Режимы мрт головного мозга dwi
Сегодня МРТ позволяет увидеть начальную недостаточность кровотока в мозге, прогнозировать микроинсульт и отличить доброкачественную опухоль от злокачественной.
Развитие медицины требует увеличения точности диагностики. Идущие вперед медицинские технологии влекут за собой усовершенствование существующих методов обследования и внедрение новых революционных процедур. Этот процесс не обошел стороной один из самых наглядных и информативных методов диагностики – магнитно-резонансную томографию (МРТ).
Еще десять лет назад прогресс в МРТ диагностике заключался в увеличении напряженности магнитного поля. И это логично. Чем выше магнитное поле, тем более тонкие срезы и более четкие изображения можно было получать. Наряду с этим, увеличение мощности магнитного поля томографов влекло за собой появления новых противопоказаний для проведения МРТ. Чем выше магнитное поле, тем больше нагреваются ткани тела во время исследования. Это особенно касается высокопольных магнитов. Более того, чем выше магнитное поле, тем больше шанс получить артефакты на изображениях (искажений изображений, ложных изображений, не соответствующих реальным). Для нивелирования артефактов, техническая часть МРТ оборудования становилась все более сложной и громоздкой, а программное обеспечение усложнялось и усовершенстовалось в геометрической прогрессии. Это влекло за собой удорожание оборудования.
Фактически, когда МРТ томографы достигли напряженности магнитного поля в 3Т (три тесла), процедура достигла порога безопасности, появился риск возникновения осложнений для пациента. Проведение исследований на таких магнитно-резонансных томографах усложнено большим перечнем противопоказаний. Это ощутимо ограничивает использование в повседневной медицинской практике МРТ приборов, с напряженностью магнитного поля 3 тесла.
К счастью, наука не стоит на месте. МРТ перестало ограничиваться только изучением анатомии. Инженеры пошли иным путем. Вместо увеличения напряженности магнитного поля стали использовать более сложное программное обеспечение и усовершенствованные технологичные процессы для сбора диагностической информации. Новое программное обеспечение дало возможность изучать функцию исследуемых органов без существенного повышения магнитного поля. На современных МРТ аппаратах такие программы устанавливают на 1.5 тесловых МРТ. Стоит отметить, что программ адаптированы для низкопольного оборудования – 0.4Т. С введением новых протоколов сканирования и усовершенствованием программного обеспечения томографов, стало возможным получать очень высокое качество исследований на менее мощных по напряженности магнитного поля системах. В клинике «Меддиагностика» технологичные исследования с использованием новейших технологий вошли в повседневную практику. Примером может служить DWI режим.
DWI режим МРТ
DWI режим — диффузионно-взвешенные изображения. Программа DWI оказался крайне полезным для исследования любой области тела человека. С режимом DWI на современных томографах 1.5Т и выше, МРТ шагнуло на принципиально новый уровень диагностики. Стала возможным ранняя диагностика нарушения кровообращения и ишемических сосудистых процессов головного мозга (ишемия — снижении кровотока в мозговой ткани). До появления DWI, обнаружение острых микроинсультов (поражение малых участков мозга) было затруднено. На стандартных МРТ изображениях их затруднительно отличить от дегенеративных изменений вещества головного мозга. Лет 10 назад такая дифференциальная диагностика по МРТ напоминала гадание на кофейной гуще. Уж очень внешне похожи в мозговой ткани дегенеративные (инволютивные) мелкие очаги и очаги снижения кровотока. DWI технология позволяет уточнить результат нарушения локального кровотока и вписывается в стандарт клиники «Меддиагностика» комплексного обследования сосудов головного мозга с применением реконструкции кровотока в различных бассейнах головного мозга, а также динамическое обследование системного кровотока.
Кроме неоспоримой ценности в выявлении дефектов кровообращения в мозговой ткани, DWI оказалась полезной для обнаружения и расшифровки типа опухолей головного мозга.
Режим DWI помогает дифференцировать доброкачественную опухоль от злокачественной, что оказалось крайне ценным для выбора тактики лечения. Более того, нередко диагносты сталкиваются с различного рода образованиями в тканях, которые являются случайными, клинически незначимыми находками, не подлежащими удалению. Такие образования могут себя не проявлять клинически и с ними можно спокойно продолжать жить. Для уточнения структуры таких находок в МРТ используют ряд программ, в частности — DWI.
На МРТ изображениях ишемические изменения (инсульт) в мозговой ткани выявить достаточно сложно. В клинике важно дифференцировать острый ишемический процесс от старого. В этом помогает DWI.
На сканограммах внизу представлены различные методы визуализации состояния ткани мозга на примере ишемии и инсульта мозжечка. На Т2 изображениях (см. рис. ниже) изменения слабо различимы. С обеих сторон они выглядят похожими, в виде участков повышения МРТ сигнала, неправильной формы.
На изображении внизу в Т1 режиме более четко видны изменения в правой гемисфере мозжечка. Они носят более диффузный и однородный характер в виде сливных участков слабо пониженного сигнала, слева же сигнал более гетерогенный, с более темными областями характерными для постинсультных кистозных изменений, окруженными неравномерной толщины зонами слабо пониженного сигнала (изменения сигнала в этих пограничных зонах ничем не отличаются от изменений в правом полушарии мозжечка).
Изображениях в режиме FLAIR: зоны острого инсульта в виде участков повышенного сигнала в правом полушарии мозжечка. В левом полушарии – изменения менее яркие и не позволяют судить о характере процесса.
DWI расставляет точки над «і» (рисунок ниже): очаги в правом полушарии мозжечка имеют повышенный сигнал (свидетельство острого нарушения мозгового кровообращения), слева – все изменения имеют интенсивность подобную веществу мозга (соответствуют последствиям перенесенного ОНМК)
Стоит также отметить, что для DWI-режим позволил расширить возможности контрастного МРТ исследование (перфузионная магнитно-резонансная томография), сделав его много более информативным. Такое сочетания, например, оказалось весьма полезным при диагностике рака шейки матки или для обнаружения метастазов в брюшину.
Режим перфузионной магнитно-резонансной томографии
Примером крайне полезных современных программ в новых МРТ является контрастная перфузионная магнитно-резонансная томография. Использование этого режима МРТ ограничено в рутинной медицинской практике. Режим требует особых технических возможностей МРТ оборудования с напряженностью поля не менее 1.5Т. Такие технические решения реализованны не во всех МРТ сканерах. Контрастная перфузионная МРТ – это мощная технология, которая выводит магнитно-резонансную томографию на принципиально новый уровень. Технологически МРТ системы последних поколений способны проводить сверхбыстрое сканирование, что заложено в принцип использования перфузионной МРТ. С ее помощью в течение одной минуты производится и анализируется от 300 до 450 срезов (по 10-15 срезов каждые 2 секунды). Мы получаем точную и «быструю» информацию об исследуемой области мозга, что является обязательным фактором оценки тканевого кровообращения за единицу времени. Этот процесс синхронизирован с прохождением контрастного вещества через орган, количество которого высчитывается сканером.
Перфузионная МРТ дает возможность оценить разные по природе патологические процессы. Например, различить доброкачественную и злокачественную опухоль в головном мозге. Эта методика основана на оценке разницы кровотока в мелких (микроскопических) сосудах нормальной и патологически изменённой ткани. Оценивая скорость тканевого кровотока на уровне микроциркуляции, МРТ с высокой степенью достоверности определяет природу патологического очага в головном мозге. Такая тонкая дифференциация помогает, неврологам и хирургам-онкологам более точно определить границу патологического процесса в сложных клинических случаях, а иногда дает почти гистологическую верификацию опухолевого образования. Например, помогает четко дифференцировать менингиому от невриномы слухового нерва и от папилломы хороидального сплетения боковых желудочков мозга, а также от метастазов в области оболочек мозга.
На предоставленном МРТ изображении визуализируется объемное образование (менингиома) правой петрокливальной области. Отмечается выраженное повышение перфузии (ярко окрашенный фрагмент), что свидетельствует о повышенном уровне кровоснабжения образования (Диагноз: Менингиома).
Рис. ниже: Внутримозговые структурные изменения левой таламической области, интенсивно накапливающие контрастное вещество. На перфузионных МРТ отмечается выраженное усиление перфузии патологического очага, что свидетельствует о высокой злокачественности процесса (на рисунке справа графической отображение перфузионных процессов).
В центре «Меддиагностика» DWI режим есть не только на томографе 1.5 тесла, но и на современном низкопольном томографе открытого типа 0.4Т, который оснащен DWI функцией и позволяет проводить точную диагностику.
Цены на МРТ обследования в Киеве
В создании ДВИ участвуют молекулы, чувствительные к диффузионному измерению. Благодаря этому может быть измерено движение молекул за определенный период времени — b. Использование сильных градиентных импульсов позволяет маркировать каждую молекулу воды в системе и ее положение по отношению к используемому градиенту.
Существенную роль в получении ДВИ играет принцип диффузионной контрастности, в основе которого диффузия молекул воды вдоль градиента поля уменьшает МР-сигнал.
Эта зависимость является экспоненциальной: сигнал = Sо exp (–bD), где D — коэффициент диффузии ткани (здоровая ткань около 10 мм2/с); b — коэффициент диффузионного взвешивания (b-значение, с/мм2).
Чем больше b-значение, тем сильнее диффузионное взвешивание. Область сниженной диффузии показывает отно- сительную гиперинтенсивность сигнала. В клиническом применении интересны области, в которых диффузия уменьшена по отношению к окружающей области, например, в клеточных мембранах. Благодаря сниженной диффузии уменьшение сигнала здесь несколько меньше и соответствующие зоны на изображении представлены более светлыми. Интенсивность сигнала на изображениях зависит от направления диффузион- ного взвешивания. Создаются три проекции одного и того же сечения (при b-значениях > 0). Подобное диффузионное обследование помогает отличить изотропную патологию от анизотропной структуры окружающей ткани.
Создаются следующие типы изобра- жений: ортогональные изображения, ИКД-карты (ADC — Apparent Diffusion Coefficient), следящие изображения (контрастность показывает средний ко- эффициент диффузии во всех направлениях), сравнительные Т2-ВИ в том же положении сечения (b = 0).
Все рассчитанные изображения соз- даются непосредственно после измере- ния. Для каждого положения сечения и b-значения (не равного 0) получают изображения в направлениях диффузионного взвешивания (в направлениях выбора сечений, считывания и фазового кодирования).
Все ДВИ обозначены интенсивно- стью и направлением диффузионного взвешивания. Интенсивность сигнала в ДВИ зависит не только от скорости диффузии, но и от значений времени релаксации Т1-, Т2-ВИ и протонной плотности. Относительный вклад этих факторов зависит от параметров после- довательности (ТE, TR, времени диффузии, напряженности диффузионно- го градиента и т. п.). В связи с этим с целью отделения влияния диффузии от других параметров рассчитываются карты кажущегося коэффициента диффузии.
На ИКД-изображениях, а чаще на- зываемых также ADC-картах, значение серого характеризует (с помощью пикселов) распределение коэффициентов диффузии в обследуемой зоне. Чем меньше степень выраженности диффузии, тем темнее пикселы.
Определяемый ИКД зависит от процессов диффузии в имеющихся раз- личных структурах, внутриклеточных и межуточных пространствах. ИКД- изображения не содержат ни Т1-, ни Т2- составляющих, и считается, что таким образом это исключает наличие артефактов.
ДВИ получают после подачи сильных биполярных импульсов на фоне последовательности спин-эха или градиент- эха с различными параметрами, которые представляют собой фактор b, измеряемый в с/мм2, и силу градиентов диффузии. А новые МР-томографы с более мощными и быстрыми градиентными подсистемами и новыми катушками способствуют повышению соотношения сигнал/шум на получаемых изображениях при использовании значений b в диапазоне от 500 до 1000 с/мм2, что значительно повышает качество изображения.
Клиническое применение:
- Раннее выявление ишемического инсульта
- Дифференциация между ранним и поздним инсультом
- Дифференциация между эпидермоидной и арахноидальной кистой
- Дифференциация между абсцессом и опухолями с некрозом
- Выявление кортикальных поражений головного мозга
- Дифференциация между герпесом и диффузной глиомой
- Стадирование глиом и менингиом
- Оценки демиелинизации
Диффузионно-взвешенные изображения (ДВИ, DWI) – метод визуализации Броуновского «беспорядочного» движения молекул воды в тканях [1].
Отношение гистологического строения ткани и скорости диффузии достаточно сложны, но сводятся к тому, что плотность расположения клеток и уменьшение объема внеклеточного пространства ведут к уменьшению диффузии. Диффузионно-взвешенные изображения особенно полезны в диагностике опухолей и ишемии головного мозга.
Терминология
Существует небольшая путаница в том, как врачи и радиологи понимают ограничение диффузии, причем и те, и другие иногда на самом деле не понимают, о чем они говорят.
Первая проблема заключается в том, что термин «диффузионно-взвешенное изображение» используется для обозначения ряда различных понятий:
- изотропная диффузионная карта (то, что большинство радиологов и называет ДВИ — изотропное изображение с использованием одного коэффициента диффузии b);
- последовательнось, в результате которой получается ДВИ, b=0 и ИКД карты;
- еще более общий термин, охватывающий все диффузионные методики получения изображений, включая диффузионно-тензорные изображения.
Кроме того, также существует путаница в определении патологического ограничения диффузии. Во многом, это связано с широким использованием ДВИ в диагностике инсульта, при котором ишемизированная ткань на изотропных картах имеет высокую интенсивность МР сигнала, и, как бы подразумевается, что в неизмененных участках мозга ограничения диффузии не определяются. А по сути, это является более красивым, но не полностью верным выражением — «диффузия в пораженном участке демонстрирует большее ограничение, чем ожидалось для этой ткани».
Кроме того, не все врачи знакомы феноменом T2-просвечивания — иной причины высокого сигнала на ДВИ.
Для более аккуратной и точной формулировки «ограничения диффузии», врач должен помнить, что мы имеем дело с фактическими значениями ИКД (в условиях полноценного программно-аппаратного обеспечения рабочей станции врача). Также желательно использовать такие формулировки как: «область демонстрирует патологически низкое значения ИКД (патологическое ограничение диффузии)» или «высокий МР сигнал на изотропных изображениях (ДВИ) подтверждается патологическим ограниченнием диффузии на ИКД картах/изображениях».
Физика
В отличие от свободной диффузии молекул воды в лабораторных условиях, диффузия молекул воды в вокселе ткани мозга, во-первых, ограниченна клеточными мембранами, а кроме того, представляет собой комбинацию диффузий воды в следующих пространствах:
- диффузия внутриклеточной жидкости
- в цитоплазме в целом
- в органеллах
- диффузия внеклеточной жидкости
- интерстициальной (внутритканевой)
- внутри сосудов
- лимфатической
- различных биологических полостей, например, желудочков головного мозга
- диффузия между внутри- и внеклеточным пространствами
Вклад пространства будет зависеть от ткани и патологического процесса. Например, при остром инсульте головного мозга уменьшение значений ИКД является результатом комбинации:
- движения воды во внутриклеточное пространство, приводящая к набуханию клеток; при этом диффузия внутриклеточной жидкости за счет органелл итак более ограничена, чем во внеклеточном пространстве
- уменьшения объема внеклеточного пространства (за счет набухания) [2].
Схожие механизмы приводят к низким значениям ИКД в опухолях с высокой клеточностью (например, в лимфоме/PNET или глиоме высокой степени злокачественности).
Клиническое применение
Главная роль ДВИ в следующих клинических ситуациях [3-5]:
- ранняя диагностика инсульта головного мозга
- дифференциальная диагностика острого инсульта от хронического
- дифференциальная диагностика острого инсульта от заболеваний, симулирующих острый инсульт
- дифференциальная диагностика эпидермоида и арахноидальных кист
- дифференциальная диагностика абсцесса головного мозга и некроза опухоли
- оценка кортикальных поражений при болезни Крейтцфельдта-Якоба
- дифференциальная диагностика герпетического энцефалита и диффузных глиом височной доли
- оценка распространенности диффузного аксонального поражения
- стадирование глиом и менингиом
Смотрите также: Интракраниальная патология с повышением МР сигнала на диффузинно-взвешенных изображениях
МРТ последовательность
На изображени справа показана спин-эхо последовательность с диффузионным градиентом. Градиентная катушка для получения диффузии может быть совмещена с градиентом или градиентами, используемыми для пространственного кодирования. Степень диффузионной взвешености зависит от площади диффузионного градиента, интервала между градиентами, эффекта пространственной локализации градиентов и размера вокселя.
- стационарная молекула воды (спин/протон) — не подвергается воздействию градиентов диффузии и сохраняет свой сигнал.
- подвижная молекула воды (спин/протон) — приобретает сдвиг по фазе под воздействием первого градиента и не восстанавливается при следующем импульсе — следовательно, теряет сигнал.
Если мне нужно сделать фотографию, я достаю из кармана мобильник, выбираю фотоприложение, навожу объектив на понравившийся объект и… щёлк! В 99% случаев я получаю снимок, который сносно отображает необходимый фрагмент реальности.
А ведь ещё несколько десятилетий назад фотографы вручную выставляли выдержку и диафрагму, выбирали фотоплёнку, устраивали проявочную лабораторию в ванной комнате. А снимки получались… ну, такие себе.
Магнитно резонансная томография — потрясающая методика. Для врача, который осознанно управляет параметрами сканирования, она предоставляет огромные возможности в визуализации тканей человеческого организма и патологических процессов.
В зависимости от настроек, одни и те же ткани могут совершенно по разному выглядеть на МР томограммах. Для относительной простоты интерпретации существует несколько более-менее стандартных «режимов» сканирования. Это сделано для того, чтобы МРТ, из категории методик, которыми владеют только одиночки-энтузиасты, пришла в широкую медицинскую практику. Как методика фотографии, которая упростилась настолько, что не только стала доступна каждому, но и порядком успела многим надоесть 😉
Здесь я расскажу о нескольких наиболее часто использующихся режимах сканирования. Поехали!
Т1 ВИ (читается «тэ один вэ и») — режим сканирования, который используется всегда и везде. Свободная безбелковая жидкость (например ликвор в желудочках мозга) на таких изображениях выглядит тёмной, мягкие ткани имеют различные по яркости оттенки серого, а вот жир ярок настолько, что кажется белым. Также на Т1 ВИ очень яркими выглядят парамагнитные контрастные вещества, что и позволяет использовать их для визуализации различных патологических процессов.
Слева — Т1 ВИ, а справа — Т1 ВИ после введения контраста. Опухоль накопила парамагнитный контраст. Просто и красиво!
А ещё на Т1 яркой будет выглядеть гематома на определённых стадиях деградации гемаглобина.
В МРТ «яркий» обозначается термином «гиперинтенсивный»,а «тёмный» — термином «гипоинтенсивный».
Т2 ВИ (читается «тэ два вэ и») — также используется повсеместно. Этот режим наиболее чувствителен к регистрации патологических процессов. Это значит, что большинство патологических очагов, например в головном мозге, будут гиперинтенсивными на Т2 ВИ. А вот определение какой именно патологический процесс мы видим требует применения других режимов сканирования. Помимо патологических процессов и тканей, яркой на Т2 будет свободная жидкость (тот же ликвор в желудочках).
Т2 ВИ — классика в визуализации головного мозга. И вообще, любимая картинка всех МРТшников.
Аббревиатура «ВИ» расшифровывается как «взвешенные изображения». Но боюсь, мне не удастся объяснить смысл этого заклинания без углубления в физику метода.
Pd ВИ (читается «пэ дэ вэ и») — изображения взвешенные по протонной плотности. Что-то среднее между Т1 и Т2 ВИ. Применяется достаточно редко, в связи с появлением более прогрессивных режимов сканирования. Контрастность между разными тканями и жидкостями на таких изображениях довольно низкая. Однако, при исследовании суставов этот режим продолжает пользоваться популярностью, особенно в комплексе с жироподавлением, о котором разговор отдельный.
Слева — Pd ВИ, справа — Т2 ВИ. Одному мне понятно, почему Pd теперь редко используют ?
Словосочетание «режим сканирования» конечно можно использовать, но правильнее использовать словосочетание «импульсная последовательность». Речь про набор радиочастотных и градиентных импульсов, которые используются во время сканирования.
FLAIR (произносится как «флаир» или «флэир») — это Т2 ВИ с ослаблением сигнала от свободной жидкости, например, спинномозговой жидкости. Очень полезная импульсная последовательность, применяется в основном при сканировании головного мозга. На таких изображениях многие патологические очаги видны лучше чем на Т2 ВИ, особенно если они прилежат к пространствам, которые содержат ликвор.
Здесь FLAIR — крайняя картинка справа. Именно на ней лучше всего видны патологические очаги, которые прилежат к желудочкам мозга и субарахноидальному пространству.
Это режимы сканирования или импульсные последовательности, которые наиболее часто используются в ежедневной практике. Но есть ещё много других, которые применяются реже и дают более специфическую информацию.
P.S. Если вам интересно узнать, что такое жиродав и каим он бывает — обязательно поставьте лайк статье, подпишитесь на мой канал в ЯндексДзен или в telegram — так я буду знать, что вы требуете продолжения 😉