Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair thumbnail

Если мне нужно сделать фотографию, я достаю из кармана мобильник, выбираю фотоприложение, навожу объектив на понравившийся объект и… щёлк! В 99% случаев я получаю снимок, который сносно отображает необходимый фрагмент реальности.

А ведь ещё несколько десятилетий назад фотографы вручную выставляли выдержку и диафрагму, выбирали фотоплёнку, устраивали проявочную лабораторию в ванной комнате. А снимки получались… ну, такие себе.

Магнитно резонансная томография — потрясающая методика. Для врача, который осознанно управляет параметрами сканирования, она предоставляет огромные возможности в визуализации тканей человеческого организма и патологических процессов.

В зависимости от настроек, одни и те же ткани могут совершенно по разному выглядеть на МР томограммах. Для относительной простоты интерпретации существует несколько более-менее стандартных «режимов» сканирования. Это сделано для того, чтобы МРТ, из категории методик, которыми владеют только одиночки-энтузиасты, пришла в широкую медицинскую практику. Как методика фотографии, которая упростилась настолько, что не только стала доступна каждому, но и порядком успела многим надоесть 😉

Здесь я расскажу о нескольких наиболее часто использующихся режимах сканирования. Поехали!

Т1 ВИ (читается «тэ один вэ и») — режим сканирования, который используется всегда и везде. Свободная безбелковая жидкость (например ликвор в желудочках мозга) на таких изображениях выглядит тёмной, мягкие ткани имеют различные по яркости оттенки серого, а вот жир ярок настолько, что кажется белым. Также на Т1 ВИ очень яркими выглядят парамагнитные контрастные вещества, что и позволяет использовать их для визуализации различных патологических процессов.

Слева — Т1 ВИ, а справа — Т1 ВИ после введения контраста. Опухоль накопила парамагнитный контраст. Просто и красиво!

А ещё на Т1 яркой будет выглядеть гематома на определённых стадиях деградации гемаглобина.

В МРТ «яркий» обозначается термином «гиперинтенсивный»,а «тёмный» — термином «гипоинтенсивный».

Т2 ВИ (читается «тэ два вэ и») — также используется повсеместно. Этот режим наиболее чувствителен к регистрации патологических процессов. Это значит, что большинство патологических очагов, например в головном мозге, будут гиперинтенсивными на Т2 ВИ. А вот определение какой именно патологический процесс мы видим требует применения других режимов сканирования. Помимо патологических процессов и тканей, яркой на Т2 будет свободная жидкость (тот же ликвор в желудочках).

Т2 ВИ — классика в визуализации головного мозга. И вообще, любимая картинка всех МРТшников.

Аббревиатура «ВИ» расшифровывается как «взвешенные изображения». Но боюсь, мне не удастся объяснить смысл этого заклинания без углубления в физику метода.

Pd ВИ (читается «пэ дэ вэ и») — изображения взвешенные по протонной плотности. Что-то среднее между Т1 и Т2 ВИ. Применяется достаточно редко, в связи с появлением более прогрессивных режимов сканирования. Контрастность между разными тканями и жидкостями на таких изображениях довольно низкая. Однако, при исследовании суставов этот режим продолжает пользоваться популярностью, особенно в комплексе с жироподавлением, о котором разговор отдельный.

Слева — Pd ВИ, справа — Т2 ВИ. Одному мне понятно, почему Pd теперь редко используют ?

Словосочетание «режим сканирования» конечно можно использовать, но правильнее использовать словосочетание «импульсная последовательность». Речь про набор радиочастотных и градиентных импульсов, которые используются во время сканирования.

FLAIR (произносится как «флаир» или «флэир») — это Т2 ВИ с ослаблением сигнала от свободной жидкости, например, спинномозговой жидкости. Очень полезная импульсная последовательность, применяется в основном при сканировании головного мозга. На таких изображениях многие патологические очаги видны лучше чем на Т2 ВИ, особенно если они прилежат к пространствам, которые содержат ликвор.

Здесь FLAIR — крайняя картинка справа. Именно на ней лучше всего видны патологические очаги, которые прилежат к желудочкам мозга и субарахноидальному пространству.

Это режимы сканирования или импульсные последовательности, которые наиболее часто используются в ежедневной практике. Но есть ещё много других, которые применяются реже и дают более специфическую информацию.

P.S. Если вам интересно узнать, что такое жиродав и каим он бывает — обязательно поставьте лайк статье, подпишитесь на мой канал в ЯндексДзен или в telegram — так я буду знать, что вы требуете продолжения 😉

Источник

Т1+С

3На Т1-взвешенных постконтрастных изображениях Т1+С кровеносные сосуды (например, артерии и вены в мозгу, шее, груди, животе, верхних и нижних конечностях) выглядят гиперинтенсивно. Кровеносные сосуды и патологии с высокой васкуляризацией гиперинтенсивнее на Т1-взвешенных постконтрастных изображениях.

1

Патология.

Патологии с гиперваскуляризацией выглядят гиперинтенсивными на Т1-взвешенных постконтрастных изображениях (например, опухоли, как гемангиома, лимфангиома, гемангиоэндотелиома, саркома Капоши, ангиосаркома, гемангиобластома и т.д., а также воспалительные процессы, такие как дисцит, менингит, синовит, артрит, остеомиелит и т.д.). Патологические процессы не имеющие кровеносных сосудов остаются неизменными.

Смотри также паттерны контрастирования головного мозга.

В большинстве случаев при получении Т1-взвешенных пост контрастных изображений используется жироподавление (Fat Sat), кроме исследований головного мозга.

Примеры изображений:

Т1+с

Последовательности восстановления с инверсией

  • FLAIR
  • STIR

Сравнение

Последовательности восстановления с инверсией используются, чтобы получить изображения взвешенные по T1, но при этом  кривые T1 релаксации тканей «разведены друг от друга», чтобы создать большее различие в Т1 контрасте.

В начале последовательности применяется 180° РЧ импульс, который поворачивает суммарный вектор намагниченности в отрицательное направление оси Z. Намагниченность подвергается спин-решеточной релаксации и возвращается к состоянию равновесия вдоль положительного направления оси Z. Перед тем, как она достигнет равновесия, применяется 90° импульс, который поворачивает продольную намагниченность в плоскость XY. Время между 180° и 90° импульсами  является временем инверсии (TI).

Читайте также:  Кт или мрт что лучше для уха

Flair или Fluid attenuation inversion recovery (FLAIR)

3

Flair или Fluid attenuation inversion recovery (FLAIR) представляет собой последовательность инверсии-восстановления с длинным T1 используемая для устранения влияния жидкости в получаемом изображении.

Т1 время в данной последовательности подобрано равным времени релаксации вещества/ткани которую необходиом подавить. Импульс инверсии приложен так, что T1-релаксация жидкости достигает пересечения с нулевым значением в момент TI, приводя к «стиранию» сигнала.

2

Патология

Патологические процессы, при которых увеличивается содержание воды в тканях, как правило, гиперинтенсивные на FLAIR изображениях.

FLAIR последовательность полезна при следующих заболеваниях центральной нервной системы:

  • инфаркт
  • рассеянный склероз
  • субарахноидальное кровоизлияние
  • черепно-мозговая травма
  • постконтрастные FLAIR изображения включены в протоколы для оценки лептоменингеальных заболеваний, таких как менингит.

Примеры изображений:

3 флаир

STIR или Short tau inversion recovery

Особенности STIR изображений.

Последовательность инверсия-восстановление спинового эха (STIR), так же называемая инверсией-восстановление с коротким Т1, представляет собой метод подавления сигнала с временем инверсии TI = T1 ln2 при котором сигнал от жировой ткани равен нулю. В магнитном поле при 1,5Т это соответствует примерно 140 мс.

3

На изображениях, получаемых методом STIR пространства заполненные жидкостью (например, спинномозговая жидкость в желудочках мозга и позвоночном канале, свободная жидкость в брюшной полости, жидкость в желчном пузыре и общем желчном протоке, синовиальная жидкость в суставах, жидкость в мочевом канале и мочевом пузыре, отек или любая другая патологическая жидкость в организме) выглядят гиперинтенсивными, а жир очень гипоинтенсивным.

Примеры изображений:

STIR

Патология

Патологические процессы, при которых увеличивается содержание воды в тканях, как правило, гиперинтенсивные на STIR изображениях.

Источник

  • Radiopaedia — Frank Gallard and Andrew Dixon
  • Radiographia
  • Mrimaster

Источник

Т2 SE/T2 TSE/T2 FSE

Т2-взвешенные изображения.

На T2-взвешенном изображении, ткани с длинными значениями T2, выглядят яркими. Импульсные последовательности используемые для получения T2-взвешенных изображений минимизируют вклад параметра T1. Это обычно достигается за счет использования длинного времени повторения TR (2000-6000ms), чтобы максимизировать разницу в поперечной релаксации во время возвращения к равновесию, и длинного TE Echo Time (100-150ms), чтобы минимизировать вклад параметра T2 во время получения сигнала.

Особенности Т2-взвешенных изображений.

На T2-взвешенных изображениях, заполненные жидкостью пространства в организме (например, спинномозговая жидкости в желудочках мозга и позвоночном канале, свободная жидкости в брюшной полости, жидкость в желчном пузыре и желчном протоке, синовиальной жидкости в суставах, жидкость в мочевом канале и мочевом пузыре, отек или любое другое патологическое образование жидкости в организме). Жидкость обычно выглядит яркой на Т2-взвешенных изображениях.

Ткани и их вид на Т2-взвешенных изображениях.

Костный мозг: такой же или более светлый чем мышцы (жир в костном мозге, как правило, светлый)

Мышцы: серые (темнее, чем мышцы на T1-взвешенных изображениях)

Жир: яркий (темнее, чем жир на T1-взвешенных изображениях)

Белое вещество: темно серое

Кровь: темная

Серое вещество: серое

Жидкости: яркие

Кости: темные

Воздух: темный

Патологическое проявление.

Патологические процессы, как правило, увеличивают содержание воды в тканях. Это приводит к потере сигнала на Т1-взвешенных изображениях и увеличению сигнала на Т2-взвешенных изображениях. Следовательно патологические процессы, как правило, яркие на T2-взвешенных изображениях и темные на Т1-взвешенных изображениях.

Использование:

Исследования брюшной полости (на задержке дыхания) (!)

Исследования органов малого таза (матки, предстательной железы, мочевого пузыря и прямой кишки) (!)

Исследования груди (на задержке дыхания) (!)

Исследования плечевого и поясничного сплетений

Исследования гортани, орбит и лица

Исследования опорно-двигательного аппарата (!)

Исследования конечностей (!)

Исследования головного мозга (!)

Исследования позвоночника (!)

Т2-взвешенное изображение мозга, аксиальная проекция (TSE)

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Когда пациент находится в магнитном поле, магнитные моменты атомов водорода, находящихся в воде тканей его тела выстраиваются вдоль магнитного поля. В результате действия радиочастотного импульса магнитные моменты атомов водорода меняют свое направление (отклоняются от первоначального направления “по полю” на некоторый угол а), при выключении радиочастотного импульса происходит восстановление первоначального направления “по полю”. Этот процесс восстановления называется — релаксацией. Это самое время релаксации или другими словами — быстрота  восстановления направления магнитных моментов атомов водорода к первоначальному направления “по полю” изменяется от одного типа ткани к другому. Это различие времен релаксации используется в МРТ, чтобы отличить нормальные и патологические ткани. Каждая ткань характеризуется двумя временами релаксации:

  • T1 — время продольной релаксации и
  • Т2 — время поперечной релаксации

Большинство изображений получаемых в результате МРТ исследования пациента отражают распределение в срезе одного из этих двух параметров, являющихся основным источником контраста. Это означает, когда изображение описывается как Т1-взвешенное изображений, Т1 является основным источником контраста. Когда изображение описывается как Т2-взвешенное изображений, Т2 является основным источником контраста.

Т1-взвешенные изображения.

На T1-взвешенном изображении, ткани с коротким значений T1, выглядят яркими. Импульсные последовательности используемые для получения T1-взвешенных изображений минимизируют вклад параметра T2. Это обычно достигается за счет использования короткого времяни повторения TR (300-600ms), чтобы максимизировать разницу в продольной релаксации во время возвращения к равновесию, и короткого TE Echo Time (10-15ms), чтобы минимизировать вклад параметра T2 во время получения сигнала.

Особенности Т1-взвешенных изображений.

На T1-взвешенных изображениях, заполненные жидкостью пространства в организме (например, спинномозговая жидкости в желудочках мозга и позвоночном канале, свободная жидкости в брюшной полости, жидкость в желчном пузыре и желчном протоке, синовиальной жидкости в суставах, жидкость в мочевом канале и мочевом пузыре, отек или любое другое патологическое образование жидкости в организме). Жидкость обычно выглядит темной на Т1-взвешенных изображениях.

Читайте также:  Контрастное вещество для мрт что это такое

Ткани и их вид на Т1-взвешенных изображениях.

Костный мозг: темный

Мышцы: серые

Кровь: темная

Белое вещество: светлое

Серое вещество: серое

Жидкости: темно

Кости: темные

Жир: яркий

Воздух: темный

Патологическое проявление.

Патологические процессы, как правило, увеличивают содержание воды в тканях. Это приводит к потере сигнала на Т1-взвешенных изображениях и увеличению сигнала на Т2-взвешенных изображениях. Следовательно патологические процессы, как правило, яркие на T2-взвешенных изображениях и темные на Т1-взвешенных изображениях.

Использование:

Исследования малого таза (используется для выявления инфекций органов малого таза,  с применением контраста)

Исследования брюшной полости (на задержке дыхания)

Исследования грудной клетки (на задержке дыхания)

Исследования плечевого и поясничного сплетений (!)

Исследования гортани, орбит и лица (!)

Исследования опорно-двигательного аппарата (!)

Исследования конечностей (!)

Исследования головного мозга (!)

Исследования позвоночника (!)

Т1-взвешенное изображение мозга, аксиальная проекция (TSE)

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Мрт режимы исследования т1 т2 flair

Источник

Субарахноидальное кровоизлияние (САК) рассасывается сравнительно быстро. Уже через 1 – 2 недели на КТ не выявляется заметных следов такого кровоизлияния. КТ позволяет выявлять свертки и жидкую кровь в цистернах и других субарахноидальных пространствах в остром периоде САК. Через 5 – 7 дней от начала заболевания (травмы) частота выявления САК существенно уменьшается. При нетравматическом САК могут выявляться КТ-признаки разрыва аневризмы, как причины кровотечения. Сама же аневризма может и не контурироваться. Обычные МРТ-режимы (Т1- и Т2-ВИ*) при САК малоинформативны. Но FLAIR-режим**, по сравнению с КТ, более информативен. Это обусловлено тем, что белки плазмы и продукты распада крови, попавшие в субарахноидальное пространство, содержат связанную воду, которая и дает высокий сигнал в режиме FLAIR. Субарахноидальные пространства, содержащие нормальный ликвор, в режиме FLAIR дают гипоинтенсивный сигнал, что резко отличает их от пространств, заполненных кровью. Режим FLAIR способен выявить САК давностью до 2 недель. Особенно значительны преимущества режима FLAIR перед КТ при небольшой примеси крови в ликворе.

Внутримозговые кровоизлияния рассасываются значительно медленнее, чем САК. Они могут выявляться даже через несколько месяцев после возникновения. Рассасывание излившейся в мозг крови происходит в определенной последовательности. При этом изменяется количество продуктов распада гемоглобина, что определяет степень плотности геморрагического очага на КТ в единицах Хаунсфилда (G. Hounsfield – ед. Н), а также интенсивность сигнала на МРТ.

Кровоизлияния разделяют по стадиям (срокам возникновения): (1) острая – о — 2 дня; (2) подострая – 3 — 14 дней; (3) хроническая – больше 14 дней.

В первые минуты или часы после кровоизлияния (острейшая стадия) в гематоме присутствует только оксигемоглобин, который диамагнитен. Гематома обычно изоинтенсивна с хоботком низкого МР-сигнала на Т1-ВИ (в отличие от зоны ишемии) и гиперинтенсивна на Т2-ВИ и FLAIR.

В острой стадии кровоизлияния (до 2 суток) диоксигемоглобин, оставаясь внутри интактных эритроцитов, проявляется очень низким сигналом на Т2-ВИ (выглядит темным). Так как диоксигемоглобин не изменяет времени релаксации Т1, то острая гематома в этом режиме ВИ обычно не проявляется и выглядит изоинтенсивной или имеет тенденцию к гипоинтенсивному сигналу. На этой стадии кровоизлияния выявляется перифокальный отек мозга, хорошо определяемый на Т2-ВИ в виде зоны повышенного сигнала, окружающего гипоинтенсивную область острой гематомы. Такой эффект наиболее выражен на Т2-ВИ, режиме FLAIR на высокопольных томографах. На низкопольных томографах его выраженность значительно меньше.

В подострой стадии кровоизлияния гемоглобин редуцируется до метгемоглобина, который обладает выраженным парамагнитным эффектом. В раннюю подострую стадию (3 – 7 сутки) метгемоглобин располагается внутриклеточно и характеризуется коротким временем релаксации Т2. Это проявляется низким сигналом на Т2-ВИ и гиперинтенсивным на Т1-ВИ. В позднем периоде подострой стадии (1 – 2-я неделя) продолжающийся гемолиз приводит к высвобождению из клеток метгемоглобина. Свободный метгемоглобин имеет короткое время релаксации Т1 и длинное Т2 и, следовательно, обладает гиперинтенсивным сигналом на Т1-ВИ и Т2-ВИ и FLAIR.

В конце подострой и начале хронической стадии по периферии внутримозговой гематомы откладывается гемосидерин, что сопровождается формированием зоны низкого сигнала. В это время в центре гематомы во всех режимах МРТ возникает повышенный сигнал, а на ее периферии – сниженный. Отек головного мозга к этому времени, как правило, исчезает или уменьшается. Гемосидерин сохраняется в течение длительного времени. Поэтому такие изменения на МРТ свидетельствуют о ранее перенесенном кровоизлиянии.

При КТ-исследованиях, сразу после кровоизлияния отмечается высокая плотность гематомы примерно до 80 ед. Н, что обусловлено структурой излившейся¸ неподвижной крови. Этот очаг обычно окружен различной по размерам зоной пониженной плотности. Вследствие распада гемоглобина, в сроки от нескольких дней до 2 недель плотность гематомы уменьшается, становясь идентичной плотности мозгового вещества (изоденсивная фаза). В это время КТ-диагностика геморрагий становится трудной.

В остром периоде кровоизлияния надежность и специфичность МРТ-диагностики уступают методу КТ. Учитывая более короткое время исследования и меньшую стоимость, КТ является методом выбора в остром периоде внутримозгового кровоизлияния. При МРТ исследовании наиболее информативным, особенно на высокопольных томографах, является режим на основе градиентного эхо с получением Т2-ВИ и FLAIR. При выраженной анемии (что встречается у пострадавших с сочетанной ЧМТ), а также при коагулопатиях, даже в острой стадии развития внутримозгового кровотечения, плотность гематомы на КТ может не отличаться от плотности мозговой ткани. Поэтому у таких больных желательно кроме КТ производить и МРТ в режиме FLAIR, а на КТ оценивать косвенные признаки гематомы (смещение срединных структур мозга, деформацию ликворопроводящей системы и др.).

Читайте также:  Асимметрия боковых желудочков мозга на мрт

Начиная с момента появления внеклеточного метгемоглабина (с конца первой недели), МРТ более точно и надежно, по сравнению с КТ, выявляет внутримозговое кровоизлияние. В позднем периоде кровоизлияния только МРТ-исследование позволяет установить геморрагический характер патологии.

Острые травматические оболочечные гематомы, как и внутримозговые, имеют низкий сигнал на Т2-ВИ и изоинтенсивный сигнал на Т1-ВИ. На КТ-томограммах острые эпидуральные гематомы и большинство субдуральных гематом имеют однородную гиперденсивную структуру с показателями плотности 60 – 70 ед. Н. Поэтому при исследовании в обычном для головного мозга окне, особенно субдуральные гематомы небольшой (3 – 6 мм) толщины могут сливаться с изображением костей черепа, что затрудняет их диагностику. Выявить гематому помогает изменение окна так, чтобы различить кость и примыкающую ней гематому.

К концу 1-й недели оболочечная (особенно субдуральная) гематома становится неоднородной из-за появления в ней сгустков крови на фоне лишенной эритроцитов сыворотки крови или спинномозговой жидкости. Если гематома остается в полости черепа 2 – 4 недели, то форменные элементы рассасываются, ее рентгеновская и КТ-плотность снижается до изоденсивной, однако объем гематомы при этом не только не уменьшается, но может и увеличиваться. На истинный объем эпидуральной гематомы может указывать величина пространства, образованного отслоенной от костей черепа твердой мозговой оболочкой. Содержимое этого пространства состоит из гиперденсивной и изоденсивной (не видимой на КТ) частей гематомы. Так как в течение первых недель после травмы оболочечная гематома становится изоденсивной, то она может быть не выявлена. Это чаще бывает при двусторонних гематомах или при их локализации в базальных отделах мозга или в задней черепной ямке, когда поперечная дислокация срединных структур мозга или отсутствует или она минимальна. У таких больных подозрение на оболочечную гематому должны вызывать узкие желудочки со сближенными лобными рогами, резко сдавленные субарахноидальные пространства и транстенториальное вклинение.

Выявить изоденсивную подострю субдуральную гематому можно, если удается увидеть отодвинутую от внутренней костной пластинки кору головного мозга. Выполнение этой задачи облегчает выполнение тонких КТ-срезов или внутривенного контрастирования. В этой фазе эволюции гематомы отмечается повышение интенсивности МР-сигнала на Т1 и Т2-ВИ и, в отличие от КТ, диагностика оболочечных гематом не вызывает затруднений.

Заключение. Современный уровень развития КТ- и МРТ-методов диагностики позволяют успешно решать большинство диагностических задач при острых внутричерепных кровоизлияниях. Однако у ряда больных в различных стадиях развития таких патологических процессов для точной диагностики применения какого-то одного метода может быть недостаточно. Тогда желательно использовать оба (КТ и МРТ) метода в соответствующих режимах, а при отсутствии такой возможности – скрупулезно оценивать вторичные признаки геморрагических процессов.

Справочная информация. Динамика КТ-плотности и интенсивности МРТ-сигнала в зависимости от времени образования внутримозговых кровоизлияний:
(1) КТ-плотность очага кровоизлияния по ед. Н:
— < 1 сут. – острейшая стадия – плотность резко повышена (от 60 до 80 ед. Н);
— 1 – 3 дня – острая стадия – плотность от 60 до 80 ед. Н;
— 3 – 7 дней – ранняя подострая стадия – плотность умеренно повышена (от 40 до 70 ед. Н);
— 1 – 2 нед. – поздняя подострая стадия – плотность снижается до изодненсивной;
— более 1 мес. – хроническая стадия – плотность снижена до ликворных значений (4 – 15 ед. Н).
(2) Интенсивность МР-сигнала от очага кровоизлияния – режим Т2-ВИ):
— < 1 сут. – острейшая стадия – гиперинтенсивный по периферии, в центре гипоинтнесивный сигнал;
— 1 – 3 дня – острая стадия – гипоинтнесивный сигнал, окруженный зоной гиперинтнесивного сигнала (от зоны отека мозга);
— 3 – 7 дней – ранняя подострая стадия – то же;
— 1 – 2 нед. – поздняя подострая стадия – гиперинтенсивный сигнал;
— более 1 мес. – хроническая стадия – гипо- или гиперинтнесивный сигнал.
(3) Интенсивность МР-сигнала от очага кровоизлияния – режим Т1-ВИ:
— < 1 сут. – острейшая стадия – изоинтенсивный сигнал;
— 1 – 3 дня – острая стадия – гипоинтенсивный сигнал;
— 3 – 7 дней – ранняя подострая стадия – кольцо гиперинтенсивного сигнала;
— 1 – 2 нед. – поздняя подострая стадия – гиперинтенсивный сигнал в центре гематомы, гипоинтнесивный по ее периферии;
— более 1 мес. – хроническая стадия – гипоинтенсивный сигнал.
(4) Интенсивность МР-сигнала от очага кровоизлияния – режим FLAIR:
— < 1 сут. – острейшая стадия – гиперинтенсивный сигнал;
— 1 – 3 дня – острая стадия – гиеринтенсивный сигнал;
— 3 – 7 дней – ранняя подострая стадия – то же;
— 1 – 2 нед. – поздняя подострая стадия – гиперинтенсивный сигнал, в центре гематомы гипоинтенсивный;
— более 1 мес. – хроническая стадия – гипоинтенсивный сигнал.

* ВИ – взвешенное изображение; ** FLAIR – Fluid Attenuated Inversion Recovery (режим с подавлением сигнала свободной воды).

по материалам статьи «Особенности КТ- и МРТ-диагностики при внутричерепных кровоизлияниях и инфарктах мозга» В.В. Лебедев, Т.Н. Галян (НИИ скорой помощи им. Н.В. Склифосовского, Москва); статья опубликована в журнале «Нейрохирургия» №4, 2006

Источник