Объект распознавания врожденного иммунитета
ТОП 10:
Распознающие рецепторы врожденного иммунитета
Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.
Таблица Распознавание в системе врожденного иммунитета
Мембранные рецепторы (передают сигнал внутрь клетки) | Toll – подобные (TRL1-10) C -лектиновые Рецепторы-мусорщики (Skavender-рецепторы) Интегриновые |
Внутриклеточные (цитозольные) | NOD RID DAI |
Секретируемые | Пентаксины Коллектины Компоненты системы комплемента Фиколины |
Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (patern recognition recepror – PRR). К ним относятся Toll , NOD , RID – рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.
Toll – рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10 Toll – подобных рецепторов.
Таблица. Toll -подобные рецепторы (TLR) человека и их лиганды
TLR | Лиганды | Патогены |
TLR1 | Липопептиды | Грамотрицательные бакетрии, микобактерии |
TLR2 | Пептидогликан, липотейхоевые кислоты | Грамположительные бактерии, грибы |
TLR3 | Двухцепочные РНК | Вирусы |
TLR4 | Липополисахарид | Грамотрицательные бактерии |
TLR5 | Флагеллин | Бактерии |
TLR6 | Диациллипопептиды, липотейхоевые кислоты | Микобактерии, грамположительные бактерии, грибы |
TLR7 | Одноцепочечные РНК | Вирусы |
Таблица. Toll -подобные рецепторы, расположенные на клетках иммунной системы
Клетки иммунной системы | Toll — рецепторы |
Нейтрофилы | TLR1,2,4,5,6,7,8,9,10 |
Моноциты/макрофаги | TLR1,2,4,5,6,7,8 |
Дендритные клетки | TLR1,2,4,5,6,8,10 |
В-лимфоциты | TLR1,3,6,7,9,10 |
Т-лимфоциты (Th1/Th2) | TLR2,3,5,9 |
Т-лимфоциты (регуляторные) | TLR2,5,8 |
Экспрессия Toll – рецепторов обеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.
NOD – рецепторы распознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторы имеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.
Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc -фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.
Гуморальные факторы врожденного иммунитета
Гуморальные факторы врожденного иммунитета – это белки, присутствующие в сыворотке крови, секретах слизистых оболочек, которые синтезируются клетками иммунной системы и могут оказывать бактерицидное, опсонизирующее и т.д. действие на организмы.
Система комплемента
Комплемент – система сывороточных белов крови, каскадная активация которых приводит к лизису бактерий, собственных клеток, инфицированных внутриклеточными паразитами, разрушению иммунных комплексов.
Состоит более, чем из 20 инертных белков сыворотки, 9 из которых являются основными и обозначаются как С1, С2 и т.д. — С9. Формирование комплемента в единое целое или его активация происходит при внедрении в организм чужеродных антигенов.
Комплемент может активироваться двумя путями: классическим и альтернативным.
Противомикробные пептиды
Противомикробные пептиды – катионные белка, способные поражать вирусы, грибы, простейшие. Синтезируются нейтрофилами и эпителиальными клетками при взаимодействии их Toll – рецепторов с антигеном. Осуществляют мгновенный иммунитет. Часто их называют эндогенными антибиотиками. Различают 2 основных вида – дефенсины и кателицидины.
Механизм действия: противомикробные пептиды разрушают наружные мембраны микроорганизмов. Мембраны бактериальных клеток заряжены отрицательно, а пептиды положительно. Разность зарядов обеспечивает их взаимодействие. Катионные белки встраиваются в мембрану микробной клетки, образуя поры. Бактериальная клетка теряет ионы калия, аминокислоты. Внутрь клетки поступает вода, обеспечивая ее гибель.
Белки острой фазы продуцируются моноцитами, макрофагами, фибробластами. Синтез белков острой фазы существенно повышается в ответ на инфекцию.
С-реактивный белок ( CRB ) связывается с поверхностью бактерий, активирует систему комплемента. При бактериальной инфекции увеличивается в 100 раз.
Маннозосвязывающий лектин активирует систему комплемента по лектиновому пути.
Сывороточный амилоид А выступает в роли хемоаттрактанта.
Фибриноген выступает как опсонин
Лизоцим – фермент, содержащийся в отделяемом слизистых оболочек глаз, ротовой полости, носоглотки, грудном молоке. Вырабатывается моноцитами крови и тканевыми макрофагами. Разрушает пептидогликаны клеточных стенок бактерий.
Фагоцитоз
Фагоцитоз – это активное распознавание и поглощение микроорганизмов фагоцитирующими клетками с их последующей инактивацией и перевариванием. Фагоцитоз – самый древний вид защиты, унаследованный нами в ходе эволюции. Выраженной фагоцитарной активностью обладают нейтрофилы, моноциты и макрофаги.
Нейтрофилы происходят от стволовой клетки костного мозга. Это короткоживущие неделящиеся клетки с сегментированным ядром и набором гранул, содержащих большое количество бактерицидных веществ. Их время жизни составляет 2-3 суток. Нейтрофилы являются основными клетками, осуществляющими уничтожение внеклеточных микроорганизмов.
Макрофаги образуются из стволовой клетки красного костного мозга, на территории которого дифференцируются до стадии моноцита. Моноциты попадают в ток крови и расселяются по тканям, превращаясь в тканевые макрофаги, где функционируют в течение недель или месяцев. Для них характерно изобилие гранул, близких по составу к содержимому гранул нейтрофилов.
Их функциями является поглощение и уничтожение внедрившихся микроорганизмов (в основном внутриклеточных), а также поврежденных, дегенерированных, вирусинфицированных и опухолевых клеток и образующихся иммунных комплексов. Это клетки — «мусорщики».
Нейтрофилы осуществляют основную защиту от пиогенных (внеклеточных) бактерий, макрофаги – от внутриклеточных паразитов (вирусы, грибы, простейшие).
Нейтрофилы – это основные участники острого воспаления, макрофаги – хронического, они способны стимулировать образование гранулем.
Функции фагоцитов:
n Фагоцитарная – захват и внутриклеточное переваривание микроорганизмов.
n Антигенпрезентирующая – презентация антигена Т-лимфоцитам в комплексе с молекулами главного комплекса гистосовместимости (HLA). Этой функцией обладают антигенпрезентирующие макрофаги.
n Секреторно-регуляторная – синтез и секреция некоторых белков системы комплемента, отдельных цитокинов, лизоцима, белков системы свертывания крови.
n Цитотоксическое действие фагоцитов.
Связывание патогена с фагоцитом может быть прямым и опосредованным. Прямое распознавание происходит с участием Toll-рецепторов. При опосредованном распознается опсонизированный объект, покрытый антителами или C3b – компонентом комплемента.
Хемотаксис
Для того, чтобы процесс фагоцитоза произошел, необходимо сближение фагоцитирующих клеток с антигеном, который вызвал повреждение. Для этого нейтрофилы должны покинуть кровеносное русло, поскольку очаги внедрения антигена чаще имеют тканевую локализацию. Это возможно благодаря хемотаксису. Хемотаксис – движение фагоцитов по концентрационному градиенту химических веществ – хемоаттрактантов. В роли хемоаттрактантов для нейтрофилов выступают продукты жизнедеятельности бактерий, белки системы комплемента, цитокины и.т.д.
Основными хемоаттрактантами для макрофагов являются гамма-интерферон, хемотаксический макрофагальный фактор.
Адгезия – прилипание
Начинается с адгезии (прилипания) микробной частицы к поверхности фагоцита. Процесс поглощения идет эффективнее, если микробные клетки опсонизированы, то есть покрыты белками системы комплемента и специфическими антителами класса IgG. Особенно важно это для бактерий, имеющих капсулу (пневмококк, менингококк, кишечная палочка, гемофильная палочка и т.д.)
Эндоцитоз (поглощение)
Участок мембраны фагоцита в месте контакта с объектом уплотняется, вытягивается и надвигается на объект подобно механизму застежки «молния» до тех пор пока объект не будет полностью поглощен в фагосому.
Дегрануляция
Цитоплазматические гранулы фагоцитирующих клеток сливаются с фагосомой и образуется фаголизосома, в которой происходит киллинг и разрушение захваченной микробной частицы с помощью антимикробных факторов. Антимикробные системы делятся на те, которые требуют кислород – кислородзависимые и те, которые не требуют кислород – кислороднезависимые.
Кислородзависимые факторы (активные формы кислорода) образуются в ходе респираторного взрыва, представляющего собой каскад окислительных реакций.
Включают:
n супероксидный анион (О2-)
n перекись водорода (Н2О2)
n синглетный кислород (О2)
n гидроксильный радикал (ОН˙)
n оксид азота (NO)
Активные формы кислорода являются очень мощными окислителями, вызывают повреждение липидов, белков, ДНК мироорганизмов, оказывают летальное действие на биологические системы.
К кислороднезависимой группе бактерицидных факторов относятся лизоцим, некоторые протеолитические ферменты, лактоферрин, катионные белки, дефенсины.
Лактоферрин – связывает железо, предотвращает рост и размножение бактерий.
Катионные белки – вызывают повреждение клеточных мембран, лизируют бактериальные клетки.
Дефенсины – встраиваются в липидный слой клеток, нарушают ее проницаемость, обладают летальным действием на широкий спектр бактерий, грибов, вирусов.
Экзоцитоз – удаление продуктов разрушения
Распознающие рецепторы врожденного иммунитета
Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.
Таблица Распознавание в системе врожденного иммунитета
Мембранные рецепторы (передают сигнал внутрь клетки) | Toll – подобные (TRL1-10) C -лектиновые Рецепторы-мусорщики (Skavender-рецепторы) Интегриновые |
Внутриклеточные (цитозольные) | NOD RID DAI |
Секретируемые | Пентаксины Коллектины Компоненты системы комплемента Фиколины |
Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (patern recognition recepror – PRR). К ним относятся Toll , NOD , RID – рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.
Toll – рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10 Toll – подобных рецепторов.
Таблица. Toll -подобные рецепторы (TLR) человека и их лиганды
TLR | Лиганды | Патогены |
TLR1 | Липопептиды | Грамотрицательные бакетрии, микобактерии |
TLR2 | Пептидогликан, липотейхоевые кислоты | Грамположительные бактерии, грибы |
TLR3 | Двухцепочные РНК | Вирусы |
TLR4 | Липополисахарид | Грамотрицательные бактерии |
TLR5 | Флагеллин | Бактерии |
TLR6 | Диациллипопептиды, липотейхоевые кислоты | Микобактерии, грамположительные бактерии, грибы |
TLR7 | Одноцепочечные РНК | Вирусы |
Таблица. Toll -подобные рецепторы, расположенные на клетках иммунной системы
Клетки иммунной системы | Toll — рецепторы |
Нейтрофилы | TLR1,2,4,5,6,7,8,9,10 |
Моноциты/макрофаги | TLR1,2,4,5,6,7,8 |
Дендритные клетки | TLR1,2,4,5,6,8,10 |
В-лимфоциты | TLR1,3,6,7,9,10 |
Т-лимфоциты (Th1/Th2) | TLR2,3,5,9 |
Т-лимфоциты (регуляторные) | TLR2,5,8 |
Экспрессия Toll – рецепторов обеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.
NOD – рецепторы распознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторы имеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.
Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc -фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.
Глава 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ
Иммунитет — особое биологическое свойство многоклеточных организмов, направленное на защиту от генетически чужеродных факторов: микроорганизмов (бактерий, вирусов, простейших, грибов), инородных молекул и др. Иммунитет также обеспечивает невосприимчивость организма к инфекции при повторной встрече с патогеном. В медицинском смысле этот термин употребляли ещё до нашей эры в значениях: неприкосновенный, чистый, не затронутый заболеванием, невредимый, находящийся под хорошей защитой, устойчивый к заразной болезни.
Совокупность органных, тканевых, клеточных и молекулярных компонентов, функцией которых является осуществление иммунной защиты, называется иммунной системой. Иммунология — наука о строении и функциях иммунной системы как в норме, так и при различных патологических состояниях, в том числе и при нарушениях самой иммунной системы — иммунопатологиях.
Иммунную защиту обеспечивают два механизма: врождённый и адаптивный.
Врождённый иммунитет является присущей каждому организму с рождения, генетически закреплённой способностью противостоять инфекции. Это передовая линия обороны организма против патогенов, пытающихся проникнуть или уже проникших в покровные ткани или внутреннюю среду. Врождённый иммунитет срабатывает мгновенно или в течение первых нескольких часов после контакта с патогеном (возбудители, выделяемые ими токсины и другие чужеродные молекулы). Он включает четыре основных уровня защиты: анатомический, физиологический, фагоцитарный и воспалительный — покровные ткани, фагоциты, микробоцидные гуморальные вещества (протеазы, сильные окислители и свободные радикалы, продуцируемые фагоцитами, эндогенные противомикробные пептиды и др.), сосудистые реакции. Первичные рецепторы врождённого иммунитета — это молекулы многоклеточных, позволяющие «считывать» эволюционную память — информацию о том, чем отличаются микроорганизмы от собственных клеток.
Эти рецепторы способны распознавать консервативные молекулярные структуры — РАМР (Pathogen-Associated Molecular Patterns), характерные для групп сходных микроорганизмов. В настоящее время постоянно открывают новые патогенраспознающие рецепторы врождённого иммунитета. К ним относят мембраносвязанные паттернраспознающие рецепторы (Pattern Recognition Receptors, PRR), а также растворимые рецепторы — ряд белков сыворотки крови: C-реактивный белок (СРБ), маннозосвязывающий лектин (MBL — Mannose-Binding Lectin), компоненты комплемента.
Собственные возможности клеток врождённого иммунитета санировать организм от проникшего патогена часто недостаточны. Множество патогенов приспособилось выживать в присутствии факторов врождённой резистентности к инфекциям. Именно поэтому в процессе эволюции, начиная с челюстных рыб, к врождённому иммунитету добавился адаптивный иммунитет — специфический. Материальные носители адаптивного иммунитета — лимфоциты. Уникальное и отличительное свойство лимфоцитов как множества клеток — способность распознавать почти неограниченное (1018) разнообразие молекулярных объектов — антигенов. Лимфоциты характеризуются экспрессией Т-клеточных (TCR) или В-клеточных (BCR) рецепторов, распознающих только одну антигенную детерминанту либо небольшое число структурно очень близких детерминант, и поэтому, в отличие от PRR, обладающих высокой специфичностью (рис. 1-1).
Адаптивный (приобретённый) иммунитет формируется в течение жизни индивидуума. Активно приобретённый иммунитет — состояние невосприимчивости к инфекции после перенесённого инфекционного заболевания или после вакцинации (сам организм вырабатывает соответствующие антитела). Пассивно приобретённый иммунитет — состояние невосприимчивости к инфекции в результате поступления в организм уже готовых антител от матери или в результате инъекции (сам организм эти антитела не вырабатывает).
ИММУННЫЙ ОТВЕТ
Врождённая и адаптивная системы защиты организма включают клеточный и гуморальный компоненты и активно взаимодействуют друг с другом в процессе иммунного ответа. Иммунный ответ — многоэтапный процесс, заключающийся в распознавании и деструкции патогена и повреждённых им тканей. В его основе лежит уникальное свойство иммун-
Рис. 1-1. Сравнение врождённого и адаптивного иммунитета
ной системы отличать «свое» («sef») от «чужого» («nonself») и применять по отношению к «чужому» механизмы нейтрализации и уничтожения, а именно — иммунные реакции. Распознавание множества чужеродных антигенов происходит благодаря наличию в организме огромного разнообразия образующихся в тимусе клонов T-лимфоцитов (отбор клонов) и при помощи комплекса генов главного комплекса гистосовместимости (MHC) классов I и II. Нейтрализацию «чужого» осуществляют цирку-
лирующие в жидкостях организма антитела (гуморальный иммунитет) и цитотоксические лимфоциты (клеточный иммунитет).
Таким образом, основными характеристиками адаптивного иммунного ответа являются умение различать собственные антигены от чужеродных, специфичность и иммунная память.
• Различение «своего» и «чужого» выражается в дифференциации компонентов собственных тканей организма и чужеродных молекул. Специфическую неотвечаемость организма на собственные антигены обозначают как иммунную толерантность. Если же организм воспринимает собственные компоненты как чужеродные, развивается аутоиммунный ответ.
• Специфичность иммунного ответа проявляется в том, что иммунитет, сформировавшийся в результате контакта с определённым антигеном, будет обеспечивать защиту только против этого антигена.
• Иммунная память формируется в результате адаптивного иммунного ответа против конкретного возбудителя и сохраняется, как правило, в течение всей последующей жизни организма, защищая его от повторной инфекции, вызываемой этим же возбудителем. Такой механизм обеспечивается способностью иммунной системы к «запоминанию» антигенных детерминант патогена за счёт образования клеток иммунной памяти. Наличие иммунной памяти обусловливает развитие ускоренного и усиленного ответа (вторичный иммунный ответ) при повторном контакте с антигеном. Формирование иммунной памяти является основной целью вакцинации, т.е. процесса естественного или искусственного формирования иммунной защиты против определённой инфекции.
Схема развития иммунного ответа представлена на рис. 1-2. Содержание отдельных этапов иммунного ответа раскрыто ниже.
• Воспаление: участвуют клетки, поглощающие антигены (фагоциты, антигенпрезентирующие клетки) — в частности, дендритные клетки (ДК), макрофаги, эндотелиальные и другие клетки. Выделяются провоспалительные цитокины и хемокины.
• Переработка антигена (процессинг). После поглощения антигена антигенпрезентирующей клеткой (АПК) происходит его процессинг (расщепление и встраивание в молекулы MHC) и презентация на поверхности клетки. Это необходимо для распознавания антигена Т-лимфоцитами.
• Распознавание антигена происходит в периферических лимфоидных органах. Начало специфического иммунного ответа — про-
Рис. 1-2. Основные этапы иммунного ответа
лиферация и дифференцировка эффекторных и регуляторных лимфоцитов.
• Деструкция антигена и повреждённых патогеном тканей. При этом одни лимфоциты (помощники — хелперы) «нанимают» для выполнения эффекторных функций другие лимфоциты (эффекторные) и/или воспалительные лейкоциты (нейтрофилы, моноциты, базофилы, эозинофилы), тучные клетки, а также гуморальные литические системы типа комплемента.
• Выведение продуктов распада происходит с участием известных систем выделения.
КЛЕТКИ ИММУННОЙ СИСТЕМЫ
Клетки иммунной системы условно подразделяют на клетки врождённого и адаптивного иммунитета (рис. 1-3). Главным их различием является специфичность распознавания: низкая у первых и высокая у вторых. Существует и третья группа клеток — промежуточная, несущая черты обеих групп. Наличие этой группы показывает единство происхождения и способов защиты организма от чужеродных веществ антигенной природы.
Рис. 1-3. Клетки иммунной системы
В выполнении эффекторных иммунных функций очень важную роль играют АПК, T- и B-лимфоциты и NK-клетки (от англ. Natural Killer — естественный киллер, натуральный киллер).
• Антигенпрезентирующие клетки (АПК). К АПК относят макрофаги, дендритные клетки (включая клетки Лангерганса эпидермиса, М-клетки лимфатических фолликулов пищеварительного тракта и других слизистых оболочек, дендритные эпителиальные клетки тимуса), а также B-лимфоциты. АПК захватывают антиген, обрабатывают его (процессируют) и презентируют антигенные фрагменты на своей поверхности T-лимфоцитам (рис. 1-4).
• T-лимфоциты обусловливают клеточный иммунный ответ, а также помогают отвечать на антиген B-лимфоцитам при гуморальном иммунном ответе. Каждый T-лимфоцит несет на своей поверхности рецептор T-лимфоцитов (TCR — T-Cell Receptor) (см. рис. 5-1, в и рис. 6-1) строго одной специфичности, т.е. взаимодействующий с одним антигеном. T-клетки по экспрессии маркёрных антигенов CD (Cluster Differentiation) подразделяют на CD4+ и CD8+.
— CD4+ Т-лимфоциты (хелперы). Среди T-клеток, экспрессирующих мембранные маркёры CD4, выделяют Т-лимфоциты с эффекторными функциями (Th1, Th2, Th17) и Т-регуляторные клетки (естественные — Treg и индуцированные — Th3, или Tr1).
Рис. 1-4. Взаимодействие клеток в ходе гуморального иммунного ответа. Рецептор T-хелпера (TCR) распознаёт антигенную детерминанту (эпитоп), экспрессированную на поверхности антигенпрезентирующей клетки вместе с молекулой главного комплекса гистосовместимости класса II (MHC-II). Во взаимодействии участвует маркёрная молекула T-хелпера — CD4. В результате подобного взаимодействия антигенпрезентирующая клетка секретирует интерлейкин-1 (ИЛ-1), стимулирующий в T-хелпере синтез и секрецию цитокинов, включая ИЛ-2, а также синтез и перенос на плазматическую мембрану T-хелпера рецепторов для ИЛ-2 (ИЛ-2 также стимулирует пролиферацию T-хелперов). Отбор B-лимфоцитов происходит при взаимодействии антигена с вариабельными участками антител (иммуноглобулинов) на поверхности этих клеток (правая часть рисунка). Эпитоп этого антигена в комплексе с молекулой MHC-II распознаёт рецептор T-хелпера, после чего T-лимфоцит секретирует цитокины, стимулирующие пролиферацию B-лимфоцитов и их дифференцировку в плазматические клетки, синтезирующие антитела к данному антигену. Также показаны некоторые мембранные белки (CD40/CD40L и CD28/B7), участвующие в проведении костимуляторных сигналов, необходимых для полноценной активации взаимодействующих клеток (они описаны подробнее в главе 7)
◊ T-хелперы при взаимодействии с АПК специфически распознают антигены и начинают вырабатывать определённый набор цитокинов соответственно типу инфекционного агента: Th2 при взаимодействии с B-клетками индуцируют гуморальный иммунный ответ (см. рис. 1-4), а Th1 — при взаимодействии с макрофагами и цитотоксическими Т-лимфоцитами (ЦТЛ) — клеточный иммунный ответ. Th17 продуцируют ИЛ17 — мощный индуктор тканевого воспаления, привлекающий и активирующий гранулоциты и макрофаги.
◊ Регуляторные T-клетки (Т-регуляторы) контролируют интенсивность иммунного ответа, подавляя активность других субпопуляций Т-лимфоцитов.
— CD8+ Т-лимфоциты. Субпопуляция T-клеток, экспрессирующих мембранные молекулы CD8. Эти клетки выступают в роли ЦТЛ. Они лизируют клетки-мишени, несущие чужеродные или видоизменённые собственные антигены — аутоантигены: например, клетки опухоли, трансплантата, инфицированные вирусом клетки, несущие поверхностные вирусные антигены. Эффекторные функции ЦТЛ реализуются через индукцию образования в клетках-мишенях пор (под действием особых белков — перфоринов) и секрецию в поры специализированных сериновых протеаз — гранзимов. Вызванное этим нарушение осмотического баланса с внеклеточной средой приводит к гибели клетки (рис. 1-5). Под влиянием гранзимов индуцируются процессы запрограммированной гибели клетки — апоптоза.
• Т-клетки памяти — долгоживущие рециркулирующие малые лимфоциты, формируемые при первичном иммунном ответе. Они «запоминают» особенности детерминант антигенов и при повторном распознавании того же антигена развивают быстрый и усиленный ответ. Т-клетки памяти отличаются от наивных и эффекторных Т-лимфоцитов высоким уровнем экспрессии мембранных маркёров активации, меньшей потребностью в провоспалительных медиаторах и корецепторных сигналах для развития вторичного иммунного ответа.
• B-лимфоциты отвечают за гуморальный иммунный ответ. На мембране B-лимфоцитов присутствует рецептор для антигена — мономер IgM. Продолжительность жизни большинства B-лимфоцитов (если они не активируются антигеном!) не превышает 10 сут.
Рис. 1-5. Уничтожение клетки-мишени цитотоксическим T-лимфоцитом (Т-киллером). При сближении цитотоксического T-лимфоцита с клеткоймишенью после специфичного взаимодействия мембранных молекул клетокпартнёров T-лимфоцит убивает клетку-мишень
— Эффекторные B-лимфоциты. Активированные B-лимфоциты размножаются и дифференцируются в плазматические клетки (см. рис. 5-9), вырабатывающие антитела (иммуноглобулины, специфичные к конкретному антигену). При этом плазматические клетки теряют экспрессию специфических рецепторов для антигена.
— B-лимфоциты иммунной памяти — долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об антигене, с которым когда-то контактировали, за счёт продолжающейся экспрессии рецептора для антигена. Клетки памяти активируются
при повторном распознавании того же антигена. В этом случае B-лимфоциты памяти, при обязательном участии T-хелперов и ряда других факторов, превращаются в плазматические клетки, обеспечивая быстрый синтез большого количества специфичных антител, взаимодействующих с чужеродным антигеном, и развитие эффективного иммунного ответа. • NK-клетки (от англ. Natural Killer — естественный киллер) — лимфоциты, лишённые характерных для T- и B-клеток поверхностных CD-маркёров, а также антигенраспознающих рецепторов — TCR (T Cell Receptor) или BCR (B Cell Receptor). Эти клетки играют важную роль в механизмах врождённого иммунитета (см. главу 3), уничтожают трансформированные, инфицированные вирусами и чужеродные клетки.