Распознающие рецепторы врожденного иммунитета
Рецепторы врожденного иммунитета содержатся на так называемых профессиональных аитигенпредставляющих клетках, к которым относятся дендритные клетки, макрофаги и В-лимфоциты. При этом экспрессия таких рецепторов не является клональной. Это означает, что все рецепторные молекулы одного типа имеют идентичные свойства. Каждый клон иммунокомпетентных клеток несет антигенраспознающий рецептор уникальной структуры. Как только шаблонраспознающие рецепторы идентифицируют патогенсвязанный молекулярный шаблон, сразу же запускаются эффекторные механизмы, что объясняет высокую кинетику механизмов врожденной резистентности. Высокая скорость реагирования обусловлена совмещением распознающей клеткой функций клетки-эффектора (т.е, той клетки, которая непосредственно повреждает патоген). Например, макрофаг распознает патогенсвязанный молекулярный шаблон, благодаря чему активируется и мгновенно производит фагоцитоз распознанного патогена.
Функционально рецепторы шаблонного распознавания разделены на три класса: секреторные, клеточные и сигнальные.
Опсонины
Секреторные шаблонраспознающие рецепторы функционируют в качестве опсонинов, связываясь с микробными шаблонами и помечая их для последующего распознавания системой комплемента или фагоцитами. Следует отметить, что опсонинами называют своеобразные биологические «метки», которые, фиксируясь на различных объектах, облегчают их распознавание факторами врожденной резистентности. Наиболее известный секреторный рецептор шаблонного распознавания — маннозосвязывающий лектин (лектин — это белок, способный связывать углеводы), который синтезируется в печени и циркулирует в плазме крови в поиске патогенов. Этот белок относится к кальцийзависимому семейству лектинов и функционирует как компонент так называемой острофазовой реакции.
Рецепторы фагоцитов
Клеточные шаблонраспознающие рецепторы находятся на поверхности фагоцитов. Если такие рецепторы распознают патогенсвязанный молекулярный шаблон на микробной клетке, то они инициируют захват фагоцитом носителя такой шаблонной молекулы с формированием специфической эндоцитарной вакуоли — фагосомы. В последующем фагосома сливается с лизосомой с образованием фаголизосомы, где и происходит деструкция патогена. В результате расщепления захваченного объекта пептиды патогена представляются в составе молекулы главного комплекса гистосовместимости (HLA) II класса на поверхности макрофага (либо другой антигенпредставляющей клетки) для распознавания специфическими рецепторами иммунокомпетентных клеток.
Маннозосвязывающий лектин макрофага является его клеточным шаблонраспознающим рецептором. Этот белок распознает углеводы с высоким содержанием манноз, что характерно для поверхностных структур микроорганизмов, и обеспечивает их фагоцитоз макрофагами. Другой клеточный шаблонраспознающий рецептор макрофагов — фагоцитарный рецептор к липополисахаридам (рЛПС) — связывается со стенками бактериальных клеток, обильно содержащих липополисахаридные субстанции. В частности, этот рецептор используется селезеночными и печеночными макрофагами для удаления микробных клеток из кровотока.
Toll-like-рецепторы (TLR)
Сигнальные шаблонраспознающие рецепторы при взаимодействии с шаблонами активируют внутриклеточные молекулярные каскады, стимулирующие экспрессию многих генов иммунного ответа, кодирующих структуру провоспалительных субстанций. К этой группе относятся Toll-like-рецепторы (TLR). Расшифрован сигнальным путь, запускающийся такими рецепторами при распознавании микробных липополисахаридов (рис. 1). Сегодня известно 14 разновидностей TLR антигенпрезентирующих клеток, способных распознавать шаблонные структуры микроорганизмов (бактерий, вирусов, грибков), простейших, растений и даже собственного организма (табл. 1).
Цитоплазматический каскад, включаемый активированным TLR, может разворачиваться как по MyD88-зависимому (см. рис. 1), так и по MyD88-независимому пути. MyD88 является белком, адаптирующим различные TLR к идентичному цитоплазматическому молекулярному каскаду, в связи с чем получил название белка-адаптера. В первом случае (TLR1, TLR2, TLR4, TLR5, TLR6, TLR7, TLR9) конечным результатом реализации каскада является высвобождение мощного провоспалительного посредника — нуклеарного фактора кВ, который обеспечивает синтез до иммунных цитокинов (ФНО-α, ИЛ-1β, ИЛ-6, ИЛ-12), стресс-белков, костимулируютцих молекул (CD80, CD86, CD40), хемокинов (в частности, ИЛ-8), антиапоптотических белков. При реализации MyD88-зависимого пути (TLR3 и TLR4) конечным результатом является синтез α / β -ИФН и костимулирующих молекул.
Таким образом, уже на уровне системы врожденной резистентности имеет место дифференциальный подход к типу ответа при разных формах патогенов. Так, при внеклеточных патогенах (бактерии) реализуется MyD88-зависимый путь активации клетки, а при внутриклеточной инфекции (вирусы) — MyD88- независимый.
Рецептор | Молекулярный шаблон | Носитель шаблона |
TLR1 | Триацил, липопептиды, растворимые факторы | Бактерии, в частности микобактерии и Neisseria meningitidis |
TLR2 | Липопротеины — липопептиды | Разнообразные патогены |
Пептидогликаны, липотейхоевые кислоты | Гр+бактерии | |
Липоарабиноманнан, фенолрастворимый модулин | Микобактерии, Staphylococcus epidermidis | |
Гликоинозитолфосфолипиды Порины | Trypanosoma cruzi Neisseria | |
Атипичные липополисахариды Зимозан | Leptospira interrogans, Porphyromonas gingivalis Грибки | |
Белки теплового шока 70 кД | Макроорганизм | |
TLR3 | Двухспиральная РНК | Вирусы |
TLR4 | Липополисахариды Таксол | Гр-бактерии Растения |
Fusion-белок Envelope-протеин Белок теплового шока 60 кД | Респираторно-синцитиальный вирус Вирус опухоли молочной железы Chlamydia pneumonia | |
Белок теплового шока 70 кД Фибронектин тип III Гиалуроновая кислота | Макроорганизм Материал с сайта https://wiki-med.com | |
Гепаран сульфат Фибриноген | Макроорганизм | |
TLR5 | Флагеллин | Бактерии |
TLR6 | Диациллипопептиды Липотейхоевые кислоты Зимозан | Микоплазмы Гр+бактерии Грибки |
TLR7 | Односпиральная РНК | Вирусы |
TLR8 | Односпиральная РНК | Вирусы |
TLR9 | CpG (цитозин — гуанозин фосфат), содержащие ДНК | Бактерии и вирусы |
TLR10 | Не установлены | Не установлены |
TLR11 | Не установлены | Уро патогенные бактерии |
На этой странице материал по темам:
рецепторы содержащие маннозу
рецепторы для патогенов у макрофагов
значение рецепторов врожденного иммунитета
толл лайк рецепторы это
toll like рецепторы
ИММУНИТЕ́Т животных и человека (от лат. immunitas – освобождение, избавление), способность организма поддерживать свою целостность и биологическую индивидуальность путём распознавания и удаления чужеродных веществ и клеток. Учение об И. родилось из необходимости преодолеть инфекц. болезни, эпидемии которых (чума, холера, оспа и др.) до кон. 19 в. уносили большое число жизней людей. В связи с этим под термином «И.» долгое время понимали невосприимчивость организма к инфекц. заболеваниям. Дальнейшие исследования показали, что И. – это также устойчивость организма к пересаживаемым органам и тканям, к изменившимся собств. клеткам, включая раковые, а также к чужеродным веществам животного и растит. происхождения. В поддержании И. участвуют защитные механизмы врождённого (неспецифического) и приобретённого (специфического, или адаптивного) иммунитета.
Формы врождённого и приобретённого иммунитета и их взаимосвязь
Врождённый И. присущ всем многоклеточным животным, осуществляется специализир. клетками, развивающимися вне зависимости от поступления в организм чужеродных и потенциально опасных агентов; его неспецифич. защитные механизмы реализуются после кратковременной активации специализир. клеток. Приобретённый И. характерен для хрящевых и костных рыб, земноводных, пресмыкающихся, птиц и млекопитающих, его основой является иммунный ответ – цепь реакций иммунной системы, которая включается чужеродными агентами (антигенами) и приводит к формированию клеток и молекул, удаляющих эти агенты или продукты их разрушения из организма. В отличие от врождённого И., реакции которого универсальны в отношении разл. чужеродных агентов, иммунный ответ приобретённого И. специфичен (направлен против агентов, включивших этот иммунный ответ). Обе формы И. тесно взаимосвязаны: иммунный ответ развивается лишь при условии предварит. активации врождённого И., а продукты приобретённого И. повышают эффективность врождённого И. Реакции И. осуществляются спец. клетками – иммуноцитами. У высших животных, напр., это лейкоциты, которые созревают в кроветворных органах и некоторое время циркулируют в крови, а затем заселяют ткани. Реакции врождённого И. обеспечивают миелоидные клетки (нейтрофильные и эозинофильные гранулоциты, моноциты и их тканевые формы – макрофаги, дендритные и тучные клетки) и частично – лимфоидные дендритные клетки. Реакции приобретённого И. реализуются Т- и В-лимфоцитами.
Процесс распознавания чужеродных агентов в организме: рецепторы врождённого и приобретённого иммунитета
Распознавание чужеродных молекул в организме осуществляется с помощью спец. белковых рецепторов. Рецепторы врождённого И. имеют сродство к небольшому числу молекул, характерных для болезнетворных микроорганизмов (патогенов), но отсутствующих в организме данного вида. Такие молекулы (бактериальные липополисахариды, гликолипиды, пептидогликаны, нуклеиновые кислоты бактерий и вирусов и др.) называют молекулярными «образами», связанными с патогенами (PAMP – от pathogen-associated molecular patterns); они сигнализируют о потенциальной опасности со стороны патогенов. Распознавание РАМР осуществляют неск. типов рецепторов (т. н. Toll- и NOD-рецепторы, лектиновые рецепторы), которые представлены небольшим числом вариантов (ок. 10) и располагаются на поверхности или внутри клеток системы врождённого И.; такое распознавание надёжно, поскольку детерминируется генами зародышевой линии. Связывание РАМР с рецепторами приводит к активации клеток системы врождённого иммунитета.
Гл. особенность распознавания рецепторов в рамках приобретённого И. состоит в том, что каждый рецептор распознаёт конкретную чужеродную молекулу, называемую антигеном, точнее фрагмент антигена – его эпитоп, или антигенную детерминанту. При этом разные лимфоциты несут на своей поверхности рецепторы к разным эпитопам. Т. о., каждая клетка способна распознать только один эпитоп (или группу структурно сходных эпитопов) и лишь популяция лимфоцитов в целом способна обеспечить распознавание всего разнообразия чужеродных молекул, для чего требуется 105–107 вариантов рецепторов. В геноме животных содержится неск. сотен вариантов генов, кодирующих антигенраспознающие рецепторы лимфоцитов. Их вариабельность сильно возрастает при дифференцировке лимфоцитов в процессе перестройки соответствующих генов. Последняя происходит в каждой клетке автономно, в результате чего каждый лимфоцит и его потомство (клон) располагают индивидуальным по специфичности рецептором. Существует три типа антигенраспознающих рецепторов – два варианта (белковые димеры αβ и γδ , родственные иммуноглобулинам) в субпопуляциях Т-лимфоцитов и один (мембранный иммуноглобулин) в популяции В-лимфоцитов. Рецепторы В-лимфоцитов распознают эпитопы нативных молекул антигена, а Т-лимфоцитов – эпитопы, предварительно выщепленные из целой молекулы и включённые в состав молекулы главного комплекса гистосовместимости. Такую обработку антигена осуществляют антигенпредставляющие клетки. Для активации Т-лимфоцитов при этом требуется дополнит. стимуляция (костимуляция) с помощью молекул, образующихся при активации врождённого И. В отсутствии костимуляции формируется анергия (неотвечаемость) Т-лимфоцитов. При стимуляции В-лимфоцитов источником костимулирующих сигналов служит Т-лимфоцит (в частности, Т-хелпер, или клетка-помощник). Активация лимфоцитов – условие их последующей пролиферации (для обеспечения количества клеток, достаточного для осуществления защиты) и дифференцировки в эффекторные (исполнительные) клетки, которые обеспечивают реакции приобретённого иммунитета.
Механизмы удаления чужеродных агентов из организма при врождённом и приобретённом иммунитете
Удаление чужеродных агентов из организма осуществляется с использованием комплекса механизмов, бо́льшая часть которых формируется в рамках врождённого И. Эффекторные механизмы И. разделяют на клеточные и гуморальные. Клеточные механизмы врождённого И. приводят к цитолизу (разрушению клеток). Из трёх вариантов последнего (внутриклеточный, внеклеточный и контактный) наиболее эффективен внутриклеточный цитолиз, реализуемый в процессе фагоцитоза: чужеродная клетка захватывается фагоцитами (нейтрофилами, макрофагами и др. клетками) и, оказавшись внутри фаголизосомы, сначала убивается активными формами кислорода, оксидом азота и бактерицидными пептидами, а затем расщепляется ферментами. Внеклеточному цитолизу бактерицидными факторами, секретируемыми лейкоцитами (в т. ч. эозинофилами), подвергаются, напр., клетки многоклеточных паразитов, контактному цитолизу – инфицированные вирусом или опухолевые клетки с помощью т. н. NK-клеток (от англ. natural killer – естественный истребитель). В зоне контакта последних с клетками-мишенями формируется микрополость, в которую NK-клетка секретирует вещества, одни из которых формируют поры в мембране клетки-мишени, а другие, проникнув через эти поры, включают процесс апоптоза – активной формы гибели клетки. Гуморальными факторами врождённого И., способствующими удалению чужеродных агентов, являются бактерицидные пептиды (дефензины, кателицидины), белки острой фазы воспаления, компоненты системы комплемента, цитокины. Активируемые компоненты комплемента вызывают опсонизацию – облегчение фагоцитоза микроорганизмов или их лизис в результате формирования поры в мембране. Белки острой фазы (в т. ч. С-реактивный белок) опсонизируют чужеродные клетки и активируют комплемент. Цитокины обеспечивают формирование воспалит. реакции, в рамках которой реализуется врождённый И.; относящиеся к ним интерфероны оказывают противовирусное и противоопухолевое действие.
Осн. эффекторными факторами приобретённого И. служат цитотоксические Т-лимфоциты, цитокины, секретируемые Т-хелперами, и антитела. Цитотоксические Т-лимфоциты образуются в процессе клеточного иммунного ответа. Они реализуют своё действие с помощью механизма контактного цитолиза или апоптоза клеток-мишеней. Мишенью цитотоксических Т-лимфоцитов являются лишь те клетки, которые экспрессируют антигенные эпитопы, распознаваемые Т-лимфоцитами, т. е. их действие более прицельно, чем действие естеств. киллеров. Участие Т-хелперов в реализации эффекторной фазы иммунного ответа связано с секрецией цитокинов, прежде всего интерферона. При его действии на макрофаги (особенно в сочетании с фактором некроза опухоли) резко повышается бактерицидная активность последних и разрушаются даже те патогены (микобактерии, простейшие), которые не могут быть убиты без участия цитокинов. Т. о., гуморальные продукты Т-хелперов усиливают внутриклеточный цитолиз, осуществляемый в рамках врождённого И. Антитела, секретируемые плазматич. клетками, которые дифференцируются из В-лимфоцитов, представляют собой растворимую форму их антигенраспознающих рецепторов. Обладая способностью связываться с антигенами как в растворимой, так и в мембраносвязанной формах, они могут блокировать антигены и несущие их патогены. Результатом блокады может быть утрата микробными клетками подвижности, способности к адгезии, предотвращение инфицирования клеток вирусами. При связывании токсинов или ферментов антитела нейтрализуют их активность. Однако бо́льшая часть эффектов антител обусловлена привлечением эффекторных клеток и молекул. При взаимодействии с антигеном (см. Антиген – антитело реакция) демаскируются участки молекулы антитела, распознаваемые компонентами комплемента (C1q) и Fc-рецепторами эффекторных клеток – фагоцитов и естеств. киллеров. Связывание C1q приводит к активации комплемента с опсонизацией и/или лизисом чужеродной клетки. Связывание с Fc-рецептором макрофага или иного фагоцита облегчает фагоцитоз (опсонизацию). Распознавание антител, фиксированных на клетках-мишенях, Fc-рецепторами естеств. киллеров облегчает осуществление контактного цитолиза. Т. о., бóльшая часть проявлений эффекторной активности антител, как и клеточных факторов приобретённого И., состоит в повышении эффективности реакций врождённого И. и придании им специфичности в отношении конкретных антигенов.
В ходе иммунного ответа формируется иммунологическая память, не свойственная врождённому И. Её субстратом служат Т- и В-лимфоциты иммунологич. памяти, которые дифференцируются при первичном иммунном ответе, не принимая в нём участия, и затем длительно сохраняются в организме. Реакция этих клеток на антиген при его повторном поступлении (вторичный иммунный ответ) осуществляется более быстро и эффективно, чем реакция лимфоцитов при первом контакте с антигеном. На этом основано создание искусственного И. к возбудителям заболеваний путём вакцинации: ослабленный, убитый патоген или выделенные из него антигены вызывают формирование клеток памяти без развития инфекц. процесса, что повышает эффективность иммунной защиты при поступлении в организм активного патогена, несущего те же антигенные молекулы. Аналогичные подходы используют для создания И. к опухолевым клеткам с помощью онковакцин.
Патология иммунитета
может быть обусловлена его ослаблением (иммунодефициты) или извращённым проявлением (аутоиммунитет, аллергия). Иммунодефициты могут проявляться как самостоят. заболевания, обусловленные дефектом генов (первичные иммунодефициты), или как синдромы, сопутствующие др. заболеваниям или действию повреждающих факторов (вторичные иммунодефициты). Аутоиммунные болезни являются следствием развития иммунного ответа на собств. антигены организма. Основой аллергии служит неадекватно усиленная реакция И. на определённые антигены (аллергены); её причиной является выброс активных субстанций из тучных клеток при взаимодействии аллергена с IgE-антителами, фиксированными на поверхности этих клеток. К патологии И. могут быть отнесены также иммунологич. осложнения беременности (реакция на антигены плода). Особое место занимает реакция организма на трансплантаты чужеродных тканей, а также реакция иммуноцитов, содержащихся в трансплантате, на антигены организма (реакция трансплантат-против-хозяина). Необходимость предупреждения и лечения извращённых проявлений И. породила задачу ослабления И. путём «ингибирующей» вакцинации (аллерговакцины, вакцины против аутоиммунитета), что дополнило традиц. способы усиления И. против воздействия патогенных факторов (см. Иммунизация). Поиски путей направленной иммунокоррекции в значит. степени определяют прикладную значимость изучения И. и обусловливают обществ. интерес к иммунологич. проблемам. Наука об иммунитете называется иммунологией. См. также Иммунопатология.