иванов в 1960 году. Некоторое время существовал именно такой термин – ЯМР-томография, однако после событий на Чернобыльской АЭС  в 1986 году в связи с развитием у людей радиофобии и для того, чтобы метод не ассоциировался также с ядерным оружием, термин был заменен на устоявшееся и привычное название — МРТ.

За рубежом первые томографы для изучения организма человека появились в клиниках в начале 80-х годов прошлого столетия, к началу 90-х годов в мире работало около 6000 аппаратов, хотя большая их часть приходилась на Японию и США. Благодаря своему стремительному развитию в настоящее время МРТ стала отдельной областью медицины, без которой сложно представить себе диагностику головного мозга, позвоночника, спинномозгового канала, гипофиза, коленного, тазобедренного, лучезапястного, локтевого, плечевого суставов,  печени, селезенки, почек, надпочечников, поджелудочной железы, других органов брюшной полости, забрюшинного пространства, молочных желез, матки, яичников, предстательной железы, сосудов, других структур.

Данный неинвазивный и безопасный способ обследования разрешает обнаружить на самых ранних этапах развития тяжелые заболевания и патологии: новообразования, аномалии развития, нарушения сосудов, функций сердца, мозга, внутренних структур организма, изменения позвонков, межпозвоночные грыжи, артриты, бурситы суставов, остеохондроз, переломы, ушибы, другие травмы, воспалительные и инфекционные процессы. Помимо этого, томография позволяет визуализировать структуру органов и тканей, измерять скорость тока спинномозговой жидкости, крови,  оценивать уровень  диффузии в тканях, определять активацию коры  головного мозга при функционировании органов, за которые отвечает этот участок коры (так называемая функциональная МРТ). К слову, функциональная МРТ стала играть важную роль в области визуализации процессов головного мозга с начала 90-х годов прошлого века по причине отсутствия воздействия радиацией, низкой инвазивности, относительно широкой доступности.

В современной клинической практике используются томографы различной разрешающей способности, которая определяется напряженностью создаваемого магнитного поля. Наиболее оптимальными являются высокопольные и сверхвысокопольные аппараты напряженностью от 1,5 Тл и выше. Такое оборудование позволяет выявлять минимальные по величине нарушения (опухолевые очаги, участки рассеянного склероза, артерио-венозные мальформации, аневризмы, пр.), проводить обследование в разных плоскостях, получать трехмерные изображения для оценки взаимного расположения структур организма.

Читайте также:  Мрт головного мозга вредно для организма

Сейчас МРТ влияет на решения в большинстве направлений медицины: онкологии, травматологии, кардиологии, хирургии, нефрологии, ортопедии, маммологии, нейрохирургии, радиологии и прочих областях. Ценность МРТ объясняется не только информативностью, но и тем, что обследование не вызывает побочных эффектов, является абсолютно безболезненным, может выполняться с использованием контрастного препарата, который не вызывает привыкания и в большинстве случаев аллергических реакций.

Своевременность и точность диагностики делает магнитно-резонансную томографию незаменимой и эффективной для назначения лечения, скорейшего выздоровления.

Источник

article142.jpg

В 1946 году Феликс Блох из Стенфордского университета и Эдвард Парселл из Гарвардского университета независимо друг от друга открыли явление ядерного магнитного резонанса. В 1952 году оба они были удостоены Нобелевской премии по физике «за развитие новых методов для точных ядерных магнитных измерений и связанные с этим открытия». В период с 1950 по 1970 годы, ЯМР развивался и использовался для химического и физического молекулярного анализа. В 1972 году прошел клинические испытания первый компьютерный томограф (КТ), основанный на рентгеновском излучении. Эта дата стала важной вехой в истории МРТ, так как показала, что медицинские учреждения были готовы тратить большие суммы денег на оборудование для визуализации.
Несмотря на тот факт, что первым, кто предложил использование магнитно-резонансной томографии для диагностики заболеваний, был советский ученый Владислав Александрович Иванов (его изобретение, включая способ и устройство аппарата, удостоверено патентом СССР от 1960 г.), годом основания магнитно-резонансной томографии принято считать 1973 год.
В этот год профессор химии и радиологии из Нью-Йоркского университета Стони Брук — Пол Лотербур, опубликовал в журнале Nature статью «Создание изображения с помощью индуцированного локального взаимодействия; примеры на основе магнитного резонанса» в которой были представлены трехмерные изображения объектов, полученные по спектрам протонного магнитного резонанса воды из этих объектов. Эта работа и легла в основу метода магнитной резонансной томографии (МРТ). Позже доктор Питер Мэнсфилд усовершенствовал математические алгоритмы получения изображения. Оба они были удостоены Нобелевской премии за 2003 год в области физиологии и медицины за решающий вклад в изобретение и развитие метода магнитной резонансной томографии.
Мрт головного мозга когда появилосьМрт головного мозга когда появилосьМрт головного мозга когда появилосьМрт головного мозга когда появилосьМрт головного мозга когда появилось

В 1975 году Ричард Эрнст предложил магнитно-резонансную томографию с использованием фазового и частотного кодирования, метод, который используется в МРТ в настоящее время. В 1980 году Эдельштейн с сотрудниками, используя этот метод, продемонстрировали отображение человеческого тела. Для получения одного изображения требовалось приблизительно 5 минут. К 1986 году время отображения было снижено до 5 секунд без какой-либо значимой потери качества. В том же году был создан ЯМР-микроскоп, который позволял добиваться разрешения 10 mм на образцах размером в 1 см. В 1988 году Думоулин усовершенствовал МРТ-ангиографию, которая делала возможным отображение текущей крови без применения контрастирующих агентов. В 1989 году был представлен метод планарной томографии, который позволял захватывать изображения с видеочастотами (30 мс). Многие клиницисты считали, что этот метод найдет применение в динамической МР-томографии суставов, но вместо этого, он был использован для отображения участков мозга, ответственных за мыслительную и двигательную деятельность. В 1991 году Ричард Эрнст был удостоен Нобелевской премии по химии за достижения в области импульсных ЯМР и МРТ. В 1994 году исследователи Нью-Йоркского государственного университета в Стоуни Брок и Принстонского университета продемонстрировали отображение гиперполяризированного газа 129Xe для исследования процессов дыхания. В создание магнитно-резонансной томографии известный вклад внёс также Реймонд Дамадьян, один из первых исследователей принципов МРТ, держатель патента на МРТ и создатель первого коммерческого МРТ-сканера.
Мрт головного мозга когда появилось

Первые томографы для исследования тела человека появились в клиниках в 1980-1981 годах, а сегодня томография стала целой областью медицины.
В СССР первый рабочий аппарат МРТ был создан в 1984 году для Всесоюзного кардиологического научного центра (ВКНЦ). До 1986 года этот метод обследования назывался ядерно-магнитно-резонансной томографией, или ЯМР. Однако после аварии на Чернобыльской атомной электростанции, в общественном сознании в нашей стране и за рубежом сложилось негативное отношение к слову «ядерный», и термин ЯМР был заменен на магнитно-резонансную томографию, или привычное нам сегодня МРТ. В 2003 году изобретение МРТ было удостоено Нобелевской премии, которая была вручена не российскому изобретателю, а британцу Питеру Мэнсфилду и американцу Полу Лотербуру. В.А. Иванов за свое изобретение был награжден серебряной медалью Кембриджского университета, а в 1999 году был признан в США человеком года.
Также несколько слов необходимо создать о разработке МР-контрастных препаратов. Возможность создания таких веществ обсуждалась американскими специалистами — Марией Еленой Мендонцей-Диас, полом С. Лаутербургом, Робертом Браншем, Геральдом Вольфом, а коммерческое производство началось в Европе фирмой Шеринг, получившей патент на Gd-DTPA. В 1984г. Денис Х. Капп и Вольфганг Шернер опубликовали МР-томограммы с контрастным усилением. В 1988г. Магневист был разрешен к применению. В 1991г. компанией Никомед был разработан препарат Омнискан.
 

Похожие статьи:

Новости → Компания General Electric отозвала более 12 тысяч магнитно-резонансных томографов

Статьи → Возможности магнитно-резонансной и перфузионной компьютерной томографии в диагностике глиальных опухолей головного мозга

Новости → На каждого «Русского островитянина» по 350 тысяч «ядерных» рублей!

Новости → Томография покрытая мраком

Статьи → Магнитно-резонансная томография в диагностике и мониторинге метастатических опухолей позвоночника после лучевой терапии

Источник

Эффективные диагностические процедуры делают жизнь лучше — как медикам, так и пациентам. Первые получают больше информации, и потому поставить диагноз могут точнее, на процесс тратится меньше времени. Вторая сторона также выигрывает — как минимум сокращается путь, который человек преодолевает, посещая кабинеты врачей. Хотя над этим превалирует желание вовсе не посещать докторов, оставаясь всегда здоровым. Впрочем, это возможно лишь в идеальном мире, а мы живем в несовершенном.

Как-то мы разузнали, как работает капсульная эндоскопия, предназначенная для безболезненных диагностических процедур и исследований труднодоступных участков желудочно-кишечного тракта. На этот раз попробуем разобраться в том, как работает магнитно-резонансная томография — еще один безболезненный способ получения данных о состоянии внутренних органов и тканей человека.

Обращаем ваше внимание, что материал публикуется исключительно в познавательных целях и не является инструкцией, рекомендацией, а также официальным, научным или медицинским документом.

Содержание

  • Простая теория
  • Что делать нельзя
  • Испытано на себе
  • Как долго может длиться сканирование
  • Есть ли откровенно сложные для томографа задачи?
  • Почему нельзя двигаться?
  • Зубы надо сжимать, чтобы пломбы не вылетели?
  • ПО, катушки
  • Красивая картинка
Читайте также:  Травма мениска коленного сустава мрт

Простая теория

Вначале немного простой теории. МРТ (MRI в английском языке) представляет собой способ получения послойного изображения внутренней структуры того или иного объекта. Грубо говоря, МРТ помогает добыть виртуальные срезы тканей и органов живого человека без вторжения в его тело — это так называемый неинвазивный метод.

В основе лежит явление, которое именуют ядерным магнитным резонансом (ЯМР), и в прошлом к аббревиатуре МРТ в начале добавляли букву «Я» (в английском вместо MRI говорили NMR). Но от слова «ядерный» решили избавиться по простой причине — чтобы не нервировать народ, хотя с бомбами или радиоактивными элементами периодической таблицы Менделеева ничего общего здесь нет.

Если это как-то поможет понять лежащие в основе явления процессы, речь в данном случае идет об измерении электромагнитного отклика атомных ядер, возбуждаемых электромагнитными волнами разных сочетаний (поэтому, кстати, и слышен ритмичный звук разной тональности) в постоянном магнитном поле высокой напряженности, указанной в теслах.

Напряженность поля влияет на качество получаемой картинки. Чем мощность меньше, тем более узкий спектр применимости томографов, которые, в свою очередь, подразделяются на несколько основных типов — от низкопольных до сверхвысокопольных (от слова «поле», а не «пол»).

Утверждать, что чем мощнее, тем лучше, не станем. Скажем так: чем мощнее, тем более универсальна и точна система. Но чем более она универсальна, тем выше ее цена, которая может исчисляться сотнями тысяч долларов и даже переваливать за миллион.

У низкопольных напряженность поля составляет до 0,5 Т. Считается, что такие томографы без контрастирования позволяют получить базовую информацию. Затем следуют среднепольные (1 Т), высокопольные (1,5 Т) и сверхвысокопольные (3 Т). Есть и более мощные, но обычным медучреждениям они не нужны.

«Многие спрашивают, какая разница между 3 Т и 1,5 Т? Принципиальное отличие — в детализации и четкости картинки», — пояснила заведующая кабинетом МРТ центра «Томография» Веста Короленок. В качестве примера она рассказала о пациенте с небольшой опухолью: аппарат с 1,5 Т ее не заметил, а на 3 Т патологию увидели, отправив человека в один из РНПЦ.

Есть также томографы закрытого и открытого типа. Одна из особенностей первых, которые более распространены, заключается в ограничениях по габаритам пациента — очень полный человек попросту не поместится в «трубу». Кроме того, страдающие от клаустрофобии могут чувствовать себя неуютно в замкнутом пространстве, где к тому же нельзя двигаться. Открытые томографы позволяют проводить исследования отдельных суставов, позвоночника и даже головы. Слабая сторона томографов открытого типа — более низкая разрешающая способность: все они являются низкопольными и имеют напряженность магнитного поля не более 0,35 Т.

Что делать нельзя

Попасть внутрь томографа можно, но не всем. Прежде всего туда нельзя обладателям имплантов разных типов: от кардиостимуляторов до слуховых аппаратов. Причин несколько: во-первых, магнитное поле может повредить и/или нарушить работу импланта, во-вторых, есть шанс нанести температурную или иную травму пациенту, в-третьих, наличие импланта негативно скажется на результатах сканирования.

То же касается металла в теле — «спиц» и штифтов, дроби и осколков, хирургических зажимов и подобных элементов (титановые — исключение).

В некоторых случаях при сканировании применяются контрастирующие препараты, которые дополнительно увеличивают четкость изображения. Их компоненты могут вызывать аллергию, они обычно противопоказаны беременным женщинам, а также в период лактации.

Испытано на себе

В «Томографии» установлен сверхвысокопольный Siemens Magnetom Spectra 3 T. Легким агрегат назвать нельзя: его вес в снаряженном состоянии составляет около 7,3 тонны при длине туннеля в 173 см. Система позволяет применять до 120 элементов катушек для покрытия всей анатомической зоны (например, всей центральной нервной системы). Используется фирменное программное обеспечение Siemens, которое в первую очередь влияет на качество сканирования и итогового изображения со срезами толщиной 0,5—1 мм.

Обследуемого облачают в одноразовый безразмерный костюм, в котором отправляют в жерло томографа. Человека укладывают на стол (именно так называется конструкция, которая затем скрывается в туннеле). Чтобы как-то уберечь уши от громкого звука, на голову надевают наушники, из которых звучит легкая музыка. При желании можно вооружиться собственным трек-листом или аудиокнигой.

Это удивило: какие наушники, если металлов быть не должно? Все просто — звук в наушники-воронки передается не по проводам, а по трубкам из эластичного пластика, поэтому композиции звучат как из колодца. Стоит отметить, что заглушить «напевы» томографа аксессуар способен не полностью.

Выпрыгнуть из аппарата нельзя, поэтому на всякий случай в руку пациенту вкладывают грушу (правильно — сигнальное устройство). При приступах паники или по каким-либо другим причинам достаточно сжать ее, и у рентгенолаборанта, контролирующего процесс в помещении рядом (в так называемой пультовой), сработает чрезвычайно громкая сигнализация.

«Казалось бы, все хорошо, пациента уложили, но только успели закрыть дверь, как грушу уже нажали», — рассказывает нам Веста. По ее словам, бывают люди, которые устают в процессе, а он может длиться до двух часов. Поэтому иногда делается перерыв, чтобы пациент мог передохнуть. Это в первую очередь касается такого исследования, как МРТ всего тела.

Достаточно часто встречаются и люди с клаустрофобией, паническими расстройствами. В этом случае рекомендуют узнать у специалиста обо всех этапах исследования и посмотреть сам аппарат.

Сканирование может занимать определенное время, в нашем случае оно длилось около 20 минут. Вторые 10 (или все 19) тянулись бесконечно долго — ведь шевелиться нельзя, а очень хочется. «Хьюстон, у нас проблемы», — засело в голове в момент, когда по нарастающей начал чесаться нос (а это случилось, когда я подумал: «Главное, чтобы не зачесался нос»). Но легкий ветерок из вентилятора где-то над головой помог продержаться неподвижно до конца процедуры.

Делать в туннеле ровным счетом нечего — смотреть некуда, так как почти перед носом находится катушка (?), похожая на удерживающее устройство. Остается прикрыть глаза и слушать «магнитно-резонансную музыку»: система, собирая данные, гудит и «поет» в разной тональности, но всегда ритмично (на самом деле это сверхбыстрые вибрации). Иногда она замолкает, и ты думаешь: «Все, закончилось». Но пауза, которая требуется на донастройку системы, проходит, и ритм стартует заново. Говорят, некоторые умудряются заснуть в процессе — таким можно только позавидовать.

К слову, звучание томографа зависит от задействованных типов катушек и текущей программы.

«Выехав» из туннеля, хочется вскочить и идти — из-за неподвижного положения и громкого звука возникает короткое чувство дезориентации. Главное, не торопиться (да вам и не позволят).

После всего пережитого появилось желание сделать как в кино — подойти к томографу с пистолетом (в боевиках такое показывают регулярно). Но оружия под рукой не оказалось, поэтому эксперимент остался мечтой — проверить, примагнитится ли пистолет, не получилось.

Читайте также:  Специалист по расшифровке мрт головного мозга

Как долго может длиться сканирование?

— В центре «Томография» — до двух часов. Это МРТ всего тела с контрастированием. Как уже говорилось выше, в таких случаях мы разбиваем исследование на части.

Меньше всего времени тратится на исследование обычных суставов, например коленных. В стандартной ситуации [без патологий] оно длится не больше 15 минут для одного сустава. Но это время непосредственного нахождения пациента в томографе без учета анализа данных.

Компания Siemens постоянно разрабатывает новое ПО. Оно позволяет сократить время для некоторых видов диагностики. Например, можно ускорить сканирование суставов — до 8 минут, а головного мозга — до 6—10. Однако новые опции в ПО требуют тщательного изучения, проработки и оптимизации существующих протоколов исследования перед внедрением.

Есть ли откровенно сложные для томографа задачи?

— При исследовании брюшной полости, например, и если мы работаем в автоматическом режиме, аппарат подстраивается под движение диафрагмы, считывая данные при определенном ее положении. Это заметно увеличивает время исследования. Процесс можно ускорить, однако пациенту придется задерживать дыхание на 20 секунд много раз. Физически это непросто.

Какие-то ограничения для аппарата при его полной укомплектованности катушками отсутствуют. Мы, к примеру, пока не смотрим сердце и не проводим исследования молочных желез. Но в этом году будут закуплены необходимые компоненты.

Почему нельзя двигаться?

— Когда человек двигается, картинка получается размытой. В некоторых случаях, чтобы получить качественное изображение, необходимо подстраивать программу работы томографа. Нам необходимо четко видеть стенки тех же позвонков, структуру — это позволяет определить наличие патологии. Когда человек двигается, теряются даже контуры, диагностика серьезно затрудняется.

При некоторых типах сканирования мелкие и редкие движения не станут проблемой, однако в определенных случаях — когда размытые сканы попали на место с грыжей или иными изменениями — мы вынуждены повторять ту или иную серию для получения четких снимков.

Зубы надо сжимать, чтобы пломбы не вылетели?

— Что касается стоматологических вопросов, то никаких противопоказаний нет. Скорее возникают технические нюансы. Если это исследование головного мозга, артефакт [пломба, штифт] может попасть в зону исследования. Мы тогда выстраиваем программу так, чтобы обойти такие места и получить изображение нужной области.

У пациентов с татуировками, сделанными около 20 лет назад, когда в чернилах было высокое содержание металлов, возможен едва заметный нагрев. Встречаются крайне чувствительные пациенты, они обычно и рассказывают о подобных вещах.

Опасения, как правило, возникают у тех, кто проходит подобную процедуру в первый раз, а также у возрастных пациентов.

ПО, катушки

По словам Весты, МРТ позволяет увидеть то, что остается за кадром рентгеновских снимков. На экране рабочей станции врача при этом выведена картинка с переломами позвонка и крестца. «Эта травма на рентгене, сделанном в поликлинике, не видна», — поясняет наша собеседница.

Помимо технической части, непосредственное влияние на процесс диагностики оказывает набор программ для исследований и анализа данных.

Аппарат снимает картинку в трех плоскостях: корональной (вдоль тела спереди назад), сагиттальной (справа налево) и аксиальной (сверху вниз). При необходимости изображение можно визуализировать в 3D-режиме.

Вначале в дело вступает набор программ (или комплекс последовательностей), обеспечивающий получение информации, — собственно, сканирование. Выбор происходит исходя из того, какая область будет изучаться: для головного мозга — свой набор, для суставов — свой и так далее. Кроме того, алгоритмы отличаются и в зависимости от возраста пациента.

В автоматическом режиме после получения данных информация передается на рабочую станцию врача. Он, «вооруженный» своим софтом, просматривает результаты, при необходимости корректирует их и работает с изображением, позволяющим увидеть всю картину в целом или ее детали, то есть перед специалистом находится точная виртуальная модель (или карта) исследуемой области, органа.

Существуют узкоспециализированные наборы программ, к которым относится, например, алгоритм перфузии. Чаще он используется при возникновении опухолей, в частности, головного мозга, предоставляя информацию, которая позволяет определить степень злокачественности.

Конечно, не весь софт будет одинаково востребован. «Например, такие исследования, как трактография (выстраивание связей нейронов в головном мозге вплоть до мельчайших клеток — получается красивая цветная объемная картинка) или функциональная МРТ, которая подсвечивает зоны мозга, задействованные при определенных движениях, интересны, но используются в основном для диагностики сложных и редких заболеваний ЦНС», — поясняет Веста.

Считается, что МРТ может заменить некоторые болезненные или вредные процедуры диагностических исследований. Конкретный пример — маммография, к которой приходится прибегать, когда УЗИ сделать нельзя по ряду факторов, в том числе из-за возрастного. Метод высокоинформативный, но крайне дискомфортный, так как требует серьезной компрессии молочной железы, а при наличии патологии это может быть очень болезненно. «Альтернативой может стать МРТ. В настоящее время в Европе МР-сканирование молочных желез вытесняет из обихода врачей-маммологов маммографию. У этого метода огромные преимущества и большие перспективы», — отмечает собеседница.

«Раньше преимущественно использовалась компьютерная томография с контрастом — это колоссальная доза облучения. А если необходимо сделать такое обследование несколько раз в течение года… Тем более все рентгеновские контрастные вещества достаточно аллергенные», — говорит Веста.

Красивая картинка

Красивая картинка, подчеркивают в центре «Томография», без квалифицированных сотрудников картинкой и остается. В Беларуси проводят обучение МРТ, но в очень ограниченных объемах: на такие курсы не попасть, врачи съезжаются со всей республики. Длятся они месяц, чего, по словам специалистов, недостаточно для такой широкой области медицины. Поэтому заинтересованные в повышении своей квалификации врачи используют все возможные источники получения информации: от специализированных научно-медицинских сайтов и сообществ до отраслевых выставок и конференций.

«Врачи, направляя пациентов на МРТ, зачастую не обозначают цель исследования, которую они должны поставить перед другим доктором — врачом-диагностом МРТ. Пишут „МРТ головного мозга“… А для чего? Что они хотят увидеть?» — говорит Эмилия Мезина, главврач центра «Томография». По ее словам, обучение медиков должно позитивно повлиять на ситуацию, сделав исследование ценным для пациента с точки зрения получения информации, ведь эта процедура не из дешевых.

Благодарим медицинский центр «Томография» за помощь в подготовке материала.

Читайте также:

  • Лекарство от насморка в виде зарина. Как смерть оседлала химию
  • Зомби, таблетки от старости и ГМО-люди. Топ медицинских открытий 2018 года

Наш канал в Telegram. Присоединяйтесь!

Быстрая связь с редакцией: читайте паблик-чат Onliner и пишите нам в Viber!

Читайте нас в Дзене

Перепечатка текста и фотографий Onliner без разрешения редакции запрещена. nak@onliner.by

Источник