Патофизиология гипоксия и иммунитет
Гипоксия — типовой патологический процесс, характеризующийся снижением напряжения кислорода в тканях ниже 20 мм рт.ст. Патофизиологической основой гипоксии является абсолютная или относительная недостаточность биологического окисления.
Классификация гипоксий
1. Гипоксическая гипоксия
2. Циркуляторная гипоксия
3. Гемическая гипоксия
4. Тканевая гипоксия
5. Смешанная гипоксия
Гипоксическая гипоксия
Выделяют 3 формы
1. Экзогенная (гипобарическая) гипоксия
Она связана со снижением парциального давления кислорода в атмосфере (горная, высотная болезнь, при космических полетах). На уровне 4 км. рО2 во вдыхаемом воздухе снижается в 2 раза, на высоте 8 км — в 3 раза. Развивается гипоксемия и гипокапния, газовый алкалоз. Критический уровень рО2 = 30 мм рт.ст. Нарушается диффузия кислорода из крови в клетки.
2. Респираторная (легочная) форма
Эта форма встречается при заболеваниях легких, бронхитах, легочной гипертензии, шунтировании крови между легочной артерией и легочной веной. Эта форма сопровождается гипоксемией и гиперпкапнией (увеличение рСО2 выше 50 мм рт.ст.). При респираторной форме гипоксии может развиваться дыхательная недостаточность, газовый ацидоз, отек мозга.
3. Дисрегуляторная форма гипоксии
Она встречается при нарушении регуляции дыхания со стороны дыхательного центра (различные поражения ЦНС), нарушении иннервации диафрагмы, межреберных мышц.
Циркуляторная гипоксия
Различают 3 формы:
1. Ишемическая форма гипоксии — возникает при снижении объемного кровотока. Она может быть регионарной (при ишемии отдельных органов и тканей) или общей (при сердечной недостаточности левого желудочка, шоке, коллапсе).
2. Застойная форма гипоксии — возникает при венозном застое, замедлении кровотока. Она может быть местной (при тромбофлебитах вен нижних конечностей) или общей (при сердечной недостаточности правого желудочка сердца). При повышении внутригрудного давления уменьшается венозный возврат крови к сердцу и возникает застой крови в венах.
3. Перегрузочная форма гипоксии — возникает при полетах (при взлете, посадке), использовании скоростных лифтов. В этом случае происходит перераспределение кровотока: при быстром подъеме вверх (взлет, подъем на лифте) кровь перемещается в нижнюю часть тела, нижние конечности. Развивается ишемия головного мозга вплоть до потери сознания. При быстрой посадке самолета, у парашютистов, при спуске лифта кровь перемещается в верхнюю часть тела. В этом случае происходит переполнение сосудов верхней половины тела. Возможно кровоизлияние в мозг. Перегрузочная форма гипоксии является сочетанием застойной и ишемической форм.
Гемическая гипоксия
Гемическая гипоксия возникает при количественных и качественных изменениях гемоглобина в крови. При кровопотерях, анемиях содержание гемоглобина в крови уменьшается, снижается кислородная емкость крови.
Качественные изменения гемоглобина связаны с его инактивацией. При отравлении угарным газом гемоглобин связывается с окисью углерода и образуется карбоксигемоглобин (HbCO). При отравлении нитритами и нитратами образуется метгемоглобин — HbOH. При этом двухвалентное железо переходит в трехвалентное (окисленное) и гемоглобин не способен связывать кислород. При отравлении соединениями, содержащими серу, образуется сульфгемоглобин (HbS). Связь гемоглобина с этими веществами более прочная, чем с кислородом.
Гемическая гипоксия может развиваться при нарушении диссоциации оксигемоглобина.
1. При гиперкапнии (ацидозе), лихорадке оксигенация в легких нарушается и сродство гемоглобина к кислороду в легких снижается. Уменьшается образование оксигемоглобина — сдвиг кривой диссоциации оксигемоглобина вправо.
2. При алкалозе (гипокапнии), охлаждении сродство гемоглобина к кислороду повышается. Гемоглобин насыщается кислородом при низком рО2 в плазме. Оксигемоглобин, который подходит к клетке, не отдает кислород (прочная связь) — сдвиг кривой диссоциации оксигемоглобина влево.
Тканевая гипоксия
Тканевая гипоксия возникает в результате нарушения митохондриального и микросомального окисления. Недостаточное снабжение клетки кислородом ведет к абсолютной недостаточности биологического окисления. Относительная недостаточность биологического окисления возникает при повышенной потребности клетки в кислороде.
Митохондриальное окисление связано с транспортом электронов в дыхательной цепи. В норме при окислении субстрата образуется 3 молекулы АТФ. При нарушении митохондриального окисления в условиях гипоксии развивается биоэнергетическая недостаточность.
Нарушение митохондриального окисления
2 е 2 е 2 е 2 е
Субстрат —— НАД.Н —— ФАД —— Ко Q—— Цитохромы
!
! 2 е
Н2 1/2 О2 Цитохромоксидаза
Н2 О
Нарушение митохондриального окисления может возникать при недостатке кислорода в организме. Развивается абсолютная недостаточность биологического окисления.
Может быть блокада дыхательных ферментов. Функция цитохромов и цитохромоксидазы нарушается при отравлении цианидами, угарным газом, сероводородом. Флавопротеиды инактивируются при гиповитаминозе В2. Поражение НАД-зависимых дегидрогеназ встречается при действии алкоголя, барбитуратов, при дефиците витамина В1, никотиновой кислоты.
Блокада ферментов приводит к нарушению процессов окисления даже при достаточном напряжении кислорода в артериальной крови. Развивается относительная недостаточность биологического окисления.
Микросомальное окисление происходит в печени.
В норме субстрат (R) при участии кислорода и цитохрома Р-450 окисляется: образуется окисленная форма — ROH.
О2
R ——————————————- R — ОН
цитохром Р-450
Свободные радикалы (ROO, OH, RO )
При недостатке кислорода образуются свободные радикалы. Они повреждают мембраны клеток, вызывают развитие различных патологических процессов в организме (дистресс-синдром, воспаление, инфаркт миокарда, атеросклероз и другие процессы).
Смещанная форма гипоксии
Такая форма может возникать при острой кровопотере, геморрагическом шоке. В этом случае развивается циркуляторно-гемическая гипоксия.
Особенности функционирования иммунной системы в условиях горной гипоксии. Зависимость между горными условиями и связанными с ними медико-биологическими эффектами. Иммунный статус и неспецифическая резистентность организма у жителей разных высот.
Подобные документы
Роль гомеостаза в поддержании оптимального баланса биологической системы организма. Специфика иммунной системы. Роль аппендикса в ее формировании. Учения И.А. Мечникова о фагоцитозе. Функции костного мозга и тимуса, их значение для иммунной системы.
презентация, добавлен 21.02.2014
Характеристика иммунной системы, ее структура, предназначение и функции основных органов. Механизм иммунной защиты, выработка антител, основные классы иммуноглобулинов. Особенности последствий дефицита витаминов, их значение для организма человека.
реферат, добавлен 04.06.2010
Иммунитет как защитная реакция организма в ответ на внедрение инфекционных и других чужеродных агентов. Механизм действия иммунитета. Состав иммунной системы. Врожденный и приобретенный виды иммунитета. Определение состояния иммунной системы человека.
презентация, добавлен 20.05.2011
Состояние иммунной системы и ее значение в обеспечении гомеостаза организма, защите от всего генетически чужеродного. Сбор иммунологического анамнеза и постановка иммунологических тестов. Определение наиболее вероятного иммунопатологического синдрома.
реферат, добавлен 21.01.2010
Понятие неспецифической резистентности как врожденного иммунитета, клетки, обеспечивающие его реакции. Особенности протекания фагоцитоз. Естественные клетки-киллеры и белки острой фазы. Гуморальные неспецифические факторы защиты организма от микробов.
презентация, добавлен 03.12.2014
Основные группы факторов, обеспечивающие невосприимчивость человека к возбудителям инфекции. Неспецифическая физическая резистентность, специфическая невосприимчивость (иммунитет). Неспецифические защитные механизмы. Гуморальный и клеточный иммунитет.
контрольная работа, добавлен 18.02.2013
Понятие высотной гипоксии. Факторы, снижающие переносимость больших высот и способствующие развитию горной болезни. Мероприятия по борьбе с ней. Сущность явления периодического дыхания. Представления о пределах переносимости кислородной недостаточности.
презентация, добавлен 10.03.2016
Характеристика системы иммунной защиты организма. Приобретенный иммунитет и его формы. Выработка антител и регуляция их продукции. Образование клеток иммунологической памяти. Возрастные особенности иммунитета, вторичные (приобретенные) иммунодефициты.
реферат, добавлен 11.04.2010
Структурно–функциональные нарушения и компенсаторно–приспособительные реакции организма при гипоксии. Механизмы развития заболевания. Причины возникновения кислородного и энергетического голодания всего организма, нарушения дыхания и кровообращения.
презентация, добавлен 02.02.2016
Основные типы гипоксии и их происхождение, классификация основных типов. Адекватное энергообеспечение процессов жизнедеятельности. Компенсаторно-приспособительные реакции при гипоксии, автономный и экономичный режим для нейронов дыхательного центра.
реферат, добавлен 24.06.2011
- главная
- рубрики
- по алфавиту
- вернуться в начало страницы
- вернуться к подобным работам
- Авторы
- Файлы
- English
Чеснокова Н.П.
1
Брилль Г.Е.
1
Полутова Н.В.
1
Бизенкова М.Н.
1
1 ФГБОУ ВО «Саратовский Государственный медицинский университет им. В.И. Разумовского Минздрава России»
1
1
1
1
1
Abstract:
Keywords:
10.1. Классификация гипоксических состояний
Гипоксия – типовой патологический процесс, характеризующийся снижением содержания кислорода в крови (гипоксемией) и тканях, развитием комплекса вторичных неспецифических метаболических и функциональных расстройств, а также реакцией адаптации.
Первая классификация гипоксических состояний была предложена Баркрофтом (1925), а затем дополнена и усовершенствована И.Р. Петровым (1949). Классификация И.Р. Петрова используется и в наше время. Согласно этой классификации различают гипоксии экзогенного и эндогенного происхождения.
В основе гипоксии экзогенного происхождения лежит недостаток кислорода во вдыхаемом воздухе, в связи с чем выделяют нормобарическую и гипобарическую гипоксию. К гипоксиям эндогенного происхождения относятся следующие типы:
а) дыхательная (респираторная); б) сердечно-сосудистая (циркуляторная); в) гемическая (кровяная); г) тканевая (гистотоксическая); д) смешанная.
По течению различают:
• молниеносную (в течение нескольких секунд, например, при разгерметизации летательных аппаратов на большой высоте);
• острую (которая развивается через несколько минут или в пределах часа в результате острой кровопотери, острой сердечной или дыхательной недостаточности, при отравлении угарным газом, цианидами, при шоке, коллапсе);
• подострую (она формируется в течение нескольких часов при попадании в организм метгемоглобинообразователей, таких как нитраты, бензол, а в ряде случаев в результате медленно нарастающей дыхательной или сердечной недостаточности;
• хроническую гипоксию, которая возникает при дыхательной и сердечной недостаточности и других формах патологии, а также при хронической анемии, пребывании в шахтах, колодцах, при работе в водолазных и защитных костюмах.
Различают:
а) местную (локальную) гипоксию, развивающуюся при ишемии, венозной гиперемии, престазе и стазе в зоне воспаления;
б) общую (системную) гипоксию, которая наблюдается при гиповолемии, сердечной недостаточности, шоке, коллапсе, ДВС-синдроме, анемиях.
Известно, что наиболее устойчивыми к гипоксии являются кости, хрящи и сухожилия, которые сохраняют нормальную структуру и жизнеспособность в течение многих часов при полном прекращении снабжения кислородом. Поперечно-полосатые мышцы выдерживают гипоксию в течение 2 часов; почки, печень – 20-30 минут. Наиболее чувствительна к гипоксии кора головного мозга.
10.2. Общая характеристика этиологических и патогенетических факторов гипоксий экзогенного и эндогенного происхождения
Экзогенный тип гипоксии развивается при уменьшении парциального давления кислорода в воздухе, поступающем в организм. При нормальном барометрическом давлении говорят о нормобарической экзогенной гипоксии (примером может служить нахождение в замкнутых помещениях малого объема). При снижении барометрического давления развивается гипобарическая экзогенная гипоксия (последнее наблюдается при подъеме на высоту, где РО2 воздуха снижено примерно до 100 мм рт. ст. Установлено, что при снижении РО2 до 50 мм рт. ст. возникают тяжелые расстройства, несовместимые с жизнью).
В ответ на изменение показателей газового состава крови (гипоксемию и гиперкапнию) возбуждаются хеморецепторы аорты, каротидных клубочков, центральные хеморецепторы, что вызывает стимуляцию бульбарного дыхательного центра, развитие тахи- и гиперпное, газового алкалоза, увеличение числа функционирующих альвеол.
Эндогенные гипоксические состояния являются в большинстве случаев результатом патологических процессов и болезней, приводящих к нарушению газообмена в легких, недостаточному транспорту кислорода к органам или к нарушению его утилизации тканями.
Дыхательная (респираторная) гипоксия
Респираторная гипоксия возникает вследствие недостаточности газообмена в легких, которая может быть обусловлена следующими причинами: альвеолярной гиповентиляцией, сниженной перфузией кровью легких, нарушением диффузии кислорода через аэрогематический барьер, и соответственно, нарушением вентиляционно-перфузионного соотношения. Патогенетическую основу дыхательной гипоксии составляют снижение содержания оксигемоглобина, повышение концентрации восстановленного гемоглобина, гиперкапния и газовый ацидоз.
Гиповентиляция легких является результатом действия ряда патогенетических факторов:
а) нарушения биомеханических свойств дыхательного аппарата при обструктивных и рестриктивных формах патологии;
б) расстройств нервной и гуморальной регуляции вентиляции легких;
в) снижения перфузии легких кровью и нарушения диффузии О2 через аэрогематический барьер;
г) избыточного внутри- и внелегочного шунтирования венозной крови.
Циркуляторная (сердечно-сосудистая, гемодинамическая) гипоксия развивается при локальных, региональных и системных нарушениях гемодинамики. В зависимости от механизмов развития циркуляторной гипоксии можно выделить ишемическую и застойную формы. В основе циркуляторной гипоксии может лежать абсолютная недостаточность кровообращения или относительная при резком возрастании потребности тканей в кислородном обеспечении (при стрессорных ситуациях).
Генерализованная циркуляторная гипоксия возникает при сердечной недостаточности, шоке, коллапсе, обезвоживании организма, ДВС-синд-роме и т.д., причем, если нарушения гемодинамики возникают в большом круге кровообращения, насыщение крови кислородом в легких может быть нормальным, а нарушается его доставка к тканям в связи с развитием венозной гиперемии и застойных явлений в большом круге кровообращения. При нарушениях гемодинамики в сосудах малого круга кровообращения страдает оксигенация артериальной крови. Локальная циркуляторная гипоксия возникает в зоне тромбоза, эмболии, ишемии, венозной гиперемии в тех или иных органах и тканях.
Особое место занимает гипоксия, связанная с нарушением транспорта кислорода в клетки при снижении проницаемости мембран для О2. Последнее наблюдается при интерстициальном отеке легких, внутриклеточной гипергидратации.
Для циркуляторной гипоксии характерны: снижение РаО2, увеличение утилизации О2 тканями вследствие замедления кровотока и активации системы цитохром, возрастание уровня ионов водорода и углекислого газа в тканях. Нарушение газового состава крови приводит к рефлекторной активации дыхательного центра, развитию гиперпноэ, увеличению скорости диссоциации оксигемоглобина в тканях.
Гемический (кровяной) тип гипоксии возникает в результате уменьшения эффективной кислородной емкости крови и, следовательно, ее кислород транспортирующей функции. Транспорт кислорода от легких к тканям почти полностью осуществляется при участии Hb. Главными звеньями снижения кислородной емкости крови являются:
1) уменьшение содержания Нb в единице объема крови и в полном объеме, например, при выраженных анемиях, обусловленных нарушением костно-мозгового кроветворения различного генеза, при постгеморрагических и гемолитической анемиях.
2) нарушение транспортных свойств Нb, которое может быть обусловлено либо снижением способности Нb эритроцитов связывать кислород в капиллярах легких, либо транспортировать и отдавать оптимальное количество его в тканях, что наблюдается при наследственных и приобретенных гемоглобинопатиях.
Достаточно часто гемическая гипоксия наблюдается при отравлении окисью углерода («угарным газом»), так как окись углерода обладает чрезвычайно высоким сродством к гемоглобину, почти в 300 раз превосходя сродство к нему кислорода. При взаимодействии окиси углерода с гемоглобином крови образуется карбоксигемоглобин, лишенный способности транспортировать и отдавать кислород.
Окись углерода содержится в высокой концентрации в выхлопных газах двигателей внутреннего сгорания, в бытовом газе и т.д.
Выраженные нарушения жизнедеятельности организма развиваются при увеличении содержания в крови НbСО до 50% (от общей концентрации гемоглобина). Повышение его уровня до 70-75 % приводит к тяжелой гипоксемии и летальному исходу.
Карбоксигемоглобин имеет ярко-красный цвет, поэтому при его избыточном образовании в организме кожа и слизистые становятся красными. Устранение СО из вдыхаемого воздуха приводит к диссоциации НbСО, но этот процесс протекает медленно и занимает несколько часов.
Воздействие на организм ряда химических соединений (нитратов, нитритов, окисла азота, бензола, некоторых токсинов инфекционного происхождения, лекарственных средств: феназепама, амидопирина, сульфаниламидов, продуктов ПОЛ и т.д.) приводит к образованию метгемоглобина, который не способен переносить кислород, так как содержит окисную форму железа (Fe3+).
Окисная форма Fe3+ обычно находится в связи с гидроксилом (ОН-). МетНb имеет темно-коричневую окраску и, именно этот оттенок приобретают кровь и ткани организма. Процесс образования метНb носит обратимый характер, однако его восстановление в нормальный гемоглобин происходит относительно медленно (в течение нескольких часов), когда железо Нb вновь переходит в закисную форму. Образование метгемоглобина не только снижает кислородную емкость крови, но и уменьшает способность активного оксигемоглобина диссоциировать с отдачей кислорода тканям.
Тканевая (гистотоксическая) гипоксия развивается вследствие нарушения способности клеток поглощать кислород (при нормальной его доставке к клетке) или в связи с уменьшением эффективности биологического окисления в результате разобщения окисления и фосфорилирования.
Развитие тканевой гипоксии связывают со следующими патогенетическими факторами:
1. Нарушением активности ферментов биологического окисления в процессе:
а) специфического связывания активных центров фермента, например, цианидами и некоторыми антибиотиками;
б) связывания SН-групп белковой части фермента ионами тяжелых металлов (Аg2+, Нg2+, Сu2+), в результате чего образуются неактивные формы фермента;
в) конкурентного блокирования активного центра фермента веществами, имеющими структурную аналогию с естественным субстратом реакции (оксалаты, малонаты).
2. Нарушением синтеза ферментов, которое может возникать при дефиците витаминов В1 (тиамина), ВЗ (РР), никотиновой кислоты и др., а также при кахексии различного происхождения.
3. Отклонениями от оптимума физико-химических параметров внутренней среды организма: рН, температуры, концентрации электролитов и др. Эти изменения возникают при разнообразных заболеваниях и патологических состояниях (гипотермиях и гипертермиях, недостаточности почек, сердца и печени, анемиях) и снижают эффективность биологического окисления.
4. Дезинтеграцией биологических мембран, обусловленной воздействием патогенных факторов инфекционной и неинфекционной природы, сопровождающейся снижением степени сопряжения окисления и фосфорилирования, подавлением образования макроэргических соединений в дыхательной цепи. Способностью разобщать окислительное фосфорилирование и дыхание в митохондриях обладают: избыток ионов Н+ и Са2+, свободных жирных кислот, адреналина, тироксина и трийодтиронина, некоторых лекарственных веществ (дикумарина, грамицидина и др.). В этих условиях увеличиваются расход кислорода тканями. В случаях набухания митохондрий, разобщения окислительного фосфорилирования и дыхания большая часть энергии трансформируется в тепло и не используется для ресинтеза макроергов. Эффективность биологического окисления снижается.
Библиографическая ссылка
Чеснокова Н.П., Брилль Г.Е., Полутова Н.В., Бизенкова М.Н. ЛЕКЦИЯ 10 ГИПОКСИИ: ВИДЫ, ЭТИОЛОГИЯ, ПАТОГЕНЕЗ // Научное обозрение. Медицинские науки. – 2017. – № 2. – С. 53-55;
URL: https://science-medicine.ru/ru/article/view?id=979 (дата обращения: 11.07.2020).
Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)