Связь врожденного и адаптивного иммунитета

Связь врожденного и адаптивного иммунитета thumbnail

Глава 1. ОСНОВНЫЕ ПОЛОЖЕНИЯ

Иммунитет — особое биологическое свойство многоклеточных организмов, направленное на защиту от генетически чужеродных факторов: микроорганизмов (бактерий, вирусов, простейших, грибов), инородных молекул и др. Иммунитет также обеспечивает невосприимчивость организма к инфекции при повторной встрече с патогеном. В медицинском смысле этот термин употребляли ещё до нашей эры в значениях: неприкосновенный, чистый, не затронутый заболеванием, невредимый, находящийся под хорошей защитой, устойчивый к заразной болезни.

Совокупность органных, тканевых, клеточных и молекулярных компонентов, функцией которых является осуществление иммунной защиты, называется иммунной системой. Иммунология — наука о строении и функциях иммунной системы как в норме, так и при различных патологических состояниях, в том числе и при нарушениях самой иммунной системы — иммунопатологиях.

Иммунную защиту обеспечивают два механизма: врождённый и адаптивный.

Врождённый иммунитет является присущей каждому организму с рождения, генетически закреплённой способностью противостоять инфекции. Это передовая линия обороны организма против патогенов, пытающихся проникнуть или уже проникших в покровные ткани или внутреннюю среду. Врождённый иммунитет срабатывает мгновенно или в течение первых нескольких часов после контакта с патогеном (возбудители, выделяемые ими токсины и другие чужеродные молекулы). Он включает четыре основных уровня защиты: анатомический, физиологический, фагоцитарный и воспалительный — покровные ткани, фагоциты, микробоцидные гуморальные вещества (протеазы, сильные окислители и свободные радикалы, продуцируемые фагоцитами, эндогенные противомикробные пептиды и др.), сосудистые реакции. Первичные рецепторы врождённого иммунитета — это молекулы многоклеточных, позволяющие «считывать» эволюционную память — информацию о том, чем отличаются микроорганизмы от собственных клеток.

Эти рецепторы способны распознавать консервативные молекулярные структуры — РАМР (Pathogen-Associated Molecular Patterns), характерные для групп сходных микроорганизмов. В настоящее время постоянно открывают новые патогенраспознающие рецепторы врождённого иммунитета. К ним относят мембраносвязанные паттернраспознающие рецепторы (Pattern Recognition Receptors, PRR), а также растворимые рецепторы — ряд белков сыворотки крови: C-реактивный белок (СРБ), маннозосвязывающий лектин (MBL — Mannose-Binding Lectin), компоненты комплемента.

Собственные возможности клеток врождённого иммунитета санировать организм от проникшего патогена часто недостаточны. Множество патогенов приспособилось выживать в присутствии факторов врождённой резистентности к инфекциям. Именно поэтому в процессе эволюции, начиная с челюстных рыб, к врождённому иммунитету добавился адаптивный иммунитет — специфический. Материальные носители адаптивного иммунитета — лимфоциты. Уникальное и отличительное свойство лимфоцитов как множества клеток — способность распознавать почти неограниченное (1018) разнообразие молекулярных объектов — антигенов. Лимфоциты характеризуются экспрессией Т-клеточных (TCR) или В-клеточных (BCR) рецепторов, распознающих только одну антигенную детерминанту либо небольшое число структурно очень близких детерминант, и поэтому, в отличие от PRR, обладающих высокой специфичностью (рис. 1-1).

Адаптивный (приобретённый) иммунитет формируется в течение жизни индивидуума. Активно приобретённый иммунитет — состояние невосприимчивости к инфекции после перенесённого инфекционного заболевания или после вакцинации (сам организм вырабатывает соответствующие антитела). Пассивно приобретённый иммунитет — состояние невосприимчивости к инфекции в результате поступления в организм уже готовых антител от матери или в результате инъекции (сам организм эти антитела не вырабатывает).

ИММУННЫЙ ОТВЕТ

Врождённая и адаптивная системы защиты организма включают клеточный и гуморальный компоненты и активно взаимодействуют друг с другом в процессе иммунного ответа. Иммунный ответ — многоэтапный процесс, заключающийся в распознавании и деструкции патогена и повреждённых им тканей. В его основе лежит уникальное свойство иммун-

Связь врожденного и адаптивного иммунитета

Рис. 1-1. Сравнение врождённого и адаптивного иммунитета

ной системы отличать «свое» («sef») от «чужого» («nonself») и применять по отношению к «чужому» механизмы нейтрализации и уничтожения, а именно — иммунные реакции. Распознавание множества чужеродных антигенов происходит благодаря наличию в организме огромного разнообразия образующихся в тимусе клонов T-лимфоцитов (отбор клонов) и при помощи комплекса генов главного комплекса гистосовместимости (MHC) классов I и II. Нейтрализацию «чужого» осуществляют цирку-

лирующие в жидкостях организма антитела (гуморальный иммунитет) и цитотоксические лимфоциты (клеточный иммунитет).

Таким образом, основными характеристиками адаптивного иммунного ответа являются умение различать собственные антигены от чужеродных, специфичность и иммунная память.

 Различение «своего» и «чужого» выражается в дифференциации компонентов собственных тканей организма и чужеродных молекул. Специфическую неотвечаемость организма на собственные антигены обозначают как иммунную толерантность. Если же организм воспринимает собственные компоненты как чужеродные, развивается аутоиммунный ответ.

 Специфичность иммунного ответа проявляется в том, что иммунитет, сформировавшийся в результате контакта с определённым антигеном, будет обеспечивать защиту только против этого антигена.

 Иммунная память формируется в результате адаптивного иммунного ответа против конкретного возбудителя и сохраняется, как правило, в течение всей последующей жизни организма, защищая его от повторной инфекции, вызываемой этим же возбудителем. Такой механизм обеспечивается способностью иммунной системы к «запоминанию» антигенных детерминант патогена за счёт образования клеток иммунной памяти. Наличие иммунной памяти обусловливает развитие ускоренного и усиленного ответа (вторичный иммунный ответ) при повторном контакте с антигеном. Формирование иммунной памяти является основной целью вакцинации, т.е. процесса естественного или искусственного формирования иммунной защиты против определённой инфекции.

Схема развития иммунного ответа представлена на рис. 1-2. Содержание отдельных этапов иммунного ответа раскрыто ниже.

 Воспаление: участвуют клетки, поглощающие антигены (фагоциты, антигенпрезентирующие клетки) — в частности, дендритные клетки (ДК), макрофаги, эндотелиальные и другие клетки. Выделяются провоспалительные цитокины и хемокины.

 Переработка антигена (процессинг). После поглощения антигена антигенпрезентирующей клеткой (АПК) происходит его процессинг (расщепление и встраивание в молекулы MHC) и презентация на поверхности клетки. Это необходимо для распознавания антигена Т-лимфоцитами.

 Распознавание антигена происходит в периферических лимфоидных органах. Начало специфического иммунного ответа — про-

Читайте также:  Иммунитет и возраст пожилых людей

Связь врожденного и адаптивного иммунитета

Рис. 1-2. Основные этапы иммунного ответа

лиферация и дифференцировка эффекторных и регуляторных лимфоцитов.

 Деструкция антигена и повреждённых патогеном тканей. При этом одни лимфоциты (помощники — хелперы) «нанимают» для выполнения эффекторных функций другие лимфоциты (эффекторные) и/или воспалительные лейкоциты (нейтрофилы, моноциты, базофилы, эозинофилы), тучные клетки, а также гуморальные литические системы типа комплемента.

 Выведение продуктов распада происходит с участием известных систем выделения.

КЛЕТКИ ИММУННОЙ СИСТЕМЫ

Клетки иммунной системы условно подразделяют на клетки врождённого и адаптивного иммунитета (рис. 1-3). Главным их различием является специфичность распознавания: низкая у первых и высокая у вторых. Существует и третья группа клеток — промежуточная, несущая черты обеих групп. Наличие этой группы показывает единство происхождения и способов защиты организма от чужеродных веществ антигенной природы.

Связь врожденного и адаптивного иммунитета

Рис. 1-3. Клетки иммунной системы

В выполнении эффекторных иммунных функций очень важную роль играют АПК, T- и B-лимфоциты и NK-клетки (от англ. Natural Killer — естественный киллер, натуральный киллер).

 Антигенпрезентирующие клетки (АПК). К АПК относят макрофаги, дендритные клетки (включая клетки Лангерганса эпидермиса, М-клетки лимфатических фолликулов пищеварительного тракта и других слизистых оболочек, дендритные эпителиальные клетки тимуса), а также B-лимфоциты. АПК захватывают антиген, обрабатывают его (процессируют) и презентируют антигенные фрагменты на своей поверхности T-лимфоцитам (рис. 1-4).

 T-лимфоциты обусловливают клеточный иммунный ответ, а также помогают отвечать на антиген B-лимфоцитам при гуморальном иммунном ответе. Каждый T-лимфоцит несет на своей поверхности рецептор T-лимфоцитов (TCR — T-Cell Receptor) (см. рис. 5-1, в и рис. 6-1) строго одной специфичности, т.е. взаимодействующий с одним антигеном. T-клетки по экспрессии маркёрных антигенов CD (Cluster Differentiation) подразделяют на CD4+ и CD8+.

— CD4+ Т-лимфоциты (хелперы). Среди T-клеток, экспрессирующих мембранные маркёры CD4, выделяют Т-лимфоциты с эффекторными функциями (Th1, Th2, Th17) и Т-регуляторные клетки (естественные — Treg и индуцированные — Th3, или Tr1).

Связь врожденного и адаптивного иммунитета

Рис. 1-4. Взаимодействие клеток в ходе гуморального иммунного ответа. Рецептор T-хелпера (TCR) распознаёт антигенную детерминанту (эпитоп), экспрессированную на поверхности антигенпрезентирующей клетки вместе с молекулой главного комплекса гистосовместимости класса II (MHC-II). Во взаимодействии участвует маркёрная молекула T-хелпера — CD4. В результате подобного взаимодействия антигенпрезентирующая клетка секретирует интерлейкин-1 (ИЛ-1), стимулирующий в T-хелпере синтез и секрецию цитокинов, включая ИЛ-2, а также синтез и перенос на плазматическую мембрану T-хелпера рецепторов для ИЛ-2 (ИЛ-2 также стимулирует пролиферацию T-хелперов). Отбор B-лимфоцитов происходит при взаимодействии антигена с вариабельными участками антител (иммуноглобулинов) на поверхности этих клеток (правая часть рисунка). Эпитоп этого антигена в комплексе с молекулой MHC-II распознаёт рецептор T-хелпера, после чего T-лимфоцит секретирует цитокины, стимулирующие пролиферацию B-лимфоцитов и их дифференцировку в плазматические клетки, синтезирующие антитела к данному антигену. Также показаны некоторые мембранные белки (CD40/CD40L и CD28/B7), участвующие в проведении костимуляторных сигналов, необходимых для полноценной активации взаимодействующих клеток (они описаны подробнее в главе 7)

◊ T-хелперы при взаимодействии с АПК специфически распознают антигены и начинают вырабатывать определённый набор цитокинов соответственно типу инфекционного агента: Th2 при взаимодействии с B-клетками индуцируют гуморальный иммунный ответ (см. рис. 1-4), а Th1 — при взаимодействии с макрофагами и цитотоксическими Т-лимфоцитами (ЦТЛ) — клеточный иммунный ответ. Th17 продуцируют ИЛ17 — мощный индуктор тканевого воспаления, привлекающий и активирующий гранулоциты и макрофаги.

◊ Регуляторные T-клетки (Т-регуляторы) контролируют интенсивность иммунного ответа, подавляя активность других субпопуляций Т-лимфоцитов.

— CD8+ Т-лимфоциты. Субпопуляция T-клеток, экспрессирующих мембранные молекулы CD8. Эти клетки выступают в роли ЦТЛ. Они лизируют клетки-мишени, несущие чужеродные или видоизменённые собственные антигены — аутоантигены: например, клетки опухоли, трансплантата, инфицированные вирусом клетки, несущие поверхностные вирусные антигены. Эффекторные функции ЦТЛ реализуются через индукцию образования в клетках-мишенях пор (под действием особых белков — перфоринов) и секрецию в поры специализированных сериновых протеаз — гранзимов. Вызванное этим нарушение осмотического баланса с внеклеточной средой приводит к гибели клетки (рис. 1-5). Под влиянием гранзимов индуцируются процессы запрограммированной гибели клетки — апоптоза.

 Т-клетки памяти — долгоживущие рециркулирующие малые лимфоциты, формируемые при первичном иммунном ответе. Они «запоминают» особенности детерминант антигенов и при повторном распознавании того же антигена развивают быстрый и усиленный ответ. Т-клетки памяти отличаются от наивных и эффекторных Т-лимфоцитов высоким уровнем экспрессии мембранных маркёров активации, меньшей потребностью в провоспалительных медиаторах и корецепторных сигналах для развития вторичного иммунного ответа.

 B-лимфоциты отвечают за гуморальный иммунный ответ. На мембране B-лимфоцитов присутствует рецептор для антигена — мономер IgM. Продолжительность жизни большинства B-лимфоцитов (если они не активируются антигеном!) не превышает 10 сут.

Связь врожденного и адаптивного иммунитета

Рис. 1-5. Уничтожение клетки-мишени цитотоксическим T-лимфоцитом (Т-киллером). При сближении цитотоксического T-лимфоцита с клеткоймишенью после специфичного взаимодействия мембранных молекул клетокпартнёров T-лимфоцит убивает клетку-мишень

 Эффекторные B-лимфоциты. Активированные B-лимфоциты размножаются и дифференцируются в плазматические клетки (см. рис. 5-9), вырабатывающие антитела (иммуноглобулины, специфичные к конкретному антигену). При этом плазматические клетки теряют экспрессию специфических рецепторов для антигена.

 B-лимфоциты иммунной памяти — долгоживущие рециркулирующие малые лимфоциты. Они не превращаются в плазматические клетки, но сохраняют иммунную «память» об антигене, с которым когда-то контактировали, за счёт продолжающейся экспрессии рецептора для антигена. Клетки памяти активируются

при повторном распознавании того же антигена. В этом случае B-лимфоциты памяти, при обязательном участии T-хелперов и ряда других факторов, превращаются в плазматические клетки, обеспечивая быстрый синтез большого количества специфичных антител, взаимодействующих с чужеродным антигеном, и развитие эффективного иммунного ответа.  NK-клетки (от англ. Natural Killer — естественный киллер) — лимфоциты, лишённые характерных для T- и B-клеток поверхностных CD-маркёров, а также антигенраспознающих рецепторов — TCR (T Cell Receptor) или BCR (B Cell Receptor). Эти клетки играют важную роль в механизмах врождённого иммунитета (см. главу 3), уничтожают трансформированные, инфицированные вирусами и чужеродные клетки.

Читайте также:  Повышение иммунитета отечественные препараты

Источник

Одним из наиболее важных обобщений в иммунологии конца XX и начала XXI в. стало создание научно обоснованного учения о врожденном (от англ. ита{е ттипНу), или естественном, природном, и адаптивном (от англ. айауИуе ттипНу), или приспособительном, приобретенном (от англ. асдшгес1 ттипНу), иммунитете. В иммунологической практике чаще используют термины «врожденный» и «адаптивный» иммунитет, врожденные и адаптивные компоненты иммунной системы, врожденный и адаптивный иммунный ответ. Оба варианта иммунитета реализуются через клеточные и гуморальные факторы.

Ушли в прошлое такие термины, как «неспецифический иммунитет», «неспецифическая иммунологическая реактивность» и им подобные.

Врожденный и приобретенный иммунитет представляет собой две взаимодействующие части одной системы, обеспечивающей раз* витие иммунного ответа на генетически чужеродные субстанции.

Врожденный иммунитет — наследственно закрепленная система защиты многоклеточных организмов от любых патогенных и непатогенных микро­организмов, а также эндогенных продуктов тканевой деструкции.

Как самая ранняя форма иммунной защиты организма, врожденный иммунитет сформировался на начальных этапах эволюции многокле­точных организмов, до появления способности к перегруппировке генов иммуноглобулинов и ТСК, а также возможности узнавания «своего» и полноценной иммунной памяти. Доказательством этому служит наличие

разнообразных генов врожденной защиты у беспозвоночных животных и растений. Известно, что у беспозвоночных (например, у членистоногих) существуют клеточные элементы, обладающие фагоцитарной функцией, и гуморальные факторы типа противомикробных пептидов, лектинов и др., успешно распознающих и поражающих патогенные микроорганизмы. Все эти компоненты консервативны, наследуются и не подвергаются генетиче­ской модификации в течение жизни.

Охарактеризованы основные отличительные признаки системы врож­денного иммунитета.

* Врожденный иммунитет обеспечивает распознавание и элиминацию патогенов в первые несколько минут или часов после их проникнове­ния в организм, когда механизмы адаптивного иммунитета еще отсут­ствуют.

* Функция системы врожденного иммунитета осуществляется через раз­нообразные клеточные элементы (макрофаги, ДК, нейтрофилы, туч­ные клетки, эозинофилы, базофилы, ИК-клетки, ИКТ-клетки, некото­рые негемопоэтические клетки) и гуморальные факторы (естественные антитела, цитокины, комплемент, белки острой фазы, катионные противомикробные пептиды, лизоцим и др.) (см. табл. 1-1).

Клетки врожденной иммунной системы:

* не образуют клонов. Отсутствие клональности в организации врожден­ной иммунной системы — одно из ее основных отличий от адаптивной иммунной системы. В этом смысле каждая клетка врожденного имму­нитета действует индивидуально, тогда как при адаптивном иммунном ответе все клетки в пределах клона (сообщества) подчинены единой генетически детерминированной программе;

* не подвергаются негативной и позитивной селекции;

* участвуют в реакциях фагоцитоза, цитолиза, в том числе бактериолиза, нейтрализации, выработки цитокинов и др.

Распознавание патогенов клетками врожденного иммунитета реализу­ется через многочисленные рецепторные структуры, такие, как рецепторы- мусорщики (5шга?#ег-рецепторы), маннозные рецепторы, рецепторы ком­племента (СК1, СКЗ, СК4), лектиновые рецепторы и др. Особую группу рецепторов врожденного иммунитета составляют так называемые паттерн- распознающие рецепторы (англ.

Раиет-Кесо%пШоп ЯесерШ — РКК).

Они распознают консервативные, общие для многих типов микроор­ганизмов структуры, так называемые патогенассоциированные молеку­лярные паттерны (англ. РаЪко%еп-А$$ос1а1ей Мо1еси1аг РаНетз — РАМР). В настоящее время интенсивно изучают структуру и функции рецепторов врожденного иммунитета, таких, как То11-подобные рецепторы (ТЪК), N00-1, N00-2, К1С и др. Рецепторы врожденной иммунной системы эво- люционно законсервированы.

То11-рецепторы впервые обнаружены у дрозофил. ТоИ-подобные (ТЬК) рецепторы у млекопитающих имеют сходную с ними структуру и функцию. Рецепторы этого семейства широко представлены на различных клетках иммунной системы (моноциты, ДК, лейкоциты и др.), а также на многих клетках организма (фибробласты, эндотелий, эпителий, кардиомиоциты и др.). Система ТЬК. более подробно рассмотрена ниже.

Факторы врожденного иммунитета не изменяются в процессе жизни организма, контролируются генами зародышевой линии и насле­дуются.

Активация врожденного иммунитета не формирует продолжи­тельной иммунной памяти, но служит обязательным условием раз­вития адаптивного иммунного ответа.

Все перечисленные функции крайне важны для защиты от патогенных микроорганизмов, но недостаточны для жизнедеятельности высокооргани­зованных многоклеточных организмов, таких, как позвоночные. Именно у них в процессе эволюции возникли новые иммунные компоненты и сфор­мировалась иммунная система, главной функцией которой стал контроль над генетическим постоянством внутренней среды многоклеточного орга­низма. Перед иммунной системой возникла задача распознать и запомнить «свое». Всё, что антигенно «свое», должно сохраниться, а всё, что антигенно «чужое», подлежит удалению из организма. В условиях многомиллионно­го разнообразия чужеродных антигенных структур невозможно обойтись небольшим набором генов, передаваемых по наследству (так называемых зародышевых генов — англ. рт Ипё).

В связи с новыми задачами формируется приобретенная (адаптивная) иммунная система с появлением целого ряда новых структур и свойств:

• тимус;

• клеточные компоненты: антигенраспознающие Т- и В-лимфоциты, антигенпрезентирующие, регуляторные, цитотоксические и другие клетки; молекулы: антитела;

• система генов главного комплекса гистосовместимости (у человека НЬА — от англ. Нитап Ьеикосу1е Апй$еп5)

• механизм соматической перегруппировки генов ТСК и иммуногло­булинов (антител) из первоначально небольшого числа зародышевых генов.

В результате этого механизма под влиянием регуляторов генной пере­группировки (КАС1 и КАС2) из первоначального небольшого набора генов зародышевой линии, передаваемых по наследству, в процессе соматической рекомбинации генных сегментов V, Б,} и С, кодирующих молекулы антител или ТСК, создается огромное разнообразие распознающих элементов, кото­рые охватывают все существующие в природе антигены. После рождения иммунная система человека потенциально способна к узнаванию любого антигена и может дифференцировать антигены, различающиеся одним или несколькими аминокислотными остатками. На уровне тимуса и кост­ного мозга происходит элиминация или блокада (селекция) Т- и В-клеток, потенциально способных реагировать с аутологичными антигенами.

Читайте также:  Витамин внутримышечно для повышения иммунитета

Ключевую роль в реакциях адаптивного иммунитета выполня­ют субпопуляции Т- и В-лимфоцитов, узнающие антигены с помощью антигенраспознающих рецепторов (ТСК и ВСК соответственно).

Т-лимфоциты способны распознавать антиген, только если он представ­лен антигенпрезентирующими клетками собственного организма с участи­ем молекул главного комплекса гистосовместимости I или II класса.

Такими уникальными свойствами в организме обладают только Т-лимфоциты, и в этом смысле они являются истинными иммунокомпетентными клетками (иммуноцитами, по терминологии основателя клонально-селективной тео­рии иммунитета Ф. Бернета).

В процессе развития центральных органов иммунной системы в них изначально формируются клеточные элементы с рецепторами к любому антигену, который, поступая в организм, активирует специфичный к нему клон лимфоцитов. Например, до инфекции частота специфических клеток (Т- и В-лимфоцитов) крайне низкая для протективного ответа и составля­ет примерно 1:10 000-1:100 000 клеток. Однако в течение 1-2 нед после распознавания антигена клетки интенсивно пролиферируют, и их число возрастает примерно в 1000 раз. После созревания они образуют клоны, клетки которых защищают хозяина, вырабатывая антитела, активируя макрофаги, убивая инфицированные клетки и выполняя другие функции. После завершения иммунного ответа антигенспецифические Т- и В-клетки сохраняются как «клетки памяти».

Таким образом,

• молекулы и рецепторы системы адаптивного иммунитета закладыва­ются на ранних этапах онтогенеза из небольшого набора зародышевых генов;

• эта система имеет огромное число антигенраспознающих вариантов (репертуар), достаточное для узнавания своих и чужеродных анти­генов в течение жизни. Иными словами, она формируется в течение жизни индивида под действием различных антигенов;

• основная особенность приобретенного или адаптированного иммуни­тета заключается в том, что соматически перегруппировавшиеся гены иммуноглобулинов и ТСК не наследуются. Потомство получает от родителей набор только зародышевых генов и затем формирует свой спектр элементов приобретенного иммунитета. Эмбрион, получивший зародышевые гены, начинает «строить» свою иммунную систему.

Естественно, что в организме млекопитающих врожденный и адаптив­ный иммунитет, осуществляющие разные задачи, функционируют коор­динированно. Активация врожденного иммунитета, как правило, служит обязательным условием инициации адаптивного иммунного ответа.

В историческом аспекте клиническая иммунология имеет дело с заболе­ваниями, вызванными нарушениями приобретенного иммунитета (иммуно­дефициты, аутоиммунная патология, аллергопатология, лимфопролифера­тивные заболевания и др.). Однако в последнее время активно выявляются и изучаются заболевания с преимущественными дефектами компонентов врожденного иммунитета, включая патологию рецепторов врожденного иммунитета, комплемента, цитокинов и их рецепторов, системы нормаль­ных киллеров и многие другие. Чаще всего такие заболевания проявляются в форме воспаления различного уровня — от системного до локального. Тем не менее в настоящее время целесообразно оба типа иммунного реа­гирования рассматривать в комплексе, делая акценты на наиболее важных сторонах каждого из них. В связи с этим по мере изложения материала мы приводим не только индивидуальные особенности врожденного и приобре­тенного иммунитета, но и общие закономерности их функционирования.

В табл. 1-1 приведены основные компоненты и свойства систем врожден­ного и адаптивного иммунитета.

Таблица 1-1. Компоненты и функции врожденного и приобретенного иммунитета

Компоненты и функцииВрожденный иммунитетПриобретенный иммунитет

г

Клетки-зффекторыМоноциты/макрофаги, ден­дритные клетки, гранулоциты, ГЖ-клетки, [1КТ-лимфоциты, эози- нофилы, тучные клеткиТ- и В-лимфоцит&, их многочис­ленные субпопуляции (Т-хелперы, Т-регуляторы, Т-киллеры и др.)
Гуморальные факторыКомплемент, естественные антите­ла, катионные противомикробные пептиды, провоспалительные цитокины, интерфероны типа 1, белки острой фазы, белки тепло­вого шока, лектины и др.Антитела различных изотипов и подтипов: 1дМ. 1д6 (^6,, 1д62,1д63, 1д6Д 1дА (1дАг 1дА2), 1дЕ, 1дй; цито­кины (ИЛ-2, ИЛ-4, ИФН-у и др.)
Основные функцииРаспознавание патогенов, прямое противомикробное действие, под­держание микробиоценоза, разви­тие воспаления, индукция приоб­ретенного иммунитета и др.Двойное распознавание антигена в комплексе с молекулами главного комплекса гистосовместимости (для Т-лимфоцитов), развитие иммунно­го ответа клеточного или гумораль­ного типа, иммунная память и др.

Компоненты врожденного и приобретенного иммунитета тесно связаны по многим параметрам:

* дендритные клетки (ДК), макрофаги и другие клетки врожденного иммунитета презентируют антиген Т- и В-лимфоцитам;

• ДК через различные сочетания ТЬК. и секретируемые цитокины опре­деляют направление развития иммунного ответа по клеточному или гуморальному пути;

• компоненты комплемента крайне важны для развития и функциониро­вания В-лимфоцитов;

• цитокины, вырабатываемые Т-клетками, макрофагами, тучными клет­ками, оказывают взаиморегулирующее действие;

• естественные киллеры (ЙК-клетки) уничтожают в организме клетки, лишившиеся молекул главного комплекса гистосовместимости класса I («утраченное свое»).

Таким образом, физиологическое значение иммунной системы состоит в обеспечении иммунологической индивидуальности организма в течение его жизни за счет иммунного распознавания с участием компонентов врож­денного и приобретенного иммунитета. Иммунная система тесно взаимо­действует с другими системами организма, оказывая регуляторное влияние на многие жизненно важные функции организма.

Следует заметить, что в клинической практике разработка методов оценки наиболее важных компонентов врожденной иммунной системы, диагностики их роли в иммунопатогенезе заболеваний человека, методов их иммунотерапии находится на начальном этапе.

1.3.

Еще по теме ВРОЖДЕННЫЙ И АДАПТИВНЫЙ ИММУНИТЕТ:

  1. Глава 4 Эффекторные механизмы адаптивного и врожденного иммунитета
  2. Глава 3 Адаптивный иммунитет
  3. Глава 5 ПРИОБРЕТЕННЫЙ СПЕЦИФИЧЕСКИЙ (АДАПТИВНЫЙ) ИММУНИТЕТ
  4. СПЕЦИФИЧЕСКИЙ АДАПТИВНЫЙ ИММУНИТЕТ
  5. Оценка состояния адаптивного иммунитета
  6. Приобретенный (адаптивный) иммунитет
  7. Первичные иммунодефициты, связанные с поражением адаптивного иммунитета (табл. 4.19)
  8. ИММУННАЯ СИСТЕМА (АДАПТИВНЫЙ ИММУНИТЕТ)
  9. ОСНОВНЫЕ СВЕДЕНИЯ О СТРУКТУРЕ И ФУНКЦИИ СПЕЦИФИЧЕСКОГО (АДАПТИВНОГО) ИММУНИТЕТА
  10. Глава 2 Врожденный иммунитет
  11. ЭФФЕКТОРНЫЕ КЛЕТКИ ВРОЖДЕННОГО ИММУНИТЕТА
  12. ГУМОРАЛЬНЫЕ ЭФФЕКТОРНЫЕ МЕХАНИЗМЫ ВРОЖДЕННОГО ИММУНИТЕТА
  13. ОСНОВНЫЕ РЕЦЕПТОРЫ СИСТЕМЫ ВРОЖДЕННОГО ИММУНИТЕТА

Источник