Сниженный иммунитет и рак

Сниженный иммунитет и рак thumbnail

Иммунотерапия рака — на сегодняшний день самое революционное направление онкологии, подарившее своим создателям Нобелевские премии, а пациентам — годы жизни. Научный редактор «Сноба» Алексей Алексенко и сеть клиник «Медси» разбираются в вопросе

Сниженный иммунитет и ракФото: Getty Images

У рака зловещая репутация. Есть на свете болезни и более смертельные (хоть и редкие), однако эвфемизм «страшный диагноз» закрепился в ХХ веке именно за онкологическими заболеваниями. Формированию такого имиджа послужил еще и тот факт, что не только симптомы болезни, но и способы лечения были весьма мучительными.

Человеку, оказавшемуся беспомощным в сложной жизненной ситуации, свойственно цепляться за самые эфемерные надежды. Время от времени распространялись слухи о необъяснимых исцелениях — вопреки прогнозам врачей, почти чудесным образом опухоль исчезала. Эти редчайшие случаи как бы намекали, что человек все же не полностью беззащитен перед болезнью. Есть в его распоряжении какая-то сила, неизвестная и неподконтрольная медицине.

В сущности, так и оказалось. Сила эта действительно была тогда не слишком хорошо изучена, хотя в целом и известна, и называлась она «системой приобретенного иммунитета». И когда настал XXI век, именно в этом направлении произошли главные прорывы.

Как устроен иммунитет

Об иммунной системе наш читатель знает все, что ему следует знать: это теперь проходят в средней школе. Исключение, возможно, составляет та прослойка населения, которая верит, что иммунитет можно «активировать» с помощью определенных брендов йогурта. В рамках компромисса между интересами этих двух групп вкратце (и с неизбежным элементом грубой профанации) напомним, как там все устроено.

Ключевой игрок — лимфоциты. В этих кровяных клетках происходят случайные перестройки особых генов, в результате чего в каждом лимфоците вырабатывается белок-иммуноглобулин, способный узнавать какую-то специфическую загогулину на других белковых молекулах. Когда такая загогулина — например, в составе оболочки зловредного вируса — появляется в поле зрения лимфоцита, он получает сигнал на размножение, производя множество потомков, готовых атаковать этот белок.

Проблема в том, что и сам человеческий организм — это совокупность десятков тысяч белков. Если дать лимфоцитам волю, они в считаные часы убьют собственного хозяина, атаковав его белки. На этот случай предусмотрен механизм, позволяющий отличать те белки, что подлежат атаке, от собственных белков-союзников. Финальный этап атаки лимфоцитов подчиняется принципу «все или ничего»: иммунная система, приняв решение о том, свой перед ней белок или чужой, либо бросает в бой все силы, либо поднимает белый флаг.

Этой точкой баланса управляет особый регуляторный механизм. Если немножко разладить его в одну сторону, организм начнет атаковать собственные клетки: это называется «аутоиммунными заболеваниями». Сдвиг в другую сторону — и организм беспомощен перед чужеродным вторжением.

Злокачественная опухоль — одно из самых опасных вторжений. Но беда в том, что опухоль состоит из собственных клеток организма, и в ней нет других белков, кроме тех, что закодированы в своем собственном геноме. Эволюция иммунной системы кое-как приспособила ее к тому, чтобы все же как-то убивать злокачественные клетки. Однако строгий механизм контроля все время ее одергивает: «Посмотри внимательно! Это же твой собственный белок! Ты действительно настолько его ненавидишь?»

Тем не менее иммунной системе можно помочь — подтолкнуть ее к правильному выбору, слегка подрегулировать контрольные механизмы в сторону чуть меньшей толерантности, чуть большей ксенофобии. На этой идее и основаны методы иммунотерапии рака, которые начали развиваться в начале этого столетия.

Нобелевский прорыв

Несмотря на исключительную важность проблемы рака для человечества и потраченные на эту проблему миллиарды, за победы в этой борьбе присуждено не так уж много Нобелевских премий. За вычетом тех, которыми были отмечены открытия по вирусной природе некоторых онкозаболеваний, их было всего три. Две из них присуждены за последнее десятилетие, и обе — за разные варианты иммунотерапии.

В 2011 году премию решили присудить Ральфу Штайнману, который разработал одну из самых сложных и дорогих методик иммунотерапии — дендритные вакцины. По воле судьбы именно эта терапия продлила его собственную жизнь на пару лет, которых едва хватило на то, чтобы номинироваться на премию (хотя присуждена она была через два дня после его смерти).

А следующая и (пока) последняя Нобелевка за иммунотерапию присуждена в этом году. Ее получили Джеймс Эллисон и Тасуку Хондзё, работавшие в 1990-х каждый со своим компонентом системы «балансировки» иммунного ответа.

Тасуку Хондзё прославился исследованиями белка PD-1. Аббревиатура PD зловеща, и означает она Programmed Death — программируемую смерть. При хорошем варианте развития событий это вовсе не смерть пациента, а напротив, его благополучие. В конце 1990-х Хондзё и его коллеги из Токийского университета получили линию мышей, у которых белка PD-1 не было. Мышки эти были довольно несчастными: ужасно страдали от целого букета аутоиммунных расстройств. Стало быть, смекнули японцы, их белок как-то участвует в системе контроля иммунитета — тормозит иммунный ответ в тех ситуациях, когда он только все портит.

Сперва казалось, что PD-1 — ключ к аутоиммунным заболеваниям, но он оказался фрагментом еще одного пазла. Белок этот делает вот что: передает лимфоциту сигнал о том, что антитела, которые тот производит, никому не нужны, поскольку направлены на собственные клетки тела. А стало быть, такому лимфоциту следует немедленно совершить сеппуку, что он послушно делает.

Раковые клетки умеют казаться своими: они показывают на своих мембранах белковые сигналы, которые побуждают белок PD-1 считать их друзьями. Но если этот белок удастся блокировать, их старания будут тщетны: T-лимфоциты разыщут их и убьют.

На этом фокусе и основан целый класс иммунотерапий — «чекпойнт-ингибиторы», которые начали развиваться в 2000-х годах и закономерно привели Хондзё к Нобелевской премии. Лекарством являются антитела к белку PD-1. Они находят его и блокируют, не позволяя передавать свой убийственный сигнал. В результате тонкий баланс иммунитета между «всё или ничего» смещается в сторону «всё»: лимфоциты начинают замечать раковые клетки и убивать их.

Одним из первых успешных препаратов, основанных на этом принципе, стал пембролизумаб (коммерческое название «кейтруда»). Окончание -аб у этой группы препаратов намекает на антитела (antibodies): все подобные лекарства — это антитела, блокирующие тот или иной «тормозящий» компонент иммунитета.

В отличие от большинства сложных индивидуализированных иммунотерапий, чекпойнт-ингибиторы на первый взгляд незатейливы: это просто лекарство, производимое промышленно и вводимое пациенту в форме капельницы. И используют они, в сущности, ту самую «опору на собственные силы» организма, с которой давно уже связывали самые безумные надежды на победу над раком.

Ближе к делу

Сниженный иммунитет и рак

Онколог Евгений Витальевич Ледин, к. м. н., руководитель Центра химиотерапии Клинической больницы МЕДСИ в Боткинском проезде, начал работать с чекпойнт-ингибиторами, а именно с пембролизумабом, еще на стадии клинических испытаний препарата. К нему мы и обратились за комментарием, чтобы он исправил наши ошибки и скорректировал (только, пожалуйста, не слишком!) наш чрезмерный оптимизм.


Ɔ. Скажите, результаты иммунотерапии похожи на то самое «чудо», которого ждут онкологические больные от медицины?

Читайте также:  Чем стимулируют клеточный иммунитет

Я не могу отнести иммунотерапию к области чудес: это не более чем очередной шаг. Это появление дополнительных возможностей, которые никакого отношения к чудесам не имеют, лишь одна из опций, занимающая строго определенное место в общей системе лечения онкологических заболеваний.


Ɔ. А вообще бывают чудесные исцеления, когда вопреки прогнозам опухоль вдруг начинает сама собой исчезать?

Я за свою практику видел несколько тысяч онкологических пациентов, но подобных «чудесных исцелений» не встречал, хотя и слышал от коллег, что такое бывает. Часто за чудо принимают некие биологические особенности опухоли: она развивается медленно, и человек живет долго, но это не чудесное излечение.


Ɔ. Как на практике происходит терапия? Есть ли побочные действия?

Сама процедура — это просто получасовая капельница, которая, как правило, хорошо переносится. Сутки пациент может находиться в стационаре. Что касается побочных эффектов, они бывают у любого препарата. Я в своей практике видел такие побочные эффекты при приеме анальгина, что это было пострашнее любой иммунотерапии. Но иммунотерапия хороша еще и тем, что побочные эффекты в ней по сути разделены на черное и белое: либо все хорошо, либо плохо. В химиотерапии много промежуточных серых тонов: кто-то полностью теряет дееспособность, а большая часть пациентов находится в среднем состоянии. В иммунотерапии очень большая доля пациентов вообще никак не ощущает лечение. А у тех, кто переносит терапию плохо, онкологи научились отслеживать эти побочные эффекты и вовремя их останавливать. В целом иммунотерапия значительно комфортнее, чем другие виды противоопухолевой  терапии.


Ɔ. Насколько чекпойнт-терапия близка к той самой «таблетке от рака», о которой мечтали в ХХ веке?

На самом деле в онкологии было несколько переломных моментов, когда казалось, что ключик найден и сейчас рак начнет отступать. В 1980-х некоторые онкологи говорили, что скоро хирурги будут нужны только для того, чтобы взять биопсию — все остальное сделает химиотерапия. Но видите: с тех пор прошло 40 лет, а хирурги не остались без работы. Пятнадцать лет назад журнал People назвал «таблеткой от рака» тарцеву — препарат таргетной терапии. Но оказалось, что он эффективен лишь у узкого круга пациентов.

То же самое с иммунотерапией: есть подтип опухолей, где работает данный механизм ускользания от иммунного ответа, и там чекпойнт-ингибиторы оказываются эффективны. Чаще это происходит при меланоме или, к примеру, при раке почки. На фоне прочих достижений это кажется чудесным: люди, которые раньше умирали в течение 6–8 месяцев, теперь стали долго жить: четверть пациентов переживают пятилетний рубеж, что в онкологии приравнивается к излечению. Но это не чудо: просто у этой четверти найденный ключик подходит к тому механизму, который лежит в основе их заболевания.

Но, конечно, такое открытие дает новую надежду пациентам и новую мотивацию онкологам. Когда я начинал работать, онкология была другой. Если сравнить ситуацию сейчас и 20 лет назад, то сейчас пациент в значительно более выгодном положении. Новых возможностей колоссальное количество.
Ɔ.

Источник

За последние десятилетия наука заметно продвинулась вперед в лечении рака, и хотя мы все еще довольно далеки от полной победы над этим страшным заболеванием – у врачей становится все больше инструментов, чтобы разрушать опухоли или ограничивать их рост. Главное – они дают онкологическим пациентам возможность жить все дольше.

Один из таких инструментов – это активизация собственного иммунитета человека для борьбы с раковыми клетками. Есть целое направление, посвященное этому – иммуноонкология. На ней сосредоточено очень много внимания, именно в этой области сегодня проводится больше всего исследований и разрабатываются самые многообещающие лекарства.

Мы в «Медицине 24/7» активно используем иммунотерапию – и видим, что она дает хорошие результаты. Правда, сталкиваемся с тем, что многие пациенты вообще не знают о таком методе лечения или считают его еще недостаточно изученным и не заслуживающим доверия.

В этой публикации мы постараемся прояснить вопросы: что такое иммунотерапия, как она работает и кому может помочь.

Джуди Перкинс. У неё был рак молочной железы в терминальной стадии, который полностью вылечили с помощью новейшего метода иммунотерапии

Скрытая угроза. Как возникает рак

Раковые клетки – это повстанцы-мутанты, сумевшие перехитрить систему.

В процессе жизни все клетки организма проходят строго определенные стадии развития, выполняют заданные функции, размножаются по строгим правилам, а со временем – стареют и умирают. Это естественный процесс. Запрограммированная смерть старых клеток, в которых накопилось много поломок, называется апоптоз.

Однако, под влиянием наследственности или неблагоприятных внешних факторов некоторые клетки накапливают генетические ошибки и «бунтуют»: отказываются жить по заданному природой алгоритму, начинают бесконтрольно размножаться или не умирают в срок. Это не редкость. Потенциально раковые клетки периодически могут появляться в каждом – это нормально. Практически всегда таких «выскочек» убивает служба внутренней безопасности организма – иммунитет.

Одну из основных ролей в этом процессе играют Т-лимфоциты, или, проще, Т-клетки. Они реагируют на антиген (чужеродное организму вещество), распознают и уничтожают потенциальных врагов: например, микробы или неподходящий донорский материал. В норме Т-лимфоциты убивают и клетки организма, начавшие мутировать и вести себя не по правилам. Поэтому рак возникает не у всех – у большинства иммунитет справляется с беспорядками до того, как они распространятся.

Но рак стремится выжить и клетки опухоли пытаются захватить как можно больше ресурсов, стать «успешнее». Они размножаются быстрее, выделяют фактор роста сосудов (чтобы привлечь в опухоль больше крови и питательных веществ), развивают устойчивость к лекарствам, вынуждают стволовые клетки усиливать рост опухолевых тканей (посылая обманные сигналы с запросом на регенерацию).

Особых успехов раковые клетки достигают в маскировке: некоторые из них убирают со своей поверхности особые белки-антигены, по которым их могут распознать Т-клетки. Другие выделяют особые молекулы, подавляющие иммунитет, а некоторые даже образуют гибриды с макрофагами (один из видов иммунных клеток) – и приобретают буквально суперспособности!
В этом им помогает, с одной стороны, родство с нормальными клетками организма – некая врожденная маскировка. С другой стороны, генетическая изменчивость раковых клеток дает им повышенную приспособляемость. Чем больше мутаций накопилось в ДНК клетки к моменту ее малигнизации (превращения в злокачественную), тем больше у нее шансов пережить иммунный ответ и выработать успешный план захвата.

Пробуждение силы. История Нобелевских открытий

Человеческий иммунитет – вообще-то настоящая армия безжалостных убийц, и после каждой «боевой операции» по обезвреживанию очередного противника их необходимо успокаивать и переводить из военного в мирное положение. Этот механизм снижает температуру до нормальных значений и прекращает воспаления, когда опасность миновала и заражение побеждено.

Нобелевская премия по физиологии и медицине в 2018 году была присуждена американцу Джеймсу Эллисону и японцу Тасуку Хондзё за их независимые открытия в одной и той же области: как именно происходит это переключение из агрессивного в спокойный режим.

Ни один из ученых поначалу не думал о лечении рака. Оба они хотели яснее понять работу иммунного ответа. К тому моменту было ясно, что и на поверхности Т-клеток, и на поверхности антиген-презентирующих клеток (APC) есть рецепторные молекулы, которые и действуют друг на друга, провоцируя или замедляя работу иммунитета. Был открыт TCR – T-клеточный рецептор, которым Т-клетки распознают «вражеские» белки, выставленные на APC. Нашли главный комплекс гистосовместимости MHC (major histocompatibility complex), с помощью которого АРС как раз и преподносят на опознание Т-клеткам кусочки чужеродных белков. Свою Нобелевку за открытие этого сценария получили в 1996 г. Питер Доэрти и Рольф Цинкернагель.

Читайте также:  Санаторий для восстановления иммунитета

Ученые понимали, что рецепторы на поверхности Т-клеток работают совместно с ко-стимуляторами на поверхности APC. Белок CD28 с поверхности Т-клеток выделили еще в 1980 году, вскоре на поверхности APC нашли молекулу B7. В ходе экспериментов исследователи группы Эллисона перенесли ген B7 в раковые клетки, и те стали отторгаться здоровой тканью. Оказалось, B7 соединяется с CD28 на Т-клетке, и тем самым запускает ее работу: Т-клетка уничтожает клетку опухоли, на поверхности которой «торчит» белок B7.

В 1987 году Эллисон обнаружил цитотоксический T-лимфоцитарный антиген-4 CTLA-4 (cytotoxic T-lymphocyte-associated antigen-4) – и выяснил, что по структуре этот белок похож на давно известный CD28, и тоже способен связываться с B7 – однако при этом действует совершенно обратным образом: останавливает иммунную реакцию.

Действие CTLA-4

Сначала медики собирались использовать этот «тормоз», чтобы бороться с аутоиммунными заболеваниями (когда иммунитет начинает атаковать здоровые клетки организма). Но Эллисон придумал гениальную вещь: не давить на тормоз, а отключить его.

Он разработал антитело-ингибитор (выключатель), которое связывалось с CTLA-4 и не давало ему сомкнуться с B7, чтобы отключить иммунные реакции. Свободные молекулы B7 связывались с CD28, Т-клетка активировалась и снова была готова убивать. Когда он в 1995 году провел опыты на больных раком мышах, стало ясно, что от таких Т-лимфоцитов с отключенными тормозами не могут скрыться даже хитрые клетки раковой опухоли. В 2010 уже были проведены успешные исследования на безнадежных больных. У некоторых пациентов исчезла меланома вместе с метастазами – невероятный результат!

Действие ингибитора CTLA-4 — ипилимумаба

В то же время в Киото Тасуку Хондзё нашел на поверхности Т-клетки другую рецепторную молекулу: PD-1 (Рrogrammed cell Death protein-1, Белок Программируемой клеточной Смерти-1). В ходе экспериментов (снова на многострадальных мышках) японец выяснил, что отключение гена, кодирующего этот белок, провоцирует у мышей симптомы аутоимунного заболевания – то есть ингибирование PD-1 тоже отключало «тормоза» у Т-лимфоцитов и делало их агрессивными и активными.

Хондзё выяснил, что PD-1 переводит Т-клетку в «спящий режим», когда связывается с белком PD-L1/ PD-L2 на поверхности антиген-презентирующей клетки (APC). Ингибитор PD-1 размыкал эту связь и снова активировал Т-клетки. Действие этого «тормоза» было похоже на действие CTLA-4, но проходило другим маршрутом.

Действие ингибитора PD-L1 – ниволумаба

Обе открытые «тормозящие» молекулы, CTLA-4 и PD-1, назвали иммунными контрольными точками (checkpoints) – именно их количество и активность заставляют Т-клетки принимать решение: успокоиться или начать воевать.

Выяснилось, что блокаторы CTLA-4 активируют иммунитет в общем, все Т-клетки, а ингибитор PD-1 – более специфично действует именно на опухоли, т.к. многие раковые клетки несут на себе «второй кусочек паззла», молекулы PD-L1/ PD-L2. Из-за этого лечение ингибиторами PD-1 дает меньший риск осложнений.

Иммунитет наносит ответный удар. От чего помогают ингибиторы контрольных точек

Эллисон и Хондзё сделали не просто серьезный вклад в понимание физиологических процессов, но и запустили волну принципиально новых практических исследований именно в прикладной медицине.

Открытие ингибирования иммунных контрольных точек (ИИКТ) открывает принципиально новую область поиска решений. Существующие до этого способы борьбы с раком: хирургия, лучевая и химиотерапия – были направлены непосредственно на саму опухоль, на уничтожение раковых клеток. Теперь у медиков есть огромное поле для исследования в совершенно ином направлении: изменение взаимодействия раковых клеток с их окружением.

Кстати, именно это принципиальное отличие дало медикам настоящий прорыв. До сих пор на опухоль действовали в зависимости от ее локализации. Для рака молочной железы один препарат, для рака желудка – совсем другой. А ингибитор ИКТ пембролизумаб в 2017 году был впервые в истории онкологии зарегистрирован как препарат для терапии любого рака в любом органе – если только тесты подтвердят, что опухоль имеет особое свойство: микросателлитную нестабильность. То есть ее ДНК особенно склонна к мутациям. Ранее ни разу не получалось сделать лекарство от рака по какому-то общему признаку. Это большое достижение.

Революцией стали результаты применения новых препаратов против самых агрессивных видов рака: метастатическая меланома на IV стадии считалась неизлечимой. А пациенты с таким диагнозом, которые прошли курс препарата ипилимумаб (блокатор CTLA-4) в 2010 году – получили дополнительный год жизни – настолько приостановилось развитие опухоли. У 58% из них опухоль уменьшилась на треть.

При лечении немелкоклеточного рака легкого ниволумабом (ингибитор PD-1) риск смерти пациентов снизился на 40%.

Препарат пембролизумаб (также ингибитор PD-1) показывал снижение роста опухоли на 43% в группе лечившихся от меланомы. 74% пациентов жили без ухудшения в течение года, в течение 18 месяцев их было 71%. Важно, что эффект от назначения препарата перевешивал побочные эффекты на всех стадиях развития болезни.

Сегодня с помощью препаратов ингибиторов CTLA-4 и PD-1 лечат меланому (в том числе неоперабельную), немелкоклеточный рак легкого, плоскоклеточный рак головы и шеи, почечно-клеточный рак, некоторые виды лимфом, рак прямой кишки, мочевого пузыря, и опухоли с микросателлитной нестабильностью.

Особенное внимание привлекают исследования, которые показывают эффективность комбинированной терапии одновременно анти-PD-1 и анти-CTLA-4 препаратами.

Изменение объема опухоли – резкое снижение при комбинации анти-PD-1 и анти-CTLA-4 препаратов

Выживаемость без прогрессирования – комбинация анти-PD-1 и анти-CTLA-4 препаратов более эффективна

В «Медицине 24/7» мы успешно применяем пембролизумаб и ниволумаб с момента их регистрации в РФ. Мы следили за всеми зарубежными исследованиями и очень ждали пополнения арсенала.

Атака клонов. Генетически модифицированный иммунитет

Ингибиторы иммунных контрольных точек заслуженно находятся в центре внимания, но этот механизм пока небезупречен и не может вылечить любой рак. Хорошо, что в иммунотерапии активно развиваются смежные направления исследований. Одно из самых многообещающих – CAR-T терапия.

Буква Т в названии метода – все те же неизменные Т-клетки нашего иммунитета. CAR (Chimeric antigen receptor) – это химерный рецептор антигена. Почему рецептор называют химерным? Потому что он собран из нескольких частей, взятых от разных клеток – с помощью умений генных инженеров.

У обычной Т-клетки есть особый рецептор TCR (T-cell receptor). Он «ощупывает» все клетки организма на своем пути и, если чувствует на поверхности клетки какую-то чужеродную молекулу, посылает Т-клетке активирующий сигнал. Та, в свою очередь, либо расправляется с нежелательным пришельцем сама, либо выделяет специальные активные вещества (цитокины) и призывает другие клетки иммунитета «разобраться». Убивают Т-клетки весьма эффективно.

Правда, не очень точно. Разновидностей TCR у нас куда меньше, чем существует антигенов. Поэтому Т-клетки умеют распознавать своим TCR много антигенов, но – только приблизительно. Раковые клетки часто пользуются этой слабостью нашей системы безопасности и притворяются «своими».

Читайте также:  Препарат для иммунитета франция

Эволюция решила проблему как умела: в организме человека есть еще один механизм выявления чужаков: антитела. Это особые белки, которые выделяются другим классом иммунных клеток: B-лимфоцитами. У В-клеток, в отличие от Т-клеток, к каждому «клиенту» индивидуальный подход.

Антитело представляет собой белковую структуру в виде буквы Y. На обоих концах этой «вилки» есть участки, связывающиеся с антигеном. Эти участки могут изменяться у каждого следующего поколения антител, чтобы плотнее прилегать к антигену – как подбор кусочков паззла. При обнаружении чужеродного антигена В-клетки выделяют миллиарды антител, среди которых идет отбор на самое точное соответствие антигену. В итоге получаются эталонные антитела, «натасканные» специально для очень точного распознавания конкретного «чужака» – антигена.

Антитело, приспособленное находить определенный антиген

Однако, распознать – не всегда означает обезвредить. С этим у антител сложности – самостоятельно уничтожить «врага» они могут далеко не во всех случаях.

Так вот, в 1989 году израильский химик и иммунолог Зелиг Эшхар придумал объединить убийственную мощь подслеповатых Т-клеток и снайперское прицеливание антител. Он выделил концевые участки белков-антител, которые способны плотно связываться с антигеном определенных раковых клеток, и «пересадил» их в Т-клетку – заменил ими часть TCR, отвечающие за распознавание антигенов.

Впоследствии он начал работать совместно с американским коллегой, Стивеном Розенбергом, у них получилось сделать химерный рецептор более эффективной конструкции, одновременно чувствительный и избирательный.

Разница между обычными Т-клетками и CAR-T-клетками

Исследования в пробирке показали хороший результат. Затем ученые снова лечили мышей, затем кропотливо переносили методику на человека.

Со временем терапию CAR-T привели к современному виду.

  • Сначала с помощью генно-молекулярного тестирования определяют специфические мутации в опухолевых клетках человека, на которые можно «настроить» антитела.
  • Затем у человека берут его собственные Т-клетки, изменяют с помощью биоинженерных методов, вместо TCR «пересаживая» CAR, настроенный на выявленные мутации.
  • Затем модифицированные CAR-T клетки размножаются в пробирке и вводятся обратно в организм человека, где они успешно распознают и убивают раковые клетки.

В клинических исследованиях, начатых в 2010 году, сразу получились обнадеживающие результаты: в лечении лимфомы 12 из 13 пациентов показали улучшение, а у 4-х наступила ремиссия. При лечении лейкемии ремиссия наступила у 17 человек из 33.

В 2018 в Nature Medicine появилась статья американских онкологов, где сообщалось, что уже два года они наблюдают пациентку, полностью здоровую после CAR-T терапии. Ее вылечили от метастатического рака молочной железы с метастазами. Это ее фотография в каяке приведена в начале статьи: после лечения она вернулась на работу и ходит в походы.

Новая надежда. Станет ли иммунотерапия панацеей?

Как и у других методов лечения рака, у иммунотерапии есть свои ограничения. Несмотря на то, что в ряде случаев пациенты дают очень хороший ответ на терапию ингибиторами иммунных контрольных точек, в 60% случаев либо развивается приобретенная, либо наблюдается первичная резистентность к анти-PD-1 или анти-CTLA-4 препаратам: опухоль просто не реагирует на лечение или быстро приспосабливается и учится его «обходить».

Кроме PD-1, PD-L1/2, CTLA-4, CD28 и B7 на поверхностях Т-клеток и опухолевых клеток есть масса других ко-рецепторов, действие которых пока не изучено так хорошо, как работа контрольных точек, но они также влияют на иммунный ответ. Одно из направлений работы – влияние на эти ко-рецепторы.

Кроме того, терапия ИИКТ дополняется введением вакцин, цитокинов, бета-блокаторов – и такой подход тоже хорошо работает в ряде случаев.

CAR-T терапия все еще является крайне дорогой и пока еще только переходит в стадию коммерческого использования: ведутся разработки в научных группах Эшхара и Розенберга, других исследователей – каждая из групп создают особые виды CAR-Т с направленным действием против определенного вида рака. Но пока это только исследования, проверки и испытания. Пройдет несколько лет, прежде чем это превратится в отработанный массовый способ лечения – но и тогда нельзя будет давать 100% гарантий.

Но пока ученые проводят исследования, врачи внедряют экспериментальные схемы лечения с использованием тех достижений, что уже есть. И самый заметный эффект дает сочетание иммунотерапии с классическими «тремя столпами» онкологии: лучевой и химиотерапией, хирургией. При комбинировании этих методов всегда получается синергия: вместе они работают эффективнее, чем по очереди.

Если стандартно до сих пор иммунотерапевтические препараты включали в третью, в пятую линию (то есть очередь) терапии, то сейчас врачи движутся к тому, чтобы назначать их сразу, вместе с химиотерапией и терапией таргетными моноклональными антителами: такие пациенты часто показывают более хорошую динамику и в итоге живут дольше.

В России уже зарегистрированы все основные иммунопрепараты. Проблема, правда, что для каждого из них Минздрав отдельно оговаривает показания. То есть в оригинальной инструкции к препарату может быть прописано, например, девять разных видов рака, при котором препарат можно назначать, а у нас в стране он зарегистрирован только для шести из них. И так с каждым препаратом. В итоге, пока около 50% опухолей еще не включены в этот список. Соответственно, в рамках лечения по ОМС врач может выписать эти препараты далеко не всем пациентам.

К тому же врачи бюджетных государственных клиник строго ограничены протоколами лечения. И если в протоколе ингибиторы контрольных точек прописаны только на 3 линии, на 3 месте после двух линий стандартной «химии», то выписать их в первую очередь врач просто не имеет права, даже если считает, что пациенту это поможет.

Ну и частая проблема – отсутствие квалификации. Метод, хоть и успел проявить себя, пока для многих врачей в стране еще новый. Препараты все западные, и доходят до нас с опозданием на 2-3 года. А, учитывая, что активно применяется иммунотерапия всего несколько лет, у многих еще нет опыта работы с ними. Кроме того, использование иммунотерапии требует специфических знаний.

В частной медицине мы не ограничены бюджетом. Если в «Медицину 24/7» обращается пациент с такой опухолью, для которой еще не зарегистрирован препарат иммунотерапии, мы предлагаем ему пройти молекулярно-генетическое исследование. По результатам становится понятно, отреагирует ли его опухоль на иммунопрепарат. Если да – врач имеет полное право ее назначить. Поэтому в нашем стационаре мы применяем иммунотерапию почти по всем видам рака – она дает очень хорошие результаты. Даже пациенты на III-IV стадии показывают улучшения. Иммунопрепараты дают нам возможность продлять людям жизнь, даже в случаях, которые считались безнадежными.

Общее и в частных, и в государственных клиниках – это сами пациенты. Они не всегда хорошо понимают, что это за метод, как он работает, отсюда недоверие. Мы надеемся, эта статья помогла разобраться и понять, что иммунотерапия сегодня совершенно заслуженно находится в фокусе пристального внимания онкологов. Судя по результатам, она уже готова встать на один уровень с классическими методами. Страшная болезнь отступит еще на шаг дальше.

Источник