Рецепторы клеток врожденного иммунитета
Рецепторы врожденного иммунитета содержатся на так называемых профессиональных аитигенпредставляющих клетках, к которым относятся дендритные клетки, макрофаги и В-лимфоциты. При этом экспрессия таких рецепторов не является клональной. Это означает, что все рецепторные молекулы одного типа имеют идентичные свойства. Каждый клон иммунокомпетентных клеток несет антигенраспознающий рецептор уникальной структуры. Как только шаблонраспознающие рецепторы идентифицируют патогенсвязанный молекулярный шаблон, сразу же запускаются эффекторные механизмы, что объясняет высокую кинетику механизмов врожденной резистентности. Высокая скорость реагирования обусловлена совмещением распознающей клеткой функций клетки-эффектора (т.е, той клетки, которая непосредственно повреждает патоген). Например, макрофаг распознает патогенсвязанный молекулярный шаблон, благодаря чему активируется и мгновенно производит фагоцитоз распознанного патогена.
Функционально рецепторы шаблонного распознавания разделены на три класса: секреторные, клеточные и сигнальные.
Опсонины
Секреторные шаблонраспознающие рецепторы функционируют в качестве опсонинов, связываясь с микробными шаблонами и помечая их для последующего распознавания системой комплемента или фагоцитами. Следует отметить, что опсонинами называют своеобразные биологические «метки», которые, фиксируясь на различных объектах, облегчают их распознавание факторами врожденной резистентности. Наиболее известный секреторный рецептор шаблонного распознавания — маннозосвязывающий лектин (лектин — это белок, способный связывать углеводы), который синтезируется в печени и циркулирует в плазме крови в поиске патогенов. Этот белок относится к кальцийзависимому семейству лектинов и функционирует как компонент так называемой острофазовой реакции.
Рецепторы фагоцитов
Клеточные шаблонраспознающие рецепторы находятся на поверхности фагоцитов. Если такие рецепторы распознают патогенсвязанный молекулярный шаблон на микробной клетке, то они инициируют захват фагоцитом носителя такой шаблонной молекулы с формированием специфической эндоцитарной вакуоли — фагосомы. В последующем фагосома сливается с лизосомой с образованием фаголизосомы, где и происходит деструкция патогена. В результате расщепления захваченного объекта пептиды патогена представляются в составе молекулы главного комплекса гистосовместимости (HLA) II класса на поверхности макрофага (либо другой антигенпредставляющей клетки) для распознавания специфическими рецепторами иммунокомпетентных клеток.
Маннозосвязывающий лектин макрофага является его клеточным шаблонраспознающим рецептором. Этот белок распознает углеводы с высоким содержанием манноз, что характерно для поверхностных структур микроорганизмов, и обеспечивает их фагоцитоз макрофагами. Другой клеточный шаблонраспознающий рецептор макрофагов — фагоцитарный рецептор к липополисахаридам (рЛПС) — связывается со стенками бактериальных клеток, обильно содержащих липополисахаридные субстанции. В частности, этот рецептор используется селезеночными и печеночными макрофагами для удаления микробных клеток из кровотока.
Toll-like-рецепторы (TLR)
Сигнальные шаблонраспознающие рецепторы при взаимодействии с шаблонами активируют внутриклеточные молекулярные каскады, стимулирующие экспрессию многих генов иммунного ответа, кодирующих структуру провоспалительных субстанций. К этой группе относятся Toll-like-рецепторы (TLR). Расшифрован сигнальным путь, запускающийся такими рецепторами при распознавании микробных липополисахаридов (рис. 1). Сегодня известно 14 разновидностей TLR антигенпрезентирующих клеток, способных распознавать шаблонные структуры микроорганизмов (бактерий, вирусов, грибков), простейших, растений и даже собственного организма (табл. 1).
Цитоплазматический каскад, включаемый активированным TLR, может разворачиваться как по MyD88-зависимому (см. рис. 1), так и по MyD88-независимому пути. MyD88 является белком, адаптирующим различные TLR к идентичному цитоплазматическому молекулярному каскаду, в связи с чем получил название белка-адаптера. В первом случае (TLR1, TLR2, TLR4, TLR5, TLR6, TLR7, TLR9) конечным результатом реализации каскада является высвобождение мощного провоспалительного посредника — нуклеарного фактора кВ, который обеспечивает синтез до иммунных цитокинов (ФНО-α, ИЛ-1β, ИЛ-6, ИЛ-12), стресс-белков, костимулируютцих молекул (CD80, CD86, CD40), хемокинов (в частности, ИЛ-8), антиапоптотических белков. При реализации MyD88-зависимого пути (TLR3 и TLR4) конечным результатом является синтез α / β -ИФН и костимулирующих молекул.
Таким образом, уже на уровне системы врожденной резистентности имеет место дифференциальный подход к типу ответа при разных формах патогенов. Так, при внеклеточных патогенах (бактерии) реализуется MyD88-зависимый путь активации клетки, а при внутриклеточной инфекции (вирусы) — MyD88- независимый.
Рецептор | Молекулярный шаблон | Носитель шаблона |
TLR1 | Триацил, липопептиды, растворимые факторы | Бактерии, в частности микобактерии и Neisseria meningitidis |
TLR2 | Липопротеины — липопептиды | Разнообразные патогены |
Пептидогликаны, липотейхоевые кислоты | Гр+бактерии | |
Липоарабиноманнан, фенолрастворимый модулин | Микобактерии, Staphylococcus epidermidis | |
Гликоинозитолфосфолипиды Порины | Trypanosoma cruzi Neisseria | |
Атипичные липополисахариды Зимозан | Leptospira interrogans, Porphyromonas gingivalis Грибки | |
Белки теплового шока 70 кД | Макроорганизм | |
TLR3 | Двухспиральная РНК | Вирусы |
TLR4 | Липополисахариды Таксол | Гр-бактерии Растения |
Fusion-белок Envelope-протеин Белок теплового шока 60 кД | Респираторно-синцитиальный вирус Вирус опухоли молочной железы Chlamydia pneumonia | |
Белок теплового шока 70 кД Фибронектин тип III Гиалуроновая кислота | Макроорганизм Материал с сайта https://wiki-med.com | |
Гепаран сульфат Фибриноген | Макроорганизм | |
TLR5 | Флагеллин | Бактерии |
TLR6 | Диациллипопептиды Липотейхоевые кислоты Зимозан | Микоплазмы Гр+бактерии Грибки |
TLR7 | Односпиральная РНК | Вирусы |
TLR8 | Односпиральная РНК | Вирусы |
TLR9 | CpG (цитозин — гуанозин фосфат), содержащие ДНК | Бактерии и вирусы |
TLR10 | Не установлены | Не установлены |
TLR11 | Не установлены | Уро патогенные бактерии |
На этой странице материал по темам:
активация микроглиальных тлр
toll like рецепторы
рецепторы в иммунитете это
секреторные рецепторы врожденного иммунитета
wiki-med.com
Источник
Врожденный иммунитет — это первая линия обороны иммунной системы, которая включает предсуществующие механизмы защиты, всегда готовые к быстрой, стереотипной обороне. Рецепторы клеток врождённого иммунитета генетически закодированы и неизменны в течение жизни; на поверхности микроорганизмов они распознают структуры жизненно важных для микробов молекул, которые не могут быть изменены в результате одной мутации. Клетки врожденного иммунитета одного и того же типа имеют одинаковый набор рецепторов. Они находят и убивают болезнетворные микроорганизмы и одновременно активируют адаптивный иммунный ответ. Врожденный (неспецифический) иммунитет обеспечивает защиту с умеренной эффективностью в течение нескольких дней, пока не активируется адаптивный иммунитет. Адаптивный иммунитет для активации требует от нескольких дней до недели. Адаптивный иммунитет специфический, его составляющие научены ответу на точные молекулярные структуры. Для создания своих рецепторов адаптивный иммунитет использует перегруппировку генов (реаранжировку), и пролиферацию клеток со специфическими рецепторами путем формирования клонов. Адаптивный иммунитет имеет иммунологическую память. Адаптивная иммунная система — дополнение к эволюционно более древней врождённой иммунной системе, обеспечивающее специфичность распознавания и память.
Частью врожденного иммунитета являются барьеры организма. Они включают в себя эпителиальные слои, слизь для предотвращения прилипания микробов и антимикробные пептиды. Эти пептиды включают α — дефензины нейтрофилов, β — дефензины эпителиальных клеток и гистатины слюны.
В эффекторных механизмах иммунной системы (воспаление и реакция острой фазы) задействованы опсонизация, фагоцитоз, внутриклеточное уничтожение и секреция цитокинов. Бактерии имеют механизмами уклонения от эффекторных механизмов защиты, эффекторные механизмы иммунитета имеют ограниченное действие против вирусов.
Клеточное звено врожденного иммунитета представлено разными видами лейкоцитов: нейтрофилы составляют 50-70% лейкоцитов, лимфоциты 20-35%, моноциты 3-7%, эозинофилы 1-3% и базофилы 0-1%.
- Нейтрофилы и макрофаги являются наиболее важными фагоцитирующими клетками. Они образуются из полипотентных гемопоэтических стволовых клеток и дальнейшего дифференцирования миелоидного — предшественника (гранулоцито-моноцито колониеобразующей клетки).
Нейтрофилы и макрофаги обычно используют одни и те же механизмы уничтожения чужого, но нейтрофилы живут около суток, активируются при остром воспалении, и уничтожают только бактерии с использованием активных форм кислорода. Макрофаги, в отличие от нейтрофилов, живут недели, действуют при хроническом воспалении, атакуют многие микроорганизмы, презентируют антиген, секретируют множество цитокинов и используют оксид азота как реактивную форму кислорода.
Работа нейтрофилов – фагоцитировать чужое. Нейтрофилы широко представлены циркуляции и тканях, и они очень мобильны и поэтому обычно первыми реагируют на возбудителя. В азурофильных гранулах нейтрофилы содержат гидролитические ферменты, дефензины и миелопероксидазу. Другие гранулы переносят рецепторы для комплемента, адгезии и цитокинов и готовы к экзоцитозу получив сигнал. Незрелые нейтрофилов еще не имеют характерного ядра полиморфноядерных клеток (зрелых нейтрофилов), ядро в виде палочки. Для распознавания и связывания мишеней нейтрофилы используют в основном Fc рецепторы и рецепторы комплемента, рецепторы распознавания образов.
Макрофаги фагоцитируют патогены и презентируют антиген. Они могут что-то фагоцитировать, и освобождать антииммунные (толерогенные) сигналы, не секретировать сигналы, или секретировать проиммунные (иммуногенные) сигналы. В крови они
циркулируют как моноциты в течение суток, затем мигрируют в ткани, где дифференцируются в макрофаги (больше цитоплазмы, гранул и складчатая мембрана). Макрофаги имеют рецепторы к комплементу, Fc и рецепторы распознавания образов.- Макрофаги являются важнейшими регуляторами как адаптивного, так и врожденного иммунного ответ.
- Естественны киллеры (ЕK) являются важными эффекторными лимфоцитами врожденного иммунитета, которые проявляют цитолитическую активность против различных аллогенных внутриклеточных мишеней в неспецифических, контакт-зависимых, не фагоцитарных процессах, которые не требует предварительной сенсибилизации антигеном. ЕК клетки имеют несколько свойств обычных цитотоксических Т-клеток (ЦЛТ), в том числе аналогичные механизмы цитолиза. Цитолитическая активность ЕК опосредована формированием пор в клетке-мишени с последующей секрецией в мишень белков, таких как гранзимы и перфорин, сериновые протеазы и другие. Их цитотоксическая активность позитивно регулируется с помощью IL-2, IL-15 и интерферонов, и негативно простагландинами и TGF-β.
- Естественные киллеры Т клетки (ЕКТ) – представляют собой различные линии Т-клеток, которые экспрессируют инвариантный Т-клеточный рецептор αβ (TCR αβ) и имеют на поверхности ряд маркеров, общих с ЕК. ЕКТ клетки рестриктированы по неполиморфной CD1d молекуле и активируются гликолипидами антигенов, представленными CD1d. Для идентификации мышиных и человеческих ЕKT может быть использованы CD160 и Vα24Jα18 соответственно
- Интраэпителиальные γδ Т-клетки (освобождают провоспалительные цитокины),
- B-1 клетки (синтез неспецифических «естественных» антитела).
Врожденный иммунитет активируется паттерн-распознающими рецепторами (PRRs), которые узнают паттерны патоген ассоциированных молекул (РАМРs, подобно ЛПС, CpG DNA, fMet, dsRNA и др.).
Паттерны патоген ассоциированных молекул должны быть экспрессированы на патогене, но отсутствовать у хозяина. Они имеют тенденцию к структурной инвариантности для группы возбудителей, и жизненно необходимы патогенам. Это полисахариды / нуклеотиды, но не белки.
Паттерн распознающие рецепторы (PRRs) являются генетически закодированной линией и не подвержены реаранжировке.
Взаимодействие паттерн распознающих рецепторов с патером патоген ассоциированных молекул инициирует внутриклеточные сигнальные каскады, которые обычно заканчиваются передачей сигнала в ядро и синтезом провоспалительных цитокинов.
Источник
ТОП 10:
Распознающие рецепторы врожденного иммунитета
Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.
Таблица Распознавание в системе врожденного иммунитета
Мембранные рецепторы (передают сигнал внутрь клетки) | Toll – подобные (TRL1-10) C -лектиновые Рецепторы-мусорщики (Skavender-рецепторы) Интегриновые |
Внутриклеточные (цитозольные) | NOD RID DAI |
Секретируемые | Пентаксины Коллектины Компоненты системы комплемента Фиколины |
Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (patern recognition recepror – PRR). К ним относятся Toll , NOD , RID – рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.
Toll – рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10 Toll – подобных рецепторов.
Таблица. Toll -подобные рецепторы (TLR) человека и их лиганды
TLR | Лиганды | Патогены |
TLR1 | Липопептиды | Грамотрицательные бакетрии, микобактерии |
TLR2 | Пептидогликан, липотейхоевые кислоты | Грамположительные бактерии, грибы |
TLR3 | Двухцепочные РНК | Вирусы |
TLR4 | Липополисахарид | Грамотрицательные бактерии |
TLR5 | Флагеллин | Бактерии |
TLR6 | Диациллипопептиды, липотейхоевые кислоты | Микобактерии, грамположительные бактерии, грибы |
TLR7 | Одноцепочечные РНК | Вирусы |
Таблица. Toll -подобные рецепторы, расположенные на клетках иммунной системы
Клетки иммунной системы | Toll — рецепторы |
Нейтрофилы | TLR1,2,4,5,6,7,8,9,10 |
Моноциты/макрофаги | TLR1,2,4,5,6,7,8 |
Дендритные клетки | TLR1,2,4,5,6,8,10 |
В-лимфоциты | TLR1,3,6,7,9,10 |
Т-лимфоциты (Th1/Th2) | TLR2,3,5,9 |
Т-лимфоциты (регуляторные) | TLR2,5,8 |
Экспрессия Toll – рецепторов обеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.
NOD – рецепторы распознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторы имеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.
Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc -фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.
Гуморальные факторы врожденного иммунитета
Гуморальные факторы врожденного иммунитета – это белки, присутствующие в сыворотке крови, секретах слизистых оболочек, которые синтезируются клетками иммунной системы и могут оказывать бактерицидное, опсонизирующее и т.д. действие на организмы.
Система комплемента
Комплемент – система сывороточных белов крови, каскадная активация которых приводит к лизису бактерий, собственных клеток, инфицированных внутриклеточными паразитами, разрушению иммунных комплексов.
Состоит более, чем из 20 инертных белков сыворотки, 9 из которых являются основными и обозначаются как С1, С2 и т.д. — С9. Формирование комплемента в единое целое или его активация происходит при внедрении в организм чужеродных антигенов.
Комплемент может активироваться двумя путями: классическим и альтернативным.
Противомикробные пептиды
Противомикробные пептиды – катионные белка, способные поражать вирусы, грибы, простейшие. Синтезируются нейтрофилами и эпителиальными клетками при взаимодействии их Toll – рецепторов с антигеном. Осуществляют мгновенный иммунитет. Часто их называют эндогенными антибиотиками. Различают 2 основных вида – дефенсины и кателицидины.
Механизм действия: противомикробные пептиды разрушают наружные мембраны микроорганизмов. Мембраны бактериальных клеток заряжены отрицательно, а пептиды положительно. Разность зарядов обеспечивает их взаимодействие. Катионные белки встраиваются в мембрану микробной клетки, образуя поры. Бактериальная клетка теряет ионы калия, аминокислоты. Внутрь клетки поступает вода, обеспечивая ее гибель.
Белки острой фазы продуцируются моноцитами, макрофагами, фибробластами. Синтез белков острой фазы существенно повышается в ответ на инфекцию.
С-реактивный белок ( CRB ) связывается с поверхностью бактерий, активирует систему комплемента. При бактериальной инфекции увеличивается в 100 раз.
Маннозосвязывающий лектин активирует систему комплемента по лектиновому пути.
Сывороточный амилоид А выступает в роли хемоаттрактанта.
Фибриноген выступает как опсонин
Лизоцим – фермент, содержащийся в отделяемом слизистых оболочек глаз, ротовой полости, носоглотки, грудном молоке. Вырабатывается моноцитами крови и тканевыми макрофагами. Разрушает пептидогликаны клеточных стенок бактерий.
Фагоцитоз
Фагоцитоз – это активное распознавание и поглощение микроорганизмов фагоцитирующими клетками с их последующей инактивацией и перевариванием. Фагоцитоз – самый древний вид защиты, унаследованный нами в ходе эволюции. Выраженной фагоцитарной активностью обладают нейтрофилы, моноциты и макрофаги.
Нейтрофилы происходят от стволовой клетки костного мозга. Это короткоживущие неделящиеся клетки с сегментированным ядром и набором гранул, содержащих большое количество бактерицидных веществ. Их время жизни составляет 2-3 суток. Нейтрофилы являются основными клетками, осуществляющими уничтожение внеклеточных микроорганизмов.
Макрофаги образуются из стволовой клетки красного костного мозга, на территории которого дифференцируются до стадии моноцита. Моноциты попадают в ток крови и расселяются по тканям, превращаясь в тканевые макрофаги, где функционируют в течение недель или месяцев. Для них характерно изобилие гранул, близких по составу к содержимому гранул нейтрофилов.
Их функциями является поглощение и уничтожение внедрившихся микроорганизмов (в основном внутриклеточных), а также поврежденных, дегенерированных, вирусинфицированных и опухолевых клеток и образующихся иммунных комплексов. Это клетки — «мусорщики».
Нейтрофилы осуществляют основную защиту от пиогенных (внеклеточных) бактерий, макрофаги – от внутриклеточных паразитов (вирусы, грибы, простейшие).
Нейтрофилы – это основные участники острого воспаления, макрофаги – хронического, они способны стимулировать образование гранулем.
Функции фагоцитов:
n Фагоцитарная – захват и внутриклеточное переваривание микроорганизмов.
n Антигенпрезентирующая – презентация антигена Т-лимфоцитам в комплексе с молекулами главного комплекса гистосовместимости (HLA). Этой функцией обладают антигенпрезентирующие макрофаги.
n Секреторно-регуляторная – синтез и секреция некоторых белков системы комплемента, отдельных цитокинов, лизоцима, белков системы свертывания крови.
n Цитотоксическое действие фагоцитов.
Связывание патогена с фагоцитом может быть прямым и опосредованным. Прямое распознавание происходит с участием Toll-рецепторов. При опосредованном распознается опсонизированный объект, покрытый антителами или C3b – компонентом комплемента.
Хемотаксис
Для того, чтобы процесс фагоцитоза произошел, необходимо сближение фагоцитирующих клеток с антигеном, который вызвал повреждение. Для этого нейтрофилы должны покинуть кровеносное русло, поскольку очаги внедрения антигена чаще имеют тканевую локализацию. Это возможно благодаря хемотаксису. Хемотаксис – движение фагоцитов по концентрационному градиенту химических веществ – хемоаттрактантов. В роли хемоаттрактантов для нейтрофилов выступают продукты жизнедеятельности бактерий, белки системы комплемента, цитокины и.т.д.
Основными хемоаттрактантами для макрофагов являются гамма-интерферон, хемотаксический макрофагальный фактор.
Адгезия – прилипание
Начинается с адгезии (прилипания) микробной частицы к поверхности фагоцита. Процесс поглощения идет эффективнее, если микробные клетки опсонизированы, то есть покрыты белками системы комплемента и специфическими антителами класса IgG. Особенно важно это для бактерий, имеющих капсулу (пневмококк, менингококк, кишечная палочка, гемофильная палочка и т.д.)
Эндоцитоз (поглощение)
Участок мембраны фагоцита в месте контакта с объектом уплотняется, вытягивается и надвигается на объект подобно механизму застежки «молния» до тех пор пока объект не будет полностью поглощен в фагосому.
Дегрануляция
Цитоплазматические гранулы фагоцитирующих клеток сливаются с фагосомой и образуется фаголизосома, в которой происходит киллинг и разрушение захваченной микробной частицы с помощью антимикробных факторов. Антимикробные системы делятся на те, которые требуют кислород – кислородзависимые и те, которые не требуют кислород – кислороднезависимые.
Кислородзависимые факторы (активные формы кислорода) образуются в ходе респираторного взрыва, представляющего собой каскад окислительных реакций.
Включают:
n супероксидный анион (О2-)
n перекись водорода (Н2О2)
n синглетный кислород (О2)
n гидроксильный радикал (ОН˙)
n оксид азота (NO)
Активные формы кислорода являются очень мощными окислителями, вызывают повреждение липидов, белков, ДНК мироорганизмов, оказывают летальное действие на биологические системы.
К кислороднезависимой группе бактерицидных факторов относятся лизоцим, некоторые протеолитические ферменты, лактоферрин, катионные белки, дефенсины.
Лактоферрин – связывает железо, предотвращает рост и размножение бактерий.
Катионные белки – вызывают повреждение клеточных мембран, лизируют бактериальные клетки.
Дефенсины – встраиваются в липидный слой клеток, нарушают ее проницаемость, обладают летальным действием на широкий спектр бактерий, грибов, вирусов.
Экзоцитоз – удаление продуктов разрушения
Распознающие рецепторы врожденного иммунитета
Активация врожденного иммунитета начинается с распознавания антигенных структур с помощью многочисленных рецепторов.
Таблица Распознавание в системе врожденного иммунитета
Мембранные рецепторы (передают сигнал внутрь клетки) | Toll – подобные (TRL1-10) C -лектиновые Рецепторы-мусорщики (Skavender-рецепторы) Интегриновые |
Внутриклеточные (цитозольные) | NOD RID DAI |
Секретируемые | Пентаксины Коллектины Компоненты системы комплемента Фиколины |
Особую группу рецепторов врожденного иммунитета составляют паттерн-распознающие рецепторы (patern recognition recepror – PRR). К ним относятся Toll , NOD , RID – рецепторы. Эти рецепторы распознают общие для многих типов микроорганизмов структуры – липополисахариды, пептидогликаны, флагеллин.
Toll – рецепторы имеют на своей поверхности различные клетки иммунной системы – моноциты, макрофаги, дендритные клетки, нейтрофилы, лимфоциты, а также другие клетки организма – фибробласты, эпителиальные, эндотелиальные клетки. В настоящее время у человека идентифицировано 10 Toll – подобных рецепторов.
Таблица. Toll -подобные рецепторы (TLR) человека и их лиганды
TLR | Лиганды | Патогены |
TLR1 | Липопептиды | Грамотрицательные бакетрии, микобактерии |
TLR2 | Пептидогликан, липотейхоевые кислоты | Грамположительные бактерии, грибы |
TLR3 | Двухцепочные РНК | Вирусы |
TLR4 | Липополисахарид | Грамотрицательные бактерии |
TLR5 | Флагеллин | Бактерии |
TLR6 | Диациллипопептиды, липотейхоевые кислоты | Микобактерии, грамположительные бактерии, грибы |
TLR7 | Одноцепочечные РНК | Вирусы |
Таблица. Toll -подобные рецепторы, расположенные на клетках иммунной системы
Клетки иммунной системы | Toll — рецепторы |
Нейтрофилы | TLR1,2,4,5,6,7,8,9,10 |
Моноциты/макрофаги | TLR1,2,4,5,6,7,8 |
Дендритные клетки | TLR1,2,4,5,6,8,10 |
В-лимфоциты | TLR1,3,6,7,9,10 |
Т-лимфоциты (Th1/Th2) | TLR2,3,5,9 |
Т-лимфоциты (регуляторные) | TLR2,5,8 |
Экспрессия Toll – рецепторов обеспечивает важную связь между врожденным и адаптивным иммунитетом, поскольку их активация приводит к превращению фагоцитов в эффективные антигенпрезентирующие клетки. Экспрессия большинства Toll – рецепторов увеличивается при действии провоспалительных цитокинов.
NOD – рецепторы распознают вещества, которые образуются при повреждении клеток организма (АТФ, кристаллы мочевой кислоты) и вызывают развитие воспалительного процесса. NOD – рецепторы имеются на макрофагах, дендритных клетках, эпителии слизистых оболочек.
Особую группу представляют рецепторы, повышающие эффективность фагоцитоза. К ним относятся рецепторы к С3-компоненту комплемента и Fc -фрагменту иммуноглобулинов. Антиген в комплексе с антителом захватывается клетками врожденного иммунитета через Fc-рецепторы, которые взаимодействуют с Fc-фрагментом иммуноглобулинов. Фагоцитоз опсонизированного объекта (покрытого антителом) в сотни раз более эффективен, чем фагоцитоз свободного объекта.
Источник