Облучение получаемое при мрт и кт
Обзор
Из всех лучевых методов диагностики только три: рентген (в том числе, флюорография), сцинтиграфия и компьютерная томография, потенциально связаны с опасной радиацией — ионизирующим излучением. Рентгеновские лучи способны расщеплять молекулы на составные части, поэтому под их действием возможно разрушение оболочек живых клеток, а также повреждение нуклеиновых кислот ДНК и РНК. Таким образом, вредное воздействие жесткой рентгеновской радиации связано с разрушением клеток и их гибелью, а также повреждением генетического кода и мутациями. В обычных клетках мутации со временем могут стать причиной ракового перерождения, а в половых клетках — повышают вероятность уродств у будущего поколения.
Вредное действие таких видов диагностики как МРТ и УЗИ не доказано. Магнитно-резонансная томография основана на излучении электромагнитных волн, а ультразвуковые исследования — на испускании механических колебаний. Ни то ни другое не связано с ионизирующей радиацией.
Ионизирующее облучение особенно опасно для тканей организма, которые интенсивно обновляются или растут. Поэтому в первую очередь от радиации страдают:
- костный мозг, где происходит образование клеток иммунитета и крови,
- кожа и слизистые оболочки, в том числе, желудочно-кишечного тракта,
- ткани плода у беременной женщины.
Особенно чувствительны к облучению дети всех возрастов, так как уровень обмена веществ и скорость клеточного деления у них гораздо выше, чем у взрослых. Дети постоянно растут, что делает их уязвимыми перед радиацией.
Вместе с тем, рентгеновские методы диагностики: флюорография, рентгенография, рентгеноскопия, сцинтиграфия и компьютерная томография широко используются в медицине. Некоторые из нас подставляются под лучи рентгеновского аппарата по собственной инициативе: дабы не пропустить что-то важное и обнаружить незримую болезнь на самой ранней стадии. Но чаще всего на лучевую диагностику посылает врач. Например, вы приходите в поликлинику, чтобы получить направление на оздоровительный массаж или справку в бассейн, а терапевт отправляет вас на флюорографию. Спрашивается, к чему этот риск? Можно ли как-то измерить «вредность» при рентгене и сопоставить её с необходимостью такого исследования?
Не пропустите другие полезные статьи о здоровье от команды НаПоправку
Email*
Учет доз облучения
По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.
На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».
Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.
Доза излучения зависит от многих факторов: площади тела, которую облучали, жесткости рентгеновских лучей, расстояния до лучевой трубки и, наконец, технических характеристик самого аппарата, на котором проводилось исследование. Эффективная доза, полученная при исследовании одной и той же области тела, например, грудной клетки, может меняться в два и более раза, поэтому постфактум подсчитать, сколько радиации вы получили можно будет лишь приблизительно. Лучше выяснить это сразу, не покидая кабинета.
Какое обследование самое опасное?
Для сравнения «вредности» различных видов рентгеновской диагностики можно воспользоваться средними показателями эффективных доз, приведенных в таблице. Это данные из методических рекомендаций № 0100/1659-07-26, утвержденных Роспотребнадзором в 2007 году. С каждым годом техника совершенствуется и дозовую нагрузку во время исследований удается постепенно уменьшать. Возможно в клиниках, оборудованных новейшими аппаратами, вы получите меньшую дозу облучения.
Часть тела, орган | Доза мЗв/процедуру | |
---|---|---|
пленочные | цифровые | |
Флюорограммы | ||
Грудная клетка | 0,5 | 0,05 |
Конечности | 0,01 | 0,01 |
Шейный отдел позвоночника | 0,3 | 0,03 |
Грудной отдел позвоночника | 0,4 | 0,04 |
Поясничный отдел позвоночника | 1,0 | 0,1 |
Органы малого таза, бедро | 2,5 | 0,3 |
Ребра и грудина | 1,3 | 0,1 |
Рентгенограммы | ||
Грудная клетка | 0,3 | 0,03 |
Конечности | 0,01 | 0,01 |
Шейный отдел позвоночника | 0,2 | 0,03 |
Грудной отдел позвоночника | 0,5 | 0,06 |
Поясничный отдел позвоночника | 0,7 | 0,08 |
Органы малого таза, бедро | 0,9 | 0,1 |
Ребра и грудина | 0,8 | 0,1 |
Пищевод, желудок | 0,8 | 0,1 |
Кишечник | 1,6 | 0,2 |
Голова | 0,1 | 0,04 |
Зубы, челюсть | 0,04 | 0,02 |
Почки | 0,6 | 0,1 |
Молочная железа | 0,1 | 0,05 |
Рентгеноскопии | ||
Грудная клетка | 3,3 | |
ЖКТ | 20 | |
Пищевод, желудок | 3,5 | |
Кишечник | 12 | |
Компьютерная томография (КТ) | ||
Грудная клетка | 11 | |
Конечности | 0,1 | |
Шейный отдел позвоночника | 5,0 | |
Грудной отдел позвоночника | 5,0 | |
Поясничный отдел позвоночника | 5,4 | |
Органы малого таза, бедро | 9,5 | |
ЖКТ | 14 | |
Голова | 2,0 | |
Зубы, челюсть | 0,05 |
Очевидно, что самую высокую лучевую нагрузку можно получить при прохождении рентгеноскопии и компьютерной томографии. В первом случае это связано с длительностью исследования. Рентгеноскопия обычно проводится в течение нескольких минут, а рентгеновский снимок делается за доли секунды. Поэтому при динамичном исследовании вы облучаетесь сильнее. Компьютерная томография предполагает серию снимков: чем больше срезов — тем выше нагрузка, это плата за высокое качество получаемой картинки. Еще выше доза облучения при сцинтиграфии, так как в организм вводятся радиоактивные элементы. Вы можете прочитать подробнее о том, чем отличаются флюорография, рентгенография и другие лучевые методы исследования.
Чтобы уменьшить потенциальный вред от лучевых исследований, существуют средства защиты. Это тяжелые свинцовые фартуки, воротники и пластины, которыми обязательно должен вас снабдить врач или лаборант перед диагностикой. Снизить риск от рентгена или компьютерной томографии можно также, разнеся исследования как можно дальше по времени. Эффект облучения может накапливаться и организму нужно давать срок на восстановление. Пытаться пройти диагностику всего тела за один день неразумно.
Как вывести радиацию после рентгена?
Обычный рентген — это воздействие на тело гамма-излучения, то есть высокоэнергетических электромагнитных колебаний. Как только аппарат выключается, воздействие прекращается, само облучение не накапливается и не собирается в организме, поэтому и выводить ничего не надо. А вот при сцинтиграфии в организм вводят радиоактивные элементы, которые и являются излучателями волн. После процедуры обычно рекомендуется пить больше жидкости, чтобы скорее избавиться от радиации.
Какова допустимая доза облучения при медицинских исследованиях?
Сколько же раз можно делать флюорографию, рентген или КТ, чтобы не нанести вреда здоровью? Есть мнение, что все эти исследования безопасны. С другой стороны, они не проводятся у беременных и детей. Как разобраться, что есть правда, а что — миф?
Оказывается, допустимой дозы облучения для человека при проведении медицинской диагностики не существует даже в официальных документах Минздрава. Количество зивертов подлежит строгому учету только у работников рентгенкабинетов, которые изо дня в день облучаются за компанию с пациентами, несмотря на все меры защиты. Для них среднегодовая нагрузка не должна превышать 20 мЗв, в отдельные годы доза облучения может составить 50 мЗв, в виде исключения. Но даже превышение этого порога не говорит о том, что врач начнет светиться в темноте или у него вырастут рога из-за мутаций. Нет, 20–50 мЗв — это лишь граница, за которой повышается риск вредного воздействия радиации на человека. Опасности среднегодовых доз меньше этой величины не удалось подтвердить за многие годы наблюдений и исследований. В тоже время, чисто теоретически известно, что дети и беременные более уязвимы для рентгеновских лучей. Поэтому им рекомендуется избегать облучения на всякий случай, все исследования, связанные с рентгеновской радиацией, проводятся у них только по жизненным показаниям.
Опасная доза облучения
Доза, за пределами которой начинается лучевая болезнь — повреждение организма под действием радиации — составляет для человека от 3 Зв. Она более чем в 100 раз превышает допустимую среднегодовую для рентгенологов, а получить её обычному человеку при медицинской диагностике просто невозможно.
Есть приказ Министерства здравоохранения, в котором введены ограничения по дозе облучения для здоровых людей в ходе проведения профосмотров — это 1 мЗв в год. Сюда входят обычно такие виды диагностики как флюорография и маммография. Кроме того, сказано, что запрещается прибегать к рентгеновской диагностике для профилактики у беременных и детей, а также нельзя использовать в качестве профилактического исследования рентгеноскопию и сцинтиграфию, как наиболее «тяжелые» в плане облучения.
Количество рентгеновских снимков и томограмм должно быть ограничено принципом строгой разумности. То есть исследование необходимо лишь в тех случаях, когда отказ от него причинит больший вред, чем сама процедура. Например, при воспалении легких приходится делать рентгенограмму грудной клетки каждые 7–10 дней до полного выздоровления, чтобы отследить эффект от антибиотиков. Если речь идет о сложном переломе, то исследование могут повторять еще чаще, чтобы убедиться в правильном сопоставлении костных отломков и образовании костной мозоли и т. д.
Есть ли польза от радиации?
Известно, что в номе на человека действует естественный радиационный фон. Это, прежде всего, энергия солнца, а также излучение от недр земли, архитектурных построек и других объектов. Полное исключение действия ионизирующей радиации на живые организмы приводит к замедлению клеточного деления и раннему старению. И наоборот, малые дозы радиации оказывают общеукрепляющее и лечебное действие. На этом основан эффект известной курортной процедуры — радоновых ванн.
В среднем человек получает около 2–3 мЗв естественной радиации за год. Для сравнения, при цифровой флюорографии вы получите дозу, эквивалентную естественному облучению за 7–8 дней в году. А, например, полет на самолете дает в среднем 0,002 мЗв в час, да еще работа сканера в зоне контроля 0,001 мЗв за один проход, что эквивалентно дозе за 2 дня обычной жизни под солнцем.
Магнитно-резонансная томография (МРТ) – что это такое?
Магнитно-резонансная томография – современный метод исследования структуры, состояния и работы внутренних органов. В его основе лежит измерение электромагнитных волн, исходящих от тканей организма. Эти сигналы передаются на компьютер, который расшифровывает их и преобразует в изображение. Полученные данные анализирует и оценивает специалист, проводящий МРТ.
Современное оборудование позволяет получить трехмерное изображение внутренних органов, благодаря чему исследование имеет высокую информативность. МРТ помогает выявить большое число заболеваний, которые не диагностируются так точно при помощи других методов.
МРТ имеет большие преимущества перед инвазивными и рентгенографическими методами исследования, так как представляет собой безопасную и комфортную процедуру. Благодаря этому исследование применяется в диагностике заболеваний многих органов и систем:
- головного мозга;
- сосудов шеи и головного мозга;
- челюсти и височно-челюстного сочленения;
- суставов;
- спинного мозга;
- позвоночника;
- органов брюшной полости;
- органов таза;
- дыхательной системы;
- эндокринной системы;
- лимфатической системы;
- репродуктивной системы.
Одно из самых распространенных направлений применения магнитно-резонансной томографии – диагностика заболевания нервной системы. МРТ головного мозга позволяет выявить опухоли и определить стадию их развития, диагностировать проблемы с сосудами, рассеянный склероз и другие патологии.
Многих пациентов интересует – при МРТ мозга облучение происходит и опасно ли оно? Какую дозу радиации получает организм в процессе проведения исследования? Опасно ли МРТ для здоровья?
Уровень излучения на МРТ
В отличие от рентгена и компьютерной томографии (КТ) пациенты получают нулевую дозу радиации при проведении МРТ, так как это исследование основано не на ионизирующем излучении, а на электромагнитном воздействии.
Влияние магнитно-резонансного томографа сопоставимо с воздействием излучения сотового телефона или микроволновой печи. МРТ не вызывает нарушений в структуре, состоянии и работе тканей и органов, являясь при этом высокоточным методом диагностики.
Поэтому можно быть уверенными: при МРТ мозга облучения не происходит.
Магнитно-резонансная томография при онкопатологии
Пациентам с онкопатологией МРТ назначают с применением контрастного вещества – для повышения информативности исследования: это позволяет детально изучить опухоль и питающую ее сосудистую сеть. Благодаря высокоточной и диагностике назначается максимально эффективное лечение.
Отсутствие облучения обеспечивает возможность применения МРТ для онкобольных с подтвержденными диагнозами различных злокачественных опухолей, которым противопоказаны рентгенографические методы исследования. Рентген и компьютерная томография могут за счет ионизирующего облучения нанести вред тканям организма: вызвать изменения в ДНК и негативно повлиять на уже существующие патологические процессы. Электромагнитное воздействие при МРТ безопасно как для опухолей, так и для здоровых тканей и органов.
Как часто можно делать магнитно-резонансную томографию?
При отсутствии противопоказаний МРТ может назначаться – в зависимости от заболевания и особенностей его течения – так часто, как это необходимо для выработки эффективного плана лечения или его корректировки. Так как процедура является безопасной для организма, ее можно проводить с минимальным временным промежутком.
Частоту проведения МРТ может определить только врач. При наличии острой потребности или в соответствии с выработанным планом динамического наблюдения исследование осуществляется несколько раз в течение одного дня. Опасности для здоровья МРТ не представляет.
Томография – принцип действия
Действие магнитно-резонансного томографа строится на влиянии электромагнитного поля, возникающего в аппарате, на организм пациента. Обследуемый ложится на выдвижной стол, который медленно проходит внутри тоннеля-магнита. В нем создается магнитное поле, которое воздействует на атомы водорода в теле пациента, заставляя их выстраиваться параллельно возникшему полю. Радиочастотный импульс, издаваемый при этом томографом, вызывает в атомах водорода резонанс. Эта «обратная связь» регистрируется компьютером, который преобразует ответные колебания в изображение. Этот принцип действия томографа называется магнитно-ядерным резонансом.
МРТ проводится в течение 15-20 минут, за это время компьютер анализирует достаточное количество информации, полученной в результате взаимодействия магнитных полей томографа и организма пациента. В некоторых случаях диагностика проводится дольше – МРТ позвоночника и брюшной полости длится около часа.
Во время проведения МРТ пациент не испытывает каких-либо неприятных ощущений. Лежать необходимо неподвижно, так как от этого зависит качество полученных изображений и точность диагностики.
Чтобы не нарушить работу томографа, основанную на электромагнитном резонансе, перед обследованием нужно снять все металлические предметы и электронные аксессуары и приборы. На одежде не должно быть металлических деталей.
Предварительной подготовки к МРТ не требуется.
Противопоказания
МРТ, являясь безопасным и безболезненным методом диагностики, имеет ряд противопоказаний, которые связаны не только с предполагаемым негативным влиянием электромагнитных волн, но и с психологическим фактором и со случаями индивидуальных реакций на контрастные вещества.
МРТ противопоказана:
- во время беременности (из-за возможного отрицательного воздействия электромагнитных волн на плод);
- пациентам с металлическими имплантатами (кардиостимуляторами, слуховыми аппаратами, протезами суставов и др.);
- пациентам с аллергическими реакциями на йод, который входит в состав контрастного вещества;
- пациентам, страдающим клаустрофобией и другими психическими расстройствами.
Возможны ли осложнения?
Многочисленные исследования по поводу проведения МРТ не выявили негативных последствий этой диагностической процедуры для организма. Влияние электромагнитных волн, излучаемых томографом, сопоставимо с излучением от сотового телефона. Под воздействием последнего мы находимся значительно большее время.
Поэтому можно с уверенностью говорить, что при проведении исследования, в том числе – МРТ мозга побочные эффекты не возникают.
Преимущества проведения МРТ в МЕДСИ
- Оборудование нового поколения премиум-класса;
- Расшифровка исследования опытным врачом;
- Выполнение срочных исследований, в том числе при травмах;
- Проведение исследований для взрослых и детей;
- Проведение исследований под наркозом для пациентов, страдающих клаустрофобией;
- Безопасность исследования.
Из множества лучевых методов исследований выделяют несколько, напрямую связанных с опасностью поражения ионизирующим излучением. Не последнее место в этом ряду занимает компьютерная томография, позволяющая выполнять диагностику внутренних органов и тканей без хирургического вмешательства.
Гамма-лучи, априори, вредны для человеческого организма, но, по сути, всё определяет доза облучения, полученная пациентом при проведении компьютерной томографии.
Что такое радиация
Основу метода составляет способность различных органов и тканей поглощать радиационное излучение, представляющее собой поток элементарных частиц, или квантов. Количественную оценку ионизации принято измерять в миллизивертах (мЗв). В повседневности нормой является доза порядка 15 мЗв за год. Примерно таков естественный фоновый уровень облучения.
При проведении мультиспиральной (многосрезовой) компьютерной томографии (МСКТ) получаемая пациентом доза облучения напрямую зависит от ряда факторов: продолжительности исследования, применяемого оборудования и областей сканирования.
Какова доза облучения при МСКТ
Различные ткани человеческого организма воспринимают ионизацию по-разному. Облучение при прохождении МСКТ отдельных областей составляет:
- желудочно-кишечный тракт (ЖКТ) – 14 мЗв;
- область грудной клетки – 11 мЗв;
- тазобедренная область – 9-9,5 мЗв;
- позвоночник – 5-5,5 мЗв;
- черепно-мозговые исследования – 2 мЗв;
- конечности – 1-2 мЗв.
Учитывая, что критической считается отметка в 150 мЗв в год, доза облучения при КТ – далеко не запредельна. Для взрослого человека лучевая нагрузка при КТ грудной клетки или КТ головного мозга находится в пределах допустимой нормы. Для детей, которые более чувствительны к радиации, значения дозы рассчитываются согласно с возрастными коэффициентами, приведенными в таблице:
Сканируемая область | |||
Возраст | Голова | Грудная клетка | ЖКТ |
Взрослый | 1 | 1 | 1 |
13-17 | 1.1 | 1.1 | 1.1 |
8-13 | 1.3 | 1.4 | 1.5 |
3-8 | 1.7 | 1.6 | 1.6 |
6 мес.-3 | 2.2 | 1.9 | 2 |
0-6 мес. | 2.6 | 2.2 | 2.4 |
Калькуляторы расчета эффективной дозы облучения пациента позволяют определить совокупное облучение в процессе КТ-исследования. На значение показателя влияют поглощенная доза, область сканирования и возраст человека. На основании полученной информации делают выводы о вреде воздействия рентгеновского излучения и риске отдаленных последствий.
Как часто можно делать компьютерную томографию
Частота проводимых исследований, в первую очередь, определяется мерой необходимости таковых, но следует учитывать и тот факт, что радиация имеет свойство накапливаться в организме. Не рекомендуется без крайней необходимости проходить исследование чаще одного-двух раз в год. Допустимая лучевая нагрузка на организм при КТ позволяет проводить диагностику раз в два-три месяца.
Существует вид томографии, при которой используются контрастные вещества, содержащие йодин и барий.
Лучевая нагрузка при проведении позитронно-эмиссионной томографии (ПЭТ-КТ) несколько выше, нежели при стандартной МСКТ. По получаемой ионизации она сопоставима с КТ брюшной полости, что необходимо учитывать при расчетах суммарных доз облучения пациента.
Преимущества компьютерной томографии
МСКТ – один из самых передовых и информативных методов ранней диагностики патологий, не требующий значительных временных затрат. Многопроходное сканирование дает наиболее полное представление о стадиях, тенденциях развития и результативности лечения, но лучевая нагрузка на организм человека при компьютерной томографии несколько выше, чем при иных методиках. Поэтому следует вести учет видов и количества проведенных радиологических исследований. Не следует прибегать к помощи томографа там, где можно ограничиться обычной рентгенографией. Облучение, полученное при МСКТ, превышает дозу от стандартной флюорографии примерно в три раза.
Возможные риски
Возможные последствия превышения допустимой дозы жесткого рентгеновского излучения могут быть крайне неприятны. Исследования показывают, что частое применение КТ, при которой доза облучения – существенна, повышают риск развития онкологических заболеваний. Примерная статистика выглядит так:
- до 30% – первые 3-4 года после проведения МСКТ;
- порядка 20% – в следующие 5-8 лет;
- 10-12% – в период от 9 до 13 лет.
В связи с этим крайне важно, чтобы лечащий врач вел тщательный учет полученной пациентом дозы ионизации с целью минимизации возможных последствий.
Существуют категории пациентов, которым не рекомендована КТ-диагностика: дети и беременные женщины. Даже небольшая доза облучения может быть опасна для ребенка, а также для развивающегося плода. Если существует эффективная альтернатива, врачи стараются прибегнуть к нелучевым методам диагностики.
Альтернативы
В качестве альтернативы компьютерной томографии можно рассмотреть ряд аналогичных радиолокационных и электромагнитных методов исследования таких, как магнитно-резонансная томография и рентгеноскопия в динамике (рентгенограмма). Можно уменьшать количество срезов (снимков) МСКТ, снижая, тем самым, временной интервал воздействия гамма-излучения и дозу облучения. Компромисс достигается за счет снижения информативности исследования.
Мифы и факты о выводе радиации из организма
Снизить риск неприятных последствий, которые вызвало облучение при проведении МСКТ, позволяют специальные препараты. Их цель: выведение радионуклидов из организма пациента после КТ. Линейка таких медикаментов широка: от банального активированного угля до сложных химических соединений. За основу в подобного рода препаратах берутся углерод, кальций и выделенные атомы йода. В каждом конкретном случае для правильного выбора следует проконсультироваться у врача. Выполняют функцию защиты организма от радиации после проведенной компьютерной томографии и некоторые натуральные продукты: мед, свекла, растительные масла, орехи и рис. Начав употреблять такую пищу перед прохождением МСКТ-исследования, можно значительно снизить вероятность возникновения неприятных последствий.