Мрт в физиологии и медицине
Функциона́льная магни́тно-резона́нсная томогра́фия, функциона́льная МРТ или фМРТ (англ. Functional magnetic resonance imaging) — разновидность магнитно-резонансной томографии, которая проводится с целью измерения гемодинамических реакций (изменений в токе крови), вызванных нейронной активностью головного или спинного мозга. Этот метод основывается на том, что мозговой кровоток и активность нейронов связаны между собой. Когда область мозга активна, приток крови к этой области также увеличивается[1].
фМРТ позволяет определить активацию определенной области головного мозга во время нормального его функционирования под влиянием различных физических факторов (например, движение тела) и при различных патологических состояниях.
На сегодняшний день это один из самых активно развивающихся видов нейровизуализации. С начала 1990-х годов функциональная МРТ стала доминировать в области визуализации процессов головного мозга из-за своей сравнительно низкой инвазивности, отсутствия воздействия радиации и относительно широкой доступности.
Функциональная магнитно-резонансная томография
История[править | править код]
В конце 19-го века Анджело Моссо изобрел аппарат «баланс человеческой циркуляции», который мог неинвазивными способами измерять перераспределение крови во время эмоциональной и интеллектуальной деятельности. Хотя аппарат был упомянут в работах Вильяма Джеймса, детали, точные разработки и данные о проведенных экспериментах долгое время оставались неизвестными до недавнего открытия исходного документа и отчетов Моссо Стефаном Сандро и его коллегами.[2] Рукописи Моссо не дают прямого доказательства того, что «баланс» в действительности был в состоянии измерить изменения мозгового кровотока в результате когнитивной деятельности, однако современная репликация аппарата, выполненная Дэвидом Филдом[3] в настоящее время, используя современные методы обработки сигналов, недоступные Моссо, показывает, что устройство могло обнаружить изменения в объеме кровотока головного мозга в результате когнитивной деятельности.
В 1890 году в университете Кембриджа Чарльз Рой и Чарльз Шеррингтон впервые экспериментально связали работоспособность мозга с кровотоком.[4] Следующим шагом в проблеме, как измерить кровоток мозга, было открытие Линуса Полинга и Чарльза Кореля в 1936 году. Открытие заключалось в том, что кровь, богатая кислородом с , слабо отталкивалась магнитными полями, в то время как кровь, обеднённая кислородом с , притягивалась магнитными полями, хотя меньше, чем ферромагнитные материалы, такими как железо. Сэйдзи Огавой из Белл Лабс было признано, что это свойство может быть использовано для усиления сигнала МРТ, так как различные магнитные свойства и вызовет заметные изменения в МРТ сигнале, вызванные кровотоком в активированные области мозга. БОЛД (зависимость уровня кислорода) — это МРТ контраст открытый Огавой в 1990 году. В фундаментальных исследованиях 1990 года, основанных на работах Тулборна и др., Огава и его коллеги изучали грызунов под воздействием сильного магнитного поля. Чтобы управлять уровнем кислорода в крови, они меняли содержание кислорода в воздухе, которым дышали животные. Как только доля кислорода падала, на МРТ появлялась карта кровотока. Они проверили это путём размещения пробирок с кровью, богатой кислородом, и венозной кровью, а затем созданием отдельных изображений. Чтобы показать эти изменения кровотока, связанные с функциональной активностью мозга, они изменили состав воздуха, которым дышали крысы, и просмотрели их одновременно с мониторингом активности мозга на ЭЭГ.[5]
Физиология[править | править код]
Мозг функционально не предназначен для хранения глюкозы — основного источника энергии. Однако, для активации нейронов и действия ионных насосов, которые обуславливают нормальное функционирование мозга, нужна энергия, получаемая из глюкозы. Энергия из глюкозы поступает за счёт кровотока. Вместе с кровью в результате расширения кровеносных сосудов также транспортируются кислородосодержащие молекулы гемоглобина в красных кровяных клетках. Изменение кровотока локализуется в пределах 2 или в области нейронной активности. Обычно увеличение концентрации кислорода больше, чем кислорода, израсходованного на сжигание глюкозы (на данный момент не определено, окисляется ли вся глюкоза), и это приводит к общему снижению гемоглобина. При этом изменяются магнитные свойства крови, препятствуя её намагничиванию, что впоследствии ведет к созданию индуцированного МРТ процесса.[6]
Кровоток мозга неравномерно зависит от потребляемой глюкозы в разных областях мозга. Предварительные результаты показывают, что в некоторых областях мозга приток крови больше того уровня, который бы соответствовал потреблению. Например в таких областях, как в миндалине, базальных ганглиях, таламусе и поясной коре, которые набираются за быстрый отклик. В областях, которые имеют более совещательный характер, таких как боковая, лобной и латеральной париетальных долей, наоборот, исходя из наблюдений, следует вывод, что входящий поток меньше расхода. Это сильно влияет на чувствительность.[7]
Гемоглобин отличается тем, как он реагирует на магнитные поля, в зависимости от того, имеет ли он привязку к молекуле кислорода. Молекула гемоглобина лучше реагирует на действие магнитного поля. Следовательно, она искажает окружающее её магнитное поле, индуцированного магнитно-резонансного сканера, вызывая потерю намагниченности ядер быстрее через период полураспада. Таким образом, сигнал МРТ лучше в тех областях мозга, где кровь сильно насыщается кислородом и меньше, где кислорода нет. Этот эффект возрастает, как квадрат напряженности магнитного поля. У фмрт-сигнала, следовательно, проявляется необходимость в сильном магнитном поле (1.5 Т и выше) и последовательности импульсов, таких как ЭПИ, которая чувствительна к периоду полураспада.[8]
Физиологическая ответная реакция кровотока во многом определяет временную чувствительность, то есть насколько точно мы можем измерить период активности нейронов и в какое именно время они активны, отмечая BOLD (Визуализация, зависящая от уровня кислорода в крови) фМРТ. Основным временным параметрическим разрешением является — ТР, который диктует, как часто определенный кусочек мозга возбуждается и теряет свою намагниченность. Трс может варьироваться от очень коротких (500 мс) до очень длинных (3 сек). Для фмрт в частности, гемодинамическая реакция длится более 10 секунд, поднявшись мультипликативно с пиком на 4 до 6 секунд, а затем падает мультипликативно. Изменения в системе кровотока, сосудистая система, интеграция ответных реакций нейронной активности с течением времени. Так как данная ответная реакция представляет собой гладкую непрерывную функцию, отбора проб. Больше точек на кривой отклика можно получить путём простой линейной интерполяции в любом случае. Экспериментальные парадигмы могут улучшить временное разрешение, но уменьшат число эффективных точек данных, полученных экспериментальным путём.[9]
Гемодинамическая ответная реакция зависимости уровня кислорода в крови (ЗУКВ)[править | править код]
Изменение МР сигнала от нейронной активности называется гемодинамической ответной реакцией (ГО). Она может задерживать нейронные события на 1-2 секунды, в связи с тем, что сосудистая система достаточно долго реагирует на потребность мозга в глюкозе. С этого момента она обычно достигает пика примерно через 5 секунд после стимуляции (в данном случае имеется в виду внедрение глюкозы). Если нейроны продолжают активную деятельность от непрерывного стимула, пик распространяется на плоском плато, в то время как нейроны остаются активными. После остановки активности ЗУКВ сигнал падает ниже исходного уровня, базового, что называют «отклонением от номинала». С течением времени сигнал восстанавливается до базового уровня. Есть некоторые доказательства того, что непрерывные метаболические требования в области мозга способствуют отклонению от номинала.[4]
Механизму, с помощью которого нервная система обеспечивает обратную связь с сосудистой системой, необходимо больше глюкозы, в том числе, частично высвобожденной из глутамата в рамках запуска нейронов. Глутамат влияет на ближайшие опорные клетки, астроциты, вызывая изменение концентрация ионов кальция. Это, в свою очередь, высвобождает оксид азота в точке контакта астроцитов и средних кровеносных сосудов, артериол. Оксид азота является вазодилататором, вызывая расширения артериол и привлечение к себе большего объема крови.[5]
Ответный сигнал одного вокселя в течение периода времени называется timecourse. Как правило, нежелательный сигнал, называемый шумом, со сканера, беспорядочной деятельности, помех и аналогичных элементов соизмерим с величиной полезного сигнала. Чтобы устранить данные шумы, фмрт исследования повторяют несколько раз.[10]
Пространственное разрешение[править | править код]
Пространственное разрешение фМРТ исследований определяется, как способность оборудования различать границы мозга и близлежащие места. Она измеряется размером вокселей, как в МРТ. Воксель — это трехмерный прямоугольный параллелепипед, размеры которого определяются толщиной среза, площадь среза, и сетки, наложенные на срез путём сканирования. При полном исследовании мозга используются более крупные воксели, а те, которые специализируются на конкретных регионах, представляющие интерес, как правило, используют меньшие размеры. Размеры варьируются от 4-5 мм до 1 мм. Таким образом размеры вокселей напрямую зависят от области измерения. Вместе с тем время сканирования напрямую увеличивается с увеличением количества вокселей, зависящих от среза и количества срезов. Это может привести к дискомфорту для субъекта внутри сканера и к потере намагниченности сигнала. Вокселя, как правило, содержат несколько миллионов нейронов каждый и десятки миллиардов синапсов.[11]
Сосудистая артериальная система, которая поставляет свежую кровь, насыщенную кислородом, разветвляется на меньшие и меньшие сосуды, которые входят в поверхностные участки мозга и в его внутренние структуры. Кульминацией является соединения капилляров внутри мозга. Дренажные системы, точно так же, сливается в более крупные и крупные вены, которые уносят кровь с низким содержанием кислорода. Гемоглобин вносит свой вклад в фмрт-сигнал от обоих капилляров вблизи зоны деятельности крупных и дренирующих вен Для хорошего пространственного разрешения, сигнал от крупных вен должен быть подавлен, поскольку она не соответствует площади участка нейронной активности. Это может быть достигнуто либо с помощью сильного постоянного магнитного поля или с помощью спин-Эхо последовательности импульсов. Вместе с этим фмрт может изучить пространственный диапазон от миллиметров до сантиметров, и можно, следовательно, определить Brodmann областях (centimers), подкорковых ядер, таких как хвостатые, скорлупа и таламус, гиппокамп, такие как объединенные зубчатой извилиной/СА3, СА1, и subiculum.[3]
Временное разрешение[править | править код]
Временное разрешение — это наименьший период времени нейронной активности который с высокой точностью можно определить с помощью фмрт.
Временное разрешение зависит от возможностей мозга обрабатывать данные за определенное время, находясь в различных ситуациях. Например, в широком диапазоне задается визуальная система обработки. То, что глаз видит, регистрируется на фоторецепторах сетчатки в пределах миллисекунд. Данные сигналы доходят до первичной зрительной коры через таламус за десятки миллисекунд. Активность нейронов, связанных с актом видения длится чуть больше 100 мс. Быстрые реакции, такие как резкий поворот, чтобы избежать аварии, занимает около 200 мс. Реакция происходит приблизительно во вторую половину осознания и осмысления произошедшего. Вспоминание подобного события может занять несколько секунд, и эмоциональные или физиологические изменения, такие как страх, возбуждение могут длиться минуты или часы. Распознавание лиц, событий могут длиться дни, месяцы или годы. Большинство экспериментов фмрт исследований процессов мозга, длящиеся несколько секунд, с исследованием, проведенным в течение нескольких десятков минут. Изменение психо-эмоционального состояния может изменить поведение субъекта и его когнитивные процессы.[9]
Линейное дополнение от многократной активации[править | править код]
Когда человек выполняет две задачи одновременно, ответная реакция ЗУКВ, как ожидается, добавляется линейно. Это фундаментальное предположение многих фмрт исследований. Линейное дополнение означает отдельное масштабирование каждого интересующего процесса и их последующего суммирования. Поскольку масштабирование — это просто умножение на постоянное число, это означает, что событие, которое вызывается, скажем, два раза в нейронных реакциях могут быть смоделированы, как определенное событие представленное два раза одновременно.[2]
См. также[править | править код]
- ФМРТ как метод нейровизуализации
Примечания[править | править код]
- ↑ Logothetis, N. K.; Pauls, Jon; Auguth, M.; Trinath, T.; Oeltermann, A. (July 2001). «A neurophysiological investigation of the basis of the BOLD signal in fMRI». Nature. 412 (6843): 150–157. doi:10.1038/35084005. PMID 11449264. Our results show unequivocally that a spatially localized increase in the BOLD contrast directly and monotonically reflects an increase in neural activity.
- ↑ 1 2 Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer, 2009. — С. 229-237. — ISBN 978-0-87893-286-3.
- ↑ 1 2 Carr, V. A.; Rissman, J.; Wagner, A. D. «Imaging the medial temporal lobe with high-resolution fMRI». — 11 February 2010. — С. 298-308.
- ↑ 1 2 Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer, 2009. — С. 208-214. — ISBN 978-0-87893-286-3.
- ↑ 1 2 Ogawa, S.; Sung, Y. «Functional Magnetic Resonance Imaging». — Scholarpedia 2. — 2007.
- ↑ Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer, 2009. — С. 6-7. — ISBN 978-0-87893-286-3.
- ↑ Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer, 2009. — С. 199. — ISBN 978-0-87893-286-3.
- ↑ Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer, 2009. — С. 194. — ISBN 978-0-87893-286-3.
- ↑ 1 2 Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer, 2009. — С. 220-229. — ISBN 978-0-87893-286-3.
- ↑ Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer. — С. 243-245. — ISBN 978-0-87893-286-3.
- ↑ Huettel, S. A.; Song, A. W.; McCarthy, G. Functional Magnetic Resonance Imaging. — Massachusetts. — Sinauer, 2009. — С. 214-220. — ISBN 978-0-87893-286-3.
Эта статья или раздел содержит незавершённый перевод с иностранного языка. Вы можете помочь проекту, закончив перевод. Если вы знаете, на каком языке написан фрагмент, укажите его в этом шаблоне. |
Источник
В наш век информационные технологии и различные высокотехнологичные методики настолько глубоко вошли в нашу жизнь, что уже практически невозможно представить себе ни одну из отраслей науки, где бы они не нашли применение. Не является исключением и медицина, в которой такое направление, как лучевая диагностика по праву занимает одну из важнейших ниш данной отрасли.
Магнитно-резонансная томография (МРТ) в настоящее время является, пожалуй, одним из самых информативных методов лучевой диагностики. Успешно соперничая в этом с рентгеновской компьютерной томографией (РКТ), а в ряде случаев и опережает её по диагностической специфичности, служа так называемым «золотым стандартом» в выявлении целого ряда патологических изменений различных тканей и органов человеческого организма.
Данный метод, начиная с момента его открытия и по настоящее время, прошёл множество этапов развития, каждый из которых характеризовался переходом данного метода на качественно новую ступень диагностических возможностей.
Что же такое МРТ?
Для начала немного истории. В 1946 году независимо друг от друга двое американских учёных (Феликс Блох и Эдвард Пурселл) описали некий физический эффект, присущий атомным ядрам некоторых веществ. В дальнейшем именно он явился краеугольным камнем всей методики МРТ.
Оказалось, что если поместить ядра в постоянное магнитное поле, а затем воздействовать на них радиочастотными импульсами определённой частоты, то эта энергия будет поглощаться ими, вследствие чего вся система перейдёт на более высокий энергетический уровень. Такое состояние менее стабильно, и поэтому в дальнейшем поглощённая энергия будет излучаться ядрами, а система возвратится в первоначальное энергетическое состояние. Эта излучённая энергия несёт информацию о местоположении атома в пространстве, и если добавить к этому дополнительное воздействие более слабым магнитным полем (так называемым градиентным), то с помощью улавливающего устройства (приёмной катушки) , и последующей математической обработки полученной информации можно реконструировать расположение атомов какого-либо объекта в виде изображения его поперечного среза на экране монитора.
Таким образом можно получать послойные изображения на разных уровнях различных анатомических областей какого-либо организма (например, человеческого), которые будут наиболее приближенно соответствовать реальному их положению и соотношению друг с другом. Таких слоёв, или срезов можно задавать значительное количество, причём есть возможность в достаточно широких пределах варьировать их толщину, дистанцию между срезами, направление и многие другие параметры, влияющее на качество получаемых томограмм.
В начале 70-х годов ХХ столетия году американские учёные Р. Дамадьян и П. Лаутербур независимо друг от друга применили феномен магнитного резонанса для получения электронного изображения тканей живого объекта (в том числе и человека) с помощью МР сканера. Считается, что первый МР сканер был создан Р. Дамадьяном и командой его соратников к концу 70-х годов ХХ века, тогда же он запатентовал своё изобретение. Со временем методика получила широкое распространение в медицине и в данное время успешно используется в лучевой диагностике.
Со времени появления первых магнитно-резонансных сканеров для всего тела (начало 80-х годов прошлого столетия) до настоящего времени МР томографы прошли долгий путь эволюции: совершенствовалось программное обеспечение и аппаратные компоненты, изображение становилось более качественным — улучшалось разрешение и совершенствовалась контрастность между различными тканями, внедрялись новые методики и расширялись границы применения метода в различных разделах медицины и многое-многое другое. Чтобы изложить все этапы развития МРТ хотя бы вкратце, пришлось бы написать как минимум небольшую книгу. Но поскольку данная задача перед нами не стоит, ограничимся небольшим экскурсом по основным аспектам применения метода в рамках медицинской визуализации, где МРТ очень часто становится способом первой линии диагностики среди впечатляющего арсенала высокотехнологичных инструментов современной медицины.
Применение МРТ
По некоторым данным литературы диагностическая точность МРТ составляет 91-99%, а чувствительность может достигать 97%.
Основные задачи, стоящие перед медицинской визуализацией, как правило, следующие:
- оценка пространственного расположения, формы и структуры тканей в органах, самих органов, а также их систем;
- выявление патологических изменений различной природы и проведение их дифференциальной диагностики;
- получение диагностически значимой информации, которая в дальнейшем может быть использована для планирования лечения, в том числе и оперативного.
МРТ как метод лучевой диагностики обладает целым рядом преимуществ, выгодно выделяющих его среди прочих. Рассмотрим их более подробно.
Преимущества МРТ
- При применении МРТ отсутствуют ионизирующее излучение и лучевая нагрузка на исследуемый объект, что позволяет проводить обследование больного настолько часто и настолько длительно, насколько того требуют показания и ожидаемый диагностический эффект. При этом не приходится говорить о возможном канцерогенном и мутагенном воздействии, сопряжённом, например, с рентгеновским излучением, которое используется также и в компьютерной томографии.
- Высокая разрешающая способность изображения, являющаяся одним из основных факторов диагностики патологий небольшого размера, или, говоря проще, высокая чёткость изображения и способность достоверно дифференцировать мелкие анатомические структуры друг от друга и от патологических образований и процессов в органах и тканях.
- Важнейшим параметром при проведении различных видов томографии является, так называемый тканевый контраст, то есть диагностически значимые визуальные различия тканей с разными сигнальными характеристиками. Это позволяет видеть различия в структуре разных тканей и органов друг от друга и однозначно трактовать патологические изменения выявляющиеся в них. В МРТ тканевый контраст является наивысшим среди известных на сегодняшний момент видов медицинской визуализации, использующих в основе лучевые эффекты.
- Метод МРТ является полипроекционным, то есть даёт возможность проводить исследование в трёх проекциях, а также ориентировать срезы практически в любых косых проекциях, в зависимости от поставленных задач и вида исследования, что невозможно, например, в рентгеновской компьютерной томографии.
- Такие методы лучевой диагностики, как рентгенография и компьютерная томография часто используют для получения дополнительной информации контрастные вещества, которые при всей своей значимости могут обладать токсическим действием на некоторые органы, а также являться причиной аллергических реакций различной степени тяжести, вплоть до таких опасных состояний, как отёк Квинке и анафилактический шок. Контрастные вещества используемые в МРТ не обладают цито-, гепато-, и нефротоксическим действием, а также не вызывают аллергических реакций, что является преимуществом, по сравнению с контрастными веществами использующимися в рентгенологических исследованиях.
- Также плюсом магнитно-резонансной томографии является отсутствие артефактов (помех) от костных структур, которые могут затруднять интерпретацию изображения полученного с помощью компьютерной томографии.
Недостатки МРТ
Как любой метод диагностики, МРТ имеет и свои недостатки:
- необходимость сохранять неподвижность (зачастую достаточно долго) во время МР исследования, что не всегда реально пациентам с выраженным болевым синдромом или находящимся в состоянии оглушения;
- невозможность проведения МР диагностики пациентам с искусственными водителями ритма в сердечной мышце, кохлеарными имплантами, имплантированными стимуляторами спинного мозга, протезированными суставами (особенно тазобедренными), вживлёнными инсулиновыми помпами;
- также МРТ противопоказано больным с металлическими осколками в организме, стентами, клипсами на сосудах, фиксирующими скобами, пластинами, спицами, болтами из ферромагнитных материалов.
- относительными противопоказаниями является клаустрофобия, 1-й и 3-й триместры беременности, панические состояния, функциональные расстройства психики;
- также до известной степени можно считать недостатком достаточно высокую стоимость обследования. Однако, в последнее время имеется тенденция к её снижению за счёт всё увеличивающегося количества магнитов в государственных и частных медицинских учреждениях.
Теперь подробнее рассмотрим области применения магнитно-резонансной томографии в клинической практике.
Области применения
В классическом представлении методика проведения МРТ исследования включает в себя несколько последовательных этапов:
- сбор анамнеза заболевания и жизни пациента,
- ознакомление с данными и результатами проведённых анализов и инструментальных обследований,
- проведение собственно МРТ,
- постпроцессорная обработка данных и их интерпретация, проводимая квалифицированным врачом-рентгенологом.
Области применения магнитно-резонансной томографии в медицине очень обширны. Фактически, очень трудно найти раздел медицины, в котором данный метод не нашёл бы себе применение.
Можно сразу выделить основные технолого-диагностические блоки возможностей МРТ:
- так называемые рутинные исследования, то есть получение стандартных обзорных томограмм практически любых областей человеческого тела (наиболее часто — это головной мозг и прицельное обследование гипофиза, разные отделы позвоночника, органы брюшной полости, забрюшинного пространства и малого таза, в отдельных случаях органы грудной полости и средостения, мягкие ткани шеи, конечностей и туловища, крупные суставы, в ряде случаев полые органы, такие как желудок и кишечник, а также сердце);
- томография с контрастным усилением, а также с динамическим контрастным усилением;
- бесконтрастная ангиография (исследование сосудов) магистральных артерий и вен, а также ангиография с применением контрастного вещества (крупные сосуды грудной и брюшной полостей, малого таза, нижних конечностей);
- бесконтрастная холангиопанкреатография (исследование выводных протоков печени и поджелудочной железы);
- бесконтрастная и контрастно усиленная урография (исследование чашечно-лоханочной системы почек и мочеточников);
- спектроскопия (исследование обменных процессов в нормальных и патологических тканях человека in vivo);
МРТ широко применяется в неврологии — выявление доброкачественных и злокачественных опухолевых поражений головного и спинного мозга, метастазов в головной мозг, а также инсультов, кровоизлияний, абсцессов, воспалительных заболеваний центральной нервной системы аутоиммунного и инфекционного характеров, врожденных аномалий развития и провести дифференциальную диагностику выявленных изменений. Также возможна оценка доступных для визуализации сегментов крупных черепно-мозговых нервов и корешков спинно-мозговых нервов, например при компрессии их грыжами межпозвонковых дисков. Функциональная МРТ позволяет увидеть активность отделов мозга, отвечающих за различные физиологические функции, процессы мышления, а также эмоции.
МР-ангиография используется в выявлении грубых патологий сосудов, таких как аневризмы, стенозы, окклюзии и аномалии развития — различные сосудистые мальформации, и другие патологии.
С успехом МРТ применяется и в исследовании позвоночника и суставов. Посредством этого хорошо дифференцируются воспалительные и дегенеративные изменения, метастатические поражения, травматические повреждения связочного аппарата, суставного хряща, грыжи межпозвоночных дисков, а также изменения сигнальных характеристик костного мозга различного генеза (инфаркт, отёк, опухоли, воспаление, инфильтрация, некроз, жировое перерождение и др.).
В исследовании мягких тканей метод также широко распространен и позволяет диагностировать различные патологические процессы онкологической, воспалительной, посттравматической природы, а также оценить состояние и размеры регионарных лимфатических узлов.
Также МРТ нашло широкое применение в исследовании органов брюшной полости и малого таза, как метод, позволяющий выявлять расположение, размеры и соотношения органов и тканей, опухолевые и метастатические поражения, воспалительные и дегенеративные изменения, врождённые аномалии развития, в ряде случаев изменения инфекционной и паразитарной природы.
МРТ имеет ограничения при исследовании костной ткани, так как она содержит крайне низкое содержание протонов и на изображении имеет тёмный сигнал, и как следствие практически не поддаётся оценке. В этом случае преимущество за рентгенографией или компьютерной томографией. Имеются ограничения метода и в исследовании полых органов, таких как кишечник и желудок, но при использовании некоторых вспомогательных приспособлений, позволяющих минимизировать помехи при перистальтических сокращениях.
Подводя итог, можно сказать, что метод магнитно-резонансной диагностики в большинстве случаев является наиболее предпочтительным среди множества диагностических методик в силу своей неинвазивности, информативности и безопасности и широты применения в различных областях медицины.
Источник