Наука об иммунитете называется
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 21 мая 2020;
проверки требуют 8 правок.
Иммуните́т (лат. immunitas — освобождение) человека и животных — способность организма поддерживать свою целостность и биологическую индивидуальность путём распознавания и удаления чужеродных веществ и клеток[1] (в том числе болезнетворных бактерий и вирусов). Характеризуется изменением функциональной активности преимущественно иммуноцитов с целью поддержания гомеостаза внутренней среды.
Назначение[править | править код]
Простейшие защитные механизмы, имеющие своей целью распознавание и обезвреживание патогенов, существуют даже у прокариот: например, ряд бактерий обладает ферментными системами, которые препятствуют заражению бактерии вирусом[2]. Одноклеточные эукариотные организмы применяют токсичные пептиды, чтобы предотвратить проникновение бактерий и вирусов в свои клетки[3].
По мере эволюции сложно организованных многоклеточных организмов у них формируется многоуровневая иммунная система, важнейшим звеном которой становятся специализированные клетки, противостоящие вторжению генетически чужеродных объектов[4].
У таких организмов иммунный ответ происходит при столкновении данного организма с самым различным чужеродным в антигенном отношении материалом, включая вирусы, бактерии и другие микроорганизмы, обладающие иммуногенными свойствами молекулы (прежде всего белки, а также полисахариды и даже некоторые простые вещества, если последние образуют комплексы с белками-носителями — гаптены[5]), трансплантаты или мутационно изменённые собственные клетки организма. Как отмечает В. Г. Галактионов, «иммунитет есть способ защиты организма от всех антигенно чужеродных веществ как экзогенной, так и эндогенной природы; биологический смысл подобной защиты — обеспечение генетической целостности особей вида в течение их индивидуальной жизни»[6]. Биологическим смыслом такой защиты является обеспечение генетической целостности особей вида на протяжении их индивидуальной жизни, так что иммунитет выступает как фактор стабильности онтогенеза[7].
Характерные признаки иммунной системы[8]:
- способность отличать «своё» от «чужого»;
- формирование памяти после первичного контакта с чужеродным антигенным материалом;
- клональная организация иммунокомпетентных клеток, при которой отдельный клеточный клон способен, как правило, реагировать лишь на одну из множества антигенных детерминант.
Классификации[править | править код]
Иммунная система исторически описывается состоящей из двух частей — системы гуморального иммунитета и системы клеточного иммунитета. В случае гуморального иммунитета защитные функции выполняют молекулы, находящиеся в плазме крови, а не клеточные элементы. В то время как в случае клеточного иммунитета защитная функция связана именно с клетками иммунной системы.
Иммунитет также классифицируют на врождённый и адаптивный.
Врождённый (неспецифический, наследственный[9]) иммунитет обусловлен способностью идентифицировать и обезвреживать разнообразные патогены по наиболее консервативным, общим для них признакам, дальности эволюционного родства, до первой встречи с ними. В 2011 году была вручена Нобелевская премия в области медицины и физиологии за изучение новых механизмов работы врождённого иммунитета (Ральф Стайнман, Жюль Хоффман и Брюс Бётлер)[10].
Осуществляется большей частью клетками миелоидного ряда, не имеет строгой специфичности к антигенам, не имеет клонального ответа, не обладает памятью о первичном контакте с чужеродным агентом.
Адаптивный (устар. приобретённый, специфический) иммунитет имеет способность распознавать и реагировать на индивидуальные антигены, характеризуется клональным ответом, в реакцию вовлекаются лимфоидные клетки, имеется иммунологическая память, возможна аутоагрессия.
Классифицируют на активный и пассивный.
- Приобретённый активный иммунитет возникает после перенесённого заболевания или после введения вакцины.
- Приобретённый пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорождённому с молозивом матери или внутриутробным способом.
Другая классификация разделяет иммунитет на естественный и искусственный.
- Естественный иммунитет включает врождённый иммунитет и приобретённый активный (после перенесённого заболевания), а также пассивный иммунитет при передаче антител ребёнку от матери.
- Искусственный иммунитет включает приобретённый активный после прививки (введение вакцины) и приобретённый пассивный (введение сыворотки).
Органы иммунной системы[править | править код]
Выделяют центральные и периферические органы иммунной системы. К центральным органам относят красный костный мозг и тимус, а к периферическим — селезёнку, лимфатические узлы, а также местноассоциированную лимфоидную ткань: бронхассоциированную (БАЛТ), кожноассоциированную (КАЛТ), кишечноассоциированную (КиЛТ, пейеровы бляшки).
Красный костный мозг — центральный орган кроветворения и иммуногенеза. Содержит самоподдерживающуюся популяцию стволовых клеток. Красный костный мозг находится в ячейках губчатого вещества плоских костей и в эпифизах трубчатых костей. Здесь происходит дифференцировка В-лимфоцитов из предшественников. Содержит также Т-лимфоциты.
Тимус — центральный орган иммунной системы. В нём происходит дифференцировка Т-лимфоцитов из предшественников, поступающих из красного костного мозга.
Лимфатические узлы — периферические органы иммунной системы. Они располагаются по ходу лимфатических сосудов. В каждом узле выделяют корковое и мозговое вещество. В корковом веществе есть В-зависимые зоны и Т-зависимые зоны. В мозговом есть только Т-зависимые зоны.
Селезёнка — паренхиматозный зональный орган. Является самым крупным органом иммунной системы, кроме того, выполняет депонирующую функцию по отношению к крови. Селезёнка покрыта капсулой из плотной соединительной ткани, которая содержит гладкомышечные клетки, позволяющие ей при необходимости сокращаться. Паренхима представлена двумя функционально различными зонами: белой и красной пульпой. Белая пульпа составляет 20 %, представлена лимфоидной тканью. Здесь имеются В-зависимые и Т-зависимые зоны. И также здесь есть макрофаги. Красная пульпа составляет 80 %. Она выполняет следующие функции:
- Депонирование зрелых форменных элементов крови.
- Контроль состояния и разрушения старых и повреждённых эритроцитов и тромбоцитов.
- Фагоцитоз инородных частиц.
- Обеспечение дозревания лимфоидных клеток и превращение моноцитов в макрофаги.
Иммунокомпетентные клетки[править | править код]
К иммунокомпетентным клеткам относят макрофаги и лимфоциты. Эти клетки совместно участвуют в инициации и развитии всех звеньев адаптивного иммунного ответа (система трёхклеточной кооперации).
Клетки, участвующие в иммунном ответе[править | править код]
T-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, отвечающая главным образом за клеточный иммунный ответ. Включает в себя субпопуляции Т-хелперов (дополнительно разделяются на Th1, Th2, а также выделяют Treg, Th9, Th17, Th22,), цитотоксических Т-лимфоцитов,NKT. Включает в себя эффектор, регуляторы и долгоживущие клетки-памяти. Функции разнообразны: как регуляторы и администраторы иммунного ответа (Т-хелперы), так и киллеры (цитотоксические Т-лимфоциты).
B-Лимфоциты[править | править код]
Субпопуляция лимфоцитов, синтезирующая антитела и отвечающая за гуморальный иммунный ответ.
Натуральные киллеры[править | править код]
Натуральные киллеры (NK-клетки) — субпопуляция лимфоцитов, обладающая цитотоксичной активностью, то есть они способны: контактировать с клетками-мишенями, секретировать токсичные для них белки, убивать их или отправлять в апоптоз. Натуральные киллеры распознают клетки, поражённые вирусами и опухолевые клетки.
Нейтрофилы[править | править код]
Нейтрофилы — это неделящиеся и короткоживущие клетки. Они составляют 65-70 % от гранулоцитов. Нейтрофилы содержат огромное количество антибиотических белков, которые содержатся в различных гранулах. К этим белкам относятся лизоцим (мурамидаза), липопероксидаза и другие антибиотические белки. Нейтрофилы способны самостоятельно мигрировать к месту нахождения антигена, так как у них есть рецепторы хемотаксиса (двигательная реакция на химическое вещество). Нейтрофилы способны «прилипать» к эндотелию сосудов и далее мигрировать через стенку к месту нахождения антигенов. Далее проходит фагический цикл, и нейтрофилы постепенно заполняются продуктами обмена. Далее они погибают и превращаются в клетки гноя.
Эозинофилы[править | править код]
Эозинофилы составляют 2—5 % от гранулоцитов. Способны фагоцитировать микробы и уничтожать их. Но это не является их главной функцией. Главным объектом эозинофилов являются гельминты. Эозинофилы узнают гельминтов и экзоцитируют в зону контакта вещества — перфорины. Эти белки встраиваются в билипидный слой клеток гельминта. В них образуются поры, внутрь клеток устремляется вода, и гельминт погибает от осмотического шока.
Базофилы[править | править код]
Базофилы составляют 0,5-1 % от гранулоцитов. Существуют две формы базофилов: собственно базофилы, циркулирующие в крови, и тучные клетки, находящиеся в ткани. Тучные клетки располагаются в различных тканях, лёгких, слизистых и вдоль сосудов. Они способны вырабатывать вещества, стимулирующие анафилаксию (расширение сосудов, сокращение гладких мышц, сужение бронхов). При этом происходит взаимодействие с иммуноглобулином Е (IgE). Таким образом они участвуют в аллергических реакциях. В частности, в реакциях немедленного типа.
Моноциты[править | править код]
Моноциты превращаются в макрофаги при переходе из кровеносной системы в ткани, существуют несколько видов макрофагов в зависимости от типа ткани, в которой они находятся, в том числе:
- Некоторые антигенпредставляющие клетки, в первую очередь дендритные клетки, роль которых — поглощение микробов и «представление» их Т-лимфоцитам.
- Клетки Купфера — специализированные макрофаги печени, являющиеся частью ретикулоэндотелиальной системы.
- Альвеолярные макрофаги — специализированные макрофаги лёгких.
- Остеокласты — костные макрофаги, гигантские многоядерные клетки позвоночных животных, удаляющие костную ткань посредством растворения минеральной составляющей и разрушения коллагена.
- Микроглия — специализированный класс глиальных клеток центральной нервной системы, которые являются фагоцитами, уничтожающими инфекционные агенты и разрушающими нервные клетки.
- Кишечные макрофаги и т. д.
Функции их разнообразны и включают в себя фагоцитоз, взаимодействие с адаптивной иммунной системой и инициацию и поддержание иммунного ответа, поддержание и регулирование процесса воспаления, взаимодействие с нейтрофилами и привлечение их в очаг воспаления, выделение цитокинов, регуляция репарации, регуляция процессов свертывания крови и проницаемости капилляров в очаге воспаления, синтез компонентов системы комплемента.
Макрофаги, нейтрофилы, эозинофилы, базофилы и натуральные киллеры обеспечивают прохождение врождённого иммунного ответа, который является неспецифичным (в патологии неспецифичный ответ на альтерацию называют воспалением, воспаление является неспецифической фазой последующих специфических иммунных).
Иммунно привилегированные области[править | править код]
В некоторых частях организма млекопитающих и человека появление чужеродных антигенов не вызывает иммунного ответа. К таким областям относятся мозг и глаза, семенники, эмбрион и плацента. Нарушение иммунных привилегий может становиться причиной аутоиммунных заболеваний.
Иммунные заболевания[править | править код]
Аутоиммунные заболевания[править | править код]
При нарушении иммунной толерантности или повреждении тканевых барьеров возможно развитие иммунных реакций на собственные клетки организма. Например, патологическая выработка антител к ацетилхолиновым рецепторам собственных мышечных клеток вызывает развитие миастении[11].
Иммунодефицит[править | править код]
См. также[править | править код]
- Иммунная система
- Врождённый иммунитет
- Приобретенный иммунитет
- Иммунотерапия рака
- Иммунитет растений
- Химера (биология)
Примечания[править | править код]
- ↑ ИММУНИТЕТ • Большая российская энциклопедия — электронная версия. bigenc.ru. Дата обращения 8 апреля 2020.
- ↑ Bickle T. A., Krüger D. H. Biology of DNA restriction // Microbiological Reviews. — 1993. — Vol. 57, no. 7. — P. 434—450. — PMID 8336674.
- ↑ Черешнев В.А. Черешнева М.В. Иммунологические механизмы локального воспаления. Медицинская иммунология 2011 т.13 №6 стр.557-568 РО РААКИ. cyberleninka.ru. Дата обращения 16 мая 2020.
- ↑ Travis J. On the Origin of the Immune System // Science. — 2009. — Vol. 324, no. 5927. — P. 580—582. — doi:10.1126/science.324_580. — PMID 19407173.
- ↑ Genetics of the Immune Response / Ed. by E. Möller and G. Möller. — New York: Plenum Press, 2013. — viii + 316 p. — (Nobel Foundation Symposia, vol. 55). — ISBN 978-1-4684-4469-8. — P. 262.
- ↑ Галактионов В.Г. Проблемы эволюционной иммунологии. cyberleninka.ru. Медицинская иммунология 2004 т.6 №3-5 РО РААКИ. Дата обращения 16 мая 2020.
- ↑ Галактионов, 2005, с. 8.
- ↑ Галактионов, 2005, с. 8, 12.
- ↑ Иммунитет // Казахстан. Национальная энциклопедия. — Алматы: Қазақ энциклопедиясы, 2005. — Т. II. — ISBN 9965-9746-3-2.
- ↑ Нобелевская премия по физиологии и медицине 2011 (англ.). www.nobelprize.org.
- ↑ Галактионов, 2005, с. 392.
Литература[править | править код]
- Галактионов В. Г. . Эволюционная иммунология. — М.: Академкнига, 2005. — 408 с. — ISBN 5-94628-103-8.
- Хаитов Р. М. . Иммунология. — М.: ГЕОТАР, 2006. — 320 с. — ISBN 978-5-9704-1288-6.
- Ярилин А. А. . Иммунология. — М.: ГЕОТАР, 2010. — 737 с. — ISBN 978-5-9704-1319-7.
ИММУНИТЕ́Т животных и человека (от лат. immunitas – освобождение, избавление), способность организма поддерживать свою целостность и биологическую индивидуальность путём распознавания и удаления чужеродных веществ и клеток. Учение об И. родилось из необходимости преодолеть инфекц. болезни, эпидемии которых (чума, холера, оспа и др.) до кон. 19 в. уносили большое число жизней людей. В связи с этим под термином «И.» долгое время понимали невосприимчивость организма к инфекц. заболеваниям. Дальнейшие исследования показали, что И. – это также устойчивость организма к пересаживаемым органам и тканям, к изменившимся собств. клеткам, включая раковые, а также к чужеродным веществам животного и растит. происхождения. В поддержании И. участвуют защитные механизмы врождённого (неспецифического) и приобретённого (специфического, или адаптивного) иммунитета.
Формы врождённого и приобретённого иммунитета и их взаимосвязь
Врождённый И. присущ всем многоклеточным животным, осуществляется специализир. клетками, развивающимися вне зависимости от поступления в организм чужеродных и потенциально опасных агентов; его неспецифич. защитные механизмы реализуются после кратковременной активации специализир. клеток. Приобретённый И. характерен для хрящевых и костных рыб, земноводных, пресмыкающихся, птиц и млекопитающих, его основой является иммунный ответ – цепь реакций иммунной системы, которая включается чужеродными агентами (антигенами) и приводит к формированию клеток и молекул, удаляющих эти агенты или продукты их разрушения из организма. В отличие от врождённого И., реакции которого универсальны в отношении разл. чужеродных агентов, иммунный ответ приобретённого И. специфичен (направлен против агентов, включивших этот иммунный ответ). Обе формы И. тесно взаимосвязаны: иммунный ответ развивается лишь при условии предварит. активации врождённого И., а продукты приобретённого И. повышают эффективность врождённого И. Реакции И. осуществляются спец. клетками – иммуноцитами. У высших животных, напр., это лейкоциты, которые созревают в кроветворных органах и некоторое время циркулируют в крови, а затем заселяют ткани. Реакции врождённого И. обеспечивают миелоидные клетки (нейтрофильные и эозинофильные гранулоциты, моноциты и их тканевые формы – макрофаги, дендритные и тучные клетки) и частично – лимфоидные дендритные клетки. Реакции приобретённого И. реализуются Т- и В-лимфоцитами.
Процесс распознавания чужеродных агентов в организме: рецепторы врождённого и приобретённого иммунитета
Распознавание чужеродных молекул в организме осуществляется с помощью спец. белковых рецепторов. Рецепторы врождённого И. имеют сродство к небольшому числу молекул, характерных для болезнетворных микроорганизмов (патогенов), но отсутствующих в организме данного вида. Такие молекулы (бактериальные липополисахариды, гликолипиды, пептидогликаны, нуклеиновые кислоты бактерий и вирусов и др.) называют молекулярными «образами», связанными с патогенами (PAMP – от pathogen-associated molecular patterns); они сигнализируют о потенциальной опасности со стороны патогенов. Распознавание РАМР осуществляют неск. типов рецепторов (т. н. Toll- и NOD-рецепторы, лектиновые рецепторы), которые представлены небольшим числом вариантов (ок. 10) и располагаются на поверхности или внутри клеток системы врождённого И.; такое распознавание надёжно, поскольку детерминируется генами зародышевой линии. Связывание РАМР с рецепторами приводит к активации клеток системы врождённого иммунитета.
Гл. особенность распознавания рецепторов в рамках приобретённого И. состоит в том, что каждый рецептор распознаёт конкретную чужеродную молекулу, называемую антигеном, точнее фрагмент антигена – его эпитоп, или антигенную детерминанту. При этом разные лимфоциты несут на своей поверхности рецепторы к разным эпитопам. Т. о., каждая клетка способна распознать только один эпитоп (или группу структурно сходных эпитопов) и лишь популяция лимфоцитов в целом способна обеспечить распознавание всего разнообразия чужеродных молекул, для чего требуется 105–107 вариантов рецепторов. В геноме животных содержится неск. сотен вариантов генов, кодирующих антигенраспознающие рецепторы лимфоцитов. Их вариабельность сильно возрастает при дифференцировке лимфоцитов в процессе перестройки соответствующих генов. Последняя происходит в каждой клетке автономно, в результате чего каждый лимфоцит и его потомство (клон) располагают индивидуальным по специфичности рецептором. Существует три типа антигенраспознающих рецепторов – два варианта (белковые димеры αβ и γδ , родственные иммуноглобулинам) в субпопуляциях Т-лимфоцитов и один (мембранный иммуноглобулин) в популяции В-лимфоцитов. Рецепторы В-лимфоцитов распознают эпитопы нативных молекул антигена, а Т-лимфоцитов – эпитопы, предварительно выщепленные из целой молекулы и включённые в состав молекулы главного комплекса гистосовместимости. Такую обработку антигена осуществляют антигенпредставляющие клетки. Для активации Т-лимфоцитов при этом требуется дополнит. стимуляция (костимуляция) с помощью молекул, образующихся при активации врождённого И. В отсутствии костимуляции формируется анергия (неотвечаемость) Т-лимфоцитов. При стимуляции В-лимфоцитов источником костимулирующих сигналов служит Т-лимфоцит (в частности, Т-хелпер, или клетка-помощник). Активация лимфоцитов – условие их последующей пролиферации (для обеспечения количества клеток, достаточного для осуществления защиты) и дифференцировки в эффекторные (исполнительные) клетки, которые обеспечивают реакции приобретённого иммунитета.
Механизмы удаления чужеродных агентов из организма при врождённом и приобретённом иммунитете
Удаление чужеродных агентов из организма осуществляется с использованием комплекса механизмов, бо́льшая часть которых формируется в рамках врождённого И. Эффекторные механизмы И. разделяют на клеточные и гуморальные. Клеточные механизмы врождённого И. приводят к цитолизу (разрушению клеток). Из трёх вариантов последнего (внутриклеточный, внеклеточный и контактный) наиболее эффективен внутриклеточный цитолиз, реализуемый в процессе фагоцитоза: чужеродная клетка захватывается фагоцитами (нейтрофилами, макрофагами и др. клетками) и, оказавшись внутри фаголизосомы, сначала убивается активными формами кислорода, оксидом азота и бактерицидными пептидами, а затем расщепляется ферментами. Внеклеточному цитолизу бактерицидными факторами, секретируемыми лейкоцитами (в т. ч. эозинофилами), подвергаются, напр., клетки многоклеточных паразитов, контактному цитолизу – инфицированные вирусом или опухолевые клетки с помощью т. н. NK-клеток (от англ. natural killer – естественный истребитель). В зоне контакта последних с клетками-мишенями формируется микрополость, в которую NK-клетка секретирует вещества, одни из которых формируют поры в мембране клетки-мишени, а другие, проникнув через эти поры, включают процесс апоптоза – активной формы гибели клетки. Гуморальными факторами врождённого И., способствующими удалению чужеродных агентов, являются бактерицидные пептиды (дефензины, кателицидины), белки острой фазы воспаления, компоненты системы комплемента, цитокины. Активируемые компоненты комплемента вызывают опсонизацию – облегчение фагоцитоза микроорганизмов или их лизис в результате формирования поры в мембране. Белки острой фазы (в т. ч. С-реактивный белок) опсонизируют чужеродные клетки и активируют комплемент. Цитокины обеспечивают формирование воспалит. реакции, в рамках которой реализуется врождённый И.; относящиеся к ним интерфероны оказывают противовирусное и противоопухолевое действие.
Осн. эффекторными факторами приобретённого И. служат цитотоксические Т-лимфоциты, цитокины, секретируемые Т-хелперами, и антитела. Цитотоксические Т-лимфоциты образуются в процессе клеточного иммунного ответа. Они реализуют своё действие с помощью механизма контактного цитолиза или апоптоза клеток-мишеней. Мишенью цитотоксических Т-лимфоцитов являются лишь те клетки, которые экспрессируют антигенные эпитопы, распознаваемые Т-лимфоцитами, т. е. их действие более прицельно, чем действие естеств. киллеров. Участие Т-хелперов в реализации эффекторной фазы иммунного ответа связано с секрецией цитокинов, прежде всего интерферона. При его действии на макрофаги (особенно в сочетании с фактором некроза опухоли) резко повышается бактерицидная активность последних и разрушаются даже те патогены (микобактерии, простейшие), которые не могут быть убиты без участия цитокинов. Т. о., гуморальные продукты Т-хелперов усиливают внутриклеточный цитолиз, осуществляемый в рамках врождённого И. Антитела, секретируемые плазматич. клетками, которые дифференцируются из В-лимфоцитов, представляют собой растворимую форму их антигенраспознающих рецепторов. Обладая способностью связываться с антигенами как в растворимой, так и в мембраносвязанной формах, они могут блокировать антигены и несущие их патогены. Результатом блокады может быть утрата микробными клетками подвижности, способности к адгезии, предотвращение инфицирования клеток вирусами. При связывании токсинов или ферментов антитела нейтрализуют их активность. Однако бо́льшая часть эффектов антител обусловлена привлечением эффекторных клеток и молекул. При взаимодействии с антигеном (см. Антиген – антитело реакция) демаскируются участки молекулы антитела, распознаваемые компонентами комплемента (C1q) и Fc-рецепторами эффекторных клеток – фагоцитов и естеств. киллеров. Связывание C1q приводит к активации комплемента с опсонизацией и/или лизисом чужеродной клетки. Связывание с Fc-рецептором макрофага или иного фагоцита облегчает фагоцитоз (опсонизацию). Распознавание антител, фиксированных на клетках-мишенях, Fc-рецепторами естеств. киллеров облегчает осуществление контактного цитолиза. Т. о., бóльшая часть проявлений эффекторной активности антител, как и клеточных факторов приобретённого И., состоит в повышении эффективности реакций врождённого И. и придании им специфичности в отношении конкретных антигенов.
В ходе иммунного ответа формируется иммунологическая память, не свойственная врождённому И. Её субстратом служат Т- и В-лимфоциты иммунологич. памяти, которые дифференцируются при первичном иммунном ответе, не принимая в нём участия, и затем длительно сохраняются в организме. Реакция этих клеток на антиген при его повторном поступлении (вторичный иммунный ответ) осуществляется более быстро и эффективно, чем реакция лимфоцитов при первом контакте с антигеном. На этом основано создание искусственного И. к возбудителям заболеваний путём вакцинации: ослабленный, убитый патоген или выделенные из него антигены вызывают формирование клеток памяти без развития инфекц. процесса, что повышает эффективность иммунной защиты при поступлении в организм активного патогена, несущего те же антигенные молекулы. Аналогичные подходы используют для создания И. к опухолевым клеткам с помощью онковакцин.
Патология иммунитета
может быть обусловлена его ослаблением (иммунодефициты) или извращённым проявлением (аутоиммунитет, аллергия). Иммунодефициты могут проявляться как самостоят. заболевания, обусловленные дефектом генов (первичные иммунодефициты), или как синдромы, сопутствующие др. заболеваниям или действию повреждающих факторов (вторичные иммунодефициты). Аутоиммунные болезни являются следствием развития иммунного ответа на собств. антигены организма. Основой аллергии служит неадекватно усиленная реакция И. на определённые антигены (аллергены); её причиной является выброс активных субстанций из тучных клеток при взаимодействии аллергена с IgE-антителами, фиксированными на поверхности этих клеток. К патологии И. могут быть отнесены также иммунологич. осложнения беременности (реакция на антигены плода). Особое место занимает реакция организма на трансплантаты чужеродных тканей, а также реакция иммуноцитов, содержащихся в трансплантате, на антигены организма (реакция трансплантат-против-хозяина). Необходимость предупреждения и лечения извращённых проявлений И. породила задачу ослабления И. путём «ингибирующей» вакцинации (аллерговакцины, вакцины против аутоиммунитета), что дополнило традиц. способы усиления И. против воздействия патогенных факторов (см. Иммунизация). Поиски путей направленной иммунокоррекции в значит. степени определяют прикладную значимость изучения И. и обусловливают обществ. интерес к иммунологич. проблемам. Наука об иммунитете называется иммунологией. См. также Иммунопатология.