Паттерн распознающие рецепторы врожденного иммунитета

Паттерн распознающие рецепторы врожденного иммунитета thumbnail

Рецепторы опознавания паттерна, или образ-распознающие рецепторы, — это белки, присутствующие на поверхности клеток иммунной системы и способные узнавать стандартные молекулярные структуры (паттерны), специфичные для больших групп патогенов. Их также называют рецепторами, опознающими патоген. По сравнению с системой адаптивного иммунитета, такие рецепторы и связанные с ними механизмы иммунной защиты являются эволюционно более древними.

Опознаваемые молекулы[править | править код]

Рецепторы опознавания паттерна в ходе эволюции были отобраны по специфичности к бактериальному липополисахариду и гликопротеинам, содержащим остатки маннозы, а также к некоторым видам нуклеиновых кислот, пептидам (флагеллин, белок бактериального жгутика, бактериальные пептидогликаны), липотейхоевым кислотам, липопротеинам. Кроме того имеются рецепторы, опознающие сигналы клеточного стресса, например, мочевую кислоту.

Классификация рецепторов[править | править код]

Рецепторы опознавания паттерна классифицируют по специфичности к лиганду, функции, локализации и по происхождению в эволюции. По функции они делятся на два класса: сигнальные и эндоцитозные.

  • Сигнальные рецепторы опознавания паттерна включают, например, толл-подобные рецепторы.
  • Эндоцитозные рецепторы опознавания паттерна, например, маннозные рецепторы макрофагов, необходимы для прикрепления, поглощения и процессирования микроорганизмов фагоцитами независимо от внутриклеточной передачи регуляторного сигнала. Кроме патогенов они опознают также апоптозные клетки.

Мембранные рецепторы опознавания паттерна[править | править код]

Рецепторы-киназы[править | править код]

Впервые рецепторы опознавания паттерна были открыты у растений[1]. Позже множество гомологичных рецепторов было обнаружено при анализе геномов растений (у риса 370, у Arabidopsis — 47). В отличие от рецепторов опознавания паттерна у животных, которые связывают внутриклеточные протеинкиназы с помощью адапторных белков, растительные рецепторы представляют собой один белок, состоящий из нескольких доменов, внеклеточного, опознающего патоген, внутриклеточного, обладающего киназной активностью, и трансмембранного, связывающего первые два.

Толл-подобные рецепторы[править | править код]

Этот класс рецепторов опознает патогены вне клеток или в эндосомах[2].
Они были впервые обнаружены у дрозофилы и индуцируют синтез и секрецию цитокинов, необходимых для активации иммунного ответа. В настоящее время толл-подобные рецепторы обнаружены у многих видов. У животных их насчитывают 11 (TLR1-TLR11). Взаимодействие толл-подобных рецепторов с лигандами приводит к индукции сигнальных путей NF-kB и МАР-киназы, которые, в свою очередь, индуцируют синтез и секрецию цитокинов и молекул, стимулирующих презентацию антигена[3].

Цитоплазматические рецепторы опознавания паттерна[править | править код]

Nod-подобные рецепторы[править | править код]

Nod-подобные рецепторы — это цитоплазматические белки с различными функциями. У млекопитающих их найдено около 20, и большинство из них подразделяют на два главных подсемейства: NOD и NALP. Кроме того, к этому семейству рецепторов относят трансактиватор главного комплекса гистосовместимости класса II и некоторые другие молекулы. Опознавая патоген внутри клетки, рецепторы олигомеризуются и образуют инфламмасому, активирующую ферменты протеолитической активации цитокинов, например, интерлейкина 1 бета. Рецепторы активируют также сигнальный путь NF-kB и синтез цитокинов[4][5].

NODS
Известны два главных представителя: NOD1 и NOD2. Связывают два разных бактериальных пептидогликана[6].NALPS
Известно 14 белков (NALP1 — NALP14), которые активируются бактериальными пептидогликанами, ДНК, двухцепочечной РНК, парамиксовирусом и мочевой кислотой. Мутации некоторых из NALPS являются причиной наследственных аутоиммунных заболеваний.Другие Nod-подобные рецепторы
Такие молекулы, как IPAF и NAIP5/Birc1e также индуцируют протеолитическую активацию цитокинов в ответ на появление сальмонеллы и легионеллы.

РНК хеликазы[править | править код]

Индуцируют антивирусный иммунный ответ после активации вирусной РНК. У млекопитающих это три молекулы: RIG-I, MDA5 и LGP2.

Секретируемые рецепторы опознавания паттерна[править | править код]

Многие рецепторы опознавания паттерна, например, рецепторы комплемента, коллектины и пентраксины, к которым, в частности, относится C-реактивный белок, не остаются в синтезирующей их клетке и попадают в сыворотку крови[7]. Одним из важнейших коллектинов является лектин, связывающий маннозу; он опознает широкий спектр патогенов, в состав клеточной стенки которых входит манноза, и индуцирует лектиновый путь активации системы комплемента[8].

Примечания[править | править код]

  1. Song W. Y., Wang G. L., Chen L. L., Kim H. S., Pi L. Y., Holsten T., Gardner J., Wang B., Zhai W. X., Zhu L. H., Fauquet C., Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21 (англ.) // Science : journal. — 1995. — December (vol. 270, no. 5243). — P. 1804—1806. — PMID 8525370.
  2. Beutler B., Jiang Z., Georgel P., Crozat K., Croker B., Rutschmann S., Du X., Hoebe K. Genetic analysis of host resistance: Toll-like receptor signaling and immunity at large (англ.) // Annu. Rev. Immunol. : journal. — 2006. — Vol. 24. — P. 353—389. — doi:10.1146/annurev.immunol.24.021605.090552. — PMID 16551253.
  3. Doyle S. L., O’Neill L. A. Toll-like receptors: from the discovery of NFkappaB to new insights into transcriptional regulations in innate immunity (англ.) // Biochem. Pharmacol. (англ.)русск. : journal. — 2006. — October (vol. 72, no. 9). — P. 1102—1113. — doi:10.1016/j.bcp.2006.07.010. — PMID 16930560.
  4. Ting J. P., Williams K. L. The CATERPILLER family: an ancient family of immune/apoptotic proteins (англ.) // Clin. Immunol. : journal. — 2005. — April (vol. 115, no. 1). — P. 33—7. — doi:10.1016/j.clim.2005.02.007. — PMID 15870018.
  5. Inohara, Inohara, McDonald C., Nuñez G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease (англ.) // Annu. Rev. Biochem. (англ.)русск. : journal. — 2005. — Vol. 74. — P. 355—383. — doi:10.1146/annurev.biochem.74.082803.133347. — PMID 15952891.
  6. Strober W., Murray P. J., Kitani A., Watanabe T. Signalling pathways and molecular interactions of NOD1 and NOD2 (англ.) // Nat. Rev. Immunol. : journal. — Nature Publishing Group, 2006. — January (vol. 6, no. 1). — P. 9—20. — doi:10.1038/nri1747. — PMID 16493424.
  7. Wang G. L., Ruan D. L., Song W. Y., Sideris S., Chen L., Pi L. Y., Zhang S., Zhang Z., Fauquet C., Gaut B. S., Whalen M. C., Ronald P. C. Xa21D encodes a receptor-like molecule with a leucine-rich repeat domain that determines race-specific recognition and is subject to adaptive evolution (англ.) // Plant Cell : journal. — 1998. — May (vol. 10, no. 5). — P. 765—779. — PMID 9596635.
  8. Dommett R. M., Klein N., Turner M. W. Mannose-binding lectin in innate immunity: past, present and future (англ.) // Tissue Antigens (англ.)русск. : journal. — 2006. — September (vol. 68, no. 3). — P. 193—209. — doi:10.1111/j.1399-0039.2006.00649.x. — PMID 16948640.
Читайте также:  Иммунитет как его востановить

Источник

Паттерн распознающие рецепторы врожденного иммунитета

ТОП 10:

Распознающие рецепторы врожденного иммунитета

Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.     

Таблица Распознавание в системе врожденного иммунитета

Мембранные рецепторы (передают сигнал внутрь клетки)

Toll – подобные (TRL1-10)
C -лектиновые
Рецепторы-мусорщики (Skavender-рецепторы)
Интегриновые
Внутриклеточные (цитозольные) NOD
RID
DAI
Секретируемые Пентаксины
Коллектины
Компоненты системы комплемента
Фиколины

Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (patern recognition recepror – PRR). К ним относятся Toll , NOD , RID – рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.

Toll – рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10  Toll – подобных рецепторов.

Таблица. Toll -подобные рецепторы (TLR) человека и их лиганды

TLR Лиганды Патогены
TLR1 Липопептиды Грамотрицательные бакетрии, микобактерии
TLR2 Пептидогликан, липотейхоевые кислоты Грамположительные бактерии, грибы
TLR3 Двухцепочные РНК Вирусы
TLR4 Липополисахарид Грамотрицательные бактерии
TLR5 Флагеллин Бактерии
TLR6 Диациллипопептиды, липотейхоевые кислоты Микобактерии, грамположительные бактерии, грибы
TLR7 Одноцепочечные РНК Вирусы

Таблица. Toll -подобные рецепторы, расположенные на клетках иммунной системы

Клетки иммунной системы Toll — рецепторы
Нейтрофилы TLR1,2,4,5,6,7,8,9,10
Моноциты/макрофаги TLR1,2,4,5,6,7,8
Дендритные клетки TLR1,2,4,5,6,8,10
В-лимфоциты TLR1,3,6,7,9,10
Т-лимфоциты (Th1/Th2) TLR2,3,5,9
Т-лимфоциты (регуляторные) TLR2,5,8

Экспрессия Toll – рецепторов обеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.  

NOD – рецепторы распознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторы имеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.  

Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc -фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.  

Читайте также:  Какие продукты могут укрепить иммунитет

Гуморальные факторы врожденного иммунитета

Гуморальные факторы врожденного иммунитета – это белки, присутствующие в сыворотке крови, секретах слизистых оболочек, которые синтезируются клетками иммунной системы и могут оказывать бактерицидное, опсонизирующее и т.д. действие на организмы.

Система комплемента

Комплемент – система сывороточных белов крови, каскадная активация которых приводит к лизису бактерий, собственных клеток, инфицированных внутриклеточными паразитами, разрушению иммунных комплексов.

Состоит более, чем из 20 инертных белков сыворотки, 9 из которых являются основными и обозначаются как С1, С2 и т.д. — С9. Формирование комплемента в единое целое или его активация происходит при внедрении в организм чужеродных антигенов. 

Комплемент может активироваться двумя путями: классическим и альтернативным.

Противомикробные пептиды

Противомикробные пептиды – катионные белка, способные поражать вирусы, грибы, простейшие. Синтезируются нейтрофилами и эпителиальными клетками при взаимодействии их Toll – рецепторов с антигеном. Осуществляют мгновенный иммунитет. Часто их называют эндогенными антибиотиками. Различают 2 основных вида – дефенсины и кателицидины.

Механизм действия: противомикробные пептиды разрушают наружные мембраны микроорганизмов. Мембраны бактериальных клеток заряжены отрицательно, а пептиды положительно. Разность зарядов обеспечивает их взаимодействие. Катионные белки встраиваются в мембрану микробной клетки, образуя поры. Бактериальная клетка теряет ионы калия, аминокислоты. Внутрь клетки поступает вода, обеспечивая ее гибель.

Белки острой фазы продуцируются моноцитами, макрофагами, фибробластами. Синтез белков острой фазы существенно повышается в ответ на инфекцию.

С-реактивный белок ( CRB ) связывается с поверхностью бактерий, активирует систему комплемента. При бактериальной инфекции увеличивается в 100 раз.

Маннозосвязывающий лектин активирует систему комплемента по лектиновому пути.

Сывороточный амилоид А выступает в роли хемоаттрактанта.

Фибриноген выступает как опсонин

Лизоцим – фермент, содержащийся в отделяемом слизистых оболочек глаз, ротовой полости, носоглотки, грудном молоке. Вырабатывается моноцитами крови и тканевыми макрофагами. Разрушает пептидогликаны клеточных стенок бактерий.

Фагоцитоз

Фагоцитоз – это активное распознавание и поглощение микроорганизмов фагоцитирующими клетками с их последующей инактивацией и перевариванием. Фагоцитоз – самый древний вид защиты, унаследованный нами в ходе эволюции. Выраженной фагоцитарной активностью обладают нейтрофилы, моноциты и макрофаги.

Нейтрофилы происходят от стволовой клетки костного мозга. Это короткоживущие неделящиеся клетки с сегментированным ядром и набором гранул, содержащих большое количество бактерицидных веществ. Их время жизни составляет 2-3 суток. Нейтрофилы являются основными клетками, осуществляющими уничтожение внеклеточных микроорганизмов.

Макрофаги образуются из стволовой клетки красного костного мозга, на территории которого дифференцируются до стадии моноцита. Моноциты попадают в ток крови и расселяются по тканям, превращаясь в тканевые макрофаги, где функционируют в течение недель или месяцев. Для них характерно изобилие гранул, близких по составу к содержимому гранул нейтрофилов.

Их функциями является поглощение и уничтожение внедрившихся микроорганизмов (в основном внутриклеточных), а также поврежденных, дегенерированных, вирусинфицированных и опухолевых клеток и образующихся иммунных комплексов. Это клетки — «мусорщики».

Нейтрофилы осуществляют основную защиту от пиогенных (внеклеточных) бактерий, макрофаги – от внутриклеточных паразитов (вирусы, грибы, простейшие).

Нейтрофилы – это основные участники острого воспаления, макрофаги – хронического, они способны стимулировать образование гранулем.

Функции фагоцитов:

n Фагоцитарная – захват и внутриклеточное переваривание микроорганизмов.

n Антигенпрезентирующая – презентация антигена Т-лимфоцитам в комплексе с молекулами главного комплекса гистосовместимости (HLA). Этой функцией обладают антигенпрезентирующие макрофаги.   

n Секреторно-регуляторная – синтез и секреция некоторых белков системы комплемента, отдельных цитокинов, лизоцима, белков системы свертывания крови.

n Цитотоксическое действие фагоцитов.  

Связывание патогена с фагоцитом может быть прямым и опосредованным. Прямое распознавание происходит с участием Toll-рецепторов. При опосредованном распознается опсонизированный объект, покрытый антителами или C3b – компонентом комплемента.

Хемотаксис

Для того, чтобы процесс фагоцитоза произошел, необходимо сближение фагоцитирующих клеток с антигеном, который вызвал повреждение. Для этого нейтрофилы должны покинуть кровеносное русло, поскольку очаги внедрения антигена чаще имеют тканевую локализацию. Это возможно благодаря хемотаксису. Хемотаксис – движение фагоцитов по концентрационному градиенту химических веществ – хемоаттрактантов. В роли хемоаттрактантов для нейтрофилов выступают продукты жизнедеятельности бактерий, белки системы комплемента, цитокины и.т.д.

Читайте также:  Как поднять иммунитет взрослому в домашних условиях быстро

Основными хемоаттрактантами для макрофагов являются гамма-интерферон, хемотаксический макрофагальный фактор.

Адгезия – прилипание

Начинается с адгезии (прилипания) микробной частицы к поверхности фагоцита. Процесс поглощения идет эффективнее, если микробные клетки опсонизированы, то есть покрыты белками системы комплемента и специфическими антителами класса IgG. Особенно важно это для бактерий, имеющих капсулу (пневмококк, менингококк, кишечная палочка, гемофильная палочка и т.д.)  

Эндоцитоз (поглощение)

Участок мембраны фагоцита в месте контакта с объектом уплотняется, вытягивается и надвигается на объект подобно механизму застежки «молния» до тех пор пока объект не будет полностью поглощен в фагосому.

Дегрануляция

Цитоплазматические гранулы фагоцитирующих клеток сливаются с фагосомой и образуется фаголизосома, в которой происходит киллинг и разрушение захваченной микробной частицы с помощью антимикробных факторов. Антимикробные системы делятся на те, которые требуют кислород –  кислородзависимые и те, которые не требуют кислород –  кислороднезависимые.

Кислородзависимые факторы (активные формы кислорода) образуются в ходе респираторного взрыва, представляющего собой каскад окислительных реакций.

Включают:

n супероксидный анион (О2-)

n перекись водорода (Н2О2)

n синглетный кислород (О2)

n гидроксильный радикал (ОН˙)

n оксид азота (NO)

Активные формы кислорода являются очень мощными окислителями, вызывают повреждение липидов, белков, ДНК мироорганизмов, оказывают летальное действие на биологические системы.

К кислороднезависимой группе бактерицидных факторов относятся лизоцим, некоторые протеолитические ферменты, лактоферрин, катионные белки, дефенсины.

Лактоферрин – связывает железо, предотвращает рост и размножение бактерий.

Катионные белки – вызывают повреждение клеточных мембран, лизируют бактериальные клетки.

Дефенсины – встраиваются в липидный слой клеток, нарушают ее проницаемость, обладают летальным действием на широкий спектр бактерий, грибов, вирусов.

Экзоцитоз –  удаление продуктов разрушения

Распознающие рецепторы врожденного иммунитета

Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.     

Таблица Распознавание в системе врожденного иммунитета

Мембранные рецепторы (передают сигнал внутрь клетки)

Toll – подобные (TRL1-10)
C -лектиновые
Рецепторы-мусорщики (Skavender-рецепторы)
Интегриновые
Внутриклеточные (цитозольные) NOD
RID
DAI
Секретируемые Пентаксины
Коллектины
Компоненты системы комплемента
Фиколины

Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (patern recognition recepror – PRR). К ним относятся Toll , NOD , RID – рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.

Toll – рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10  Toll – подобных рецепторов.

Таблица. Toll -подобные рецепторы (TLR) человека и их лиганды

TLR Лиганды Патогены
TLR1 Липопептиды Грамотрицательные бакетрии, микобактерии
TLR2 Пептидогликан, липотейхоевые кислоты Грамположительные бактерии, грибы
TLR3 Двухцепочные РНК Вирусы
TLR4 Липополисахарид Грамотрицательные бактерии
TLR5 Флагеллин Бактерии
TLR6 Диациллипопептиды, липотейхоевые кислоты Микобактерии, грамположительные бактерии, грибы
TLR7 Одноцепочечные РНК Вирусы

Таблица. Toll -подобные рецепторы, расположенные на клетках иммунной системы

Клетки иммунной системы Toll — рецепторы
Нейтрофилы TLR1,2,4,5,6,7,8,9,10
Моноциты/макрофаги TLR1,2,4,5,6,7,8
Дендритные клетки TLR1,2,4,5,6,8,10
В-лимфоциты TLR1,3,6,7,9,10
Т-лимфоциты (Th1/Th2) TLR2,3,5,9
Т-лимфоциты (регуляторные) TLR2,5,8

Экспрессия Toll – рецепторов обеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.  

NOD – рецепторы распознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторы имеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.  

Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc -фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.  



Источник