Тромбоциты участвуют в иммунитете

Тромбоциты участвуют в иммунитете thumbnail

1. Серебряная Н.Б., Шанин С.Н., Фомичева Е.Е., Якуцени П.П. Тромбоциты как активаторы и регуляторы воспалительных и иммунных реакций. Часть 1. Основные характеристики тромбоцитов как воспа-лительных клеток// Медицинская иммунология, 2018. Т. 20, № 6. С. 785-796. [Serebryanaya N.B., Shanin S.N., Fomicheva E.E., Yakutseni P.P. Blood platelets as activators and regulators of inflammatory and immune reactions. Part 1. Basic characteristics of platelets as inflammatory cells. Meditsinskaya immunologiya = Medical Immunology (Russia), 2018, Vol. 20, no. 6, pp. 785-796.(In Russ.)] doi: 10.15789/1563-0625-2018-6-785-796.

2. Andonegui G., Kerfoot S.M., McNagny K., Ebbert K.V.J., Patel K.D., Kubes P. Platelets express functional Toll-like receptor-4. Blood, 2005, Vol. 106, pp. 2417-2423.

3. Andrews R.K., Arthur J.F., Gardiner E. Neutrophil extracellular traps (NETs) and the role of platelets in infection. Thromb. Haemost., 2014, Vol. 112, no. 4, pp. 659-665.

4. Anitua E., Andia I., Ardanza B., Nurden P., Nurden A.T. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb. Haemost., 2004, Vol. 91, pp. 4-15.

5. Arisato T., Hashiguchi T., Sarker K.P., Arimura K., Asano M., Matsuo K., Osame M., Maruyama I. Highly accumulated platelet vascular endothelial growth factor in coagulant thrombotic region.J. Thromb. Haemost., 2003, no. 1, pp. 2589-2593.

6. Blair P., Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev., 2009, Vol. 23, no. 4, pp. 177-189.

7. Boehlen F., Clemetson K.J. Platelet chemokines and their receptors: what is their relevance to platelet storage and transfusion practice?Transfus. Med., 2001, no. 11, pp. 403-417.

8. Brandt E., Petersen F., Ludwig A., Ehlert J.E., Bock L., Flad H.D. The beta-thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines with divergent roles in early neutrophil regulation. J. Leukoc. Biol., 2000, Vol. 67, pp. 471-478.

9. Brill A., Elinav H., Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc. Res., 2004, Vol. 63, pp. 226-235.

10. Chapman L.M., Aggrey A.A., Field D.J., Srivastava K., Ture S., Yui K., Topham D.J., Baldwin W.M. 3rd , Morrell C.N. Platelets present antigen in the context of MHC class I. J. Immunol., 2012, Vol. 189, no. 2, pp. 916-923.

11. Clark S.R., Ma A.C., Tavener S.A., Mcdonald B., Goodarzi Z., Kelly M.M., Patel K.D., Chakrabarti S., Mcavoy E., Sinclair G.D., Keys E.M., Allen-Vercoe E., Devinney R., Doig C.J., Green F.H.Y., Kubes P. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat. Med., 2007, Vol. 13, pp. 463-469.

12. Cognasse F., Hamzeh H., Chavarin P., Acquart S., Genin C., Garraud O. Evidence of Toll-like receptor molecules on human platelets. Immunol. Cell. Biol., 2005, Vol. 83, pp. 196-198.

13. Cognasse F., Hamzeh-Cognasse H., Lafarge S., Chavarin P., Cogné M., Richard Y., Garraud O. Human platelets can activate peripheral blood B cells and increase production of immunoglobulins. Exp. Hematol., 2007, Vol. 35, pp. 1376-1387.

14. Colotta F., Sciacca F.L., Sironi M., Luini W., Rabiet M.J., Mantovani A. Expression of monocyte chemotactic protein-1 by monocytes and endothelial cells exposed to thrombin. Am. J. Pathol., 1994, Vol. 144, no. 5, pp. 975-985.

15. Corken A., Russell S., Dent J., Post S.R., Ware J. Platelet glycoprotein Ib-IX as a regulator of systemic inflammation. Arterioscler. Thromb. Vasc. Biol., 2014, Vol. 34, pp. 996-1001.

16. Danese S., de la Motte C., Reyes B.M., Sans M., Levine A.D., Fiocchi C. Cutting edge: T cells trigger CD40-dependent platelet activation and granular RANTES release: a novel pathway for immune response amplification. J. Immunol., 2004, Vol. 172, pp. 2011-2015.

17. del Conde I., Crúz M.A., Zhang H., López J.A., Afshar-Kharghan V. Platelet activation leads to activation and propagation of the complement system.J. Exp. Med., 2005, Vol. 201, no. 6, pp. 871-879.

18. Delaney M.K., Kim K., Estevez B., Xu Z., Stojanovic-Terpo A., Shen B., Ushio-Fukai M., Cho J., Du X. Differential roles of the NADPH-oxidase 1 and 2 in platelet activation and thrombosis. Arterioscler. Thromb. Vasc. Biol., 2016, Vol. 36, no. 5, pp. 846-854.

19. Diacovo T.G., Catalina M.D., Siegelman M.H., von Andrian U.H. Circulating activated platelets reconstitute lymphocyte homing and immunity in L-selectin-deficient mice. J. Exp. Med., 1998, Vol. 187, no. 2, pp. 197-204.

20. Diacovo T.G., de Fougerolles A.R., Bainton D.F., Springer T.A. A functional integrin ligand on the surface of platelets: intercellular adhesion molecule-2.J. Clin. Invest., 1994, Vol. 94, pp. 1243-1251.

21. Dixon D.A., Tolley N.D., Bemis-Standoli K., Martinez M.L., Weyrich A.S., Morrow J.D., Prescott S.M., Zimmerman G.A. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling.J. Clin. Invest., 2006, Vol. 116, pp. 2727-2738.

22. Duffau P., Seneschal J., Nicco C., Richez C., Lazaro E., Douchet I., Bordes C., Viallard J.-F., Goulvestre C., Pellegrin J.-L., Weil B., Moreau J.-F., Batteux F., Blanco P. Platelet CD154 potentiates interferon-alpha secretion by plasmacytoid dendritic cells in systemic lupus erythematosus.Sci. Transl. Med., 2010, Vol. 1, no. 2 (47), 47ra63. doi: 10.1126/scitranslmed.3001001.

23. Ekdahl K.N., Nilsson B. Phosphorylation of complement component C3 and C3 fragments by a human platelet protein kinase. Inhibition of factor I-mediated cleavage of C3b. J. Immunol., 1995, Vol. 154, no. 12, pp. 6502-6510.

24. Elzey B.D., Ratliff T.L., Sowa J.M., Crist S.A. Platelet CD40L at the interface of adaptive immunity. Thromb. Res., 2011, Vol. 127, no. 3, pp. 180-183.

25. Elzey B.D., Sprague D.L., Ratliff T.L. The emerging role of platelets in adaptive immunity. Cell Immunol., 2005, Vol. 238, pp. 1-9.

26. Evangelista V., Manarini S., Dell’Elba G., Martelli N., Napoleone E., Di S.A., Lorenzet P.S. Clopidogrel inhibits platelet-leukocyte adhesion and platelet-dependent leukocyte activation. Thromb. Haemost., 2005, Vol. 94, no. 3, pp. 568-577.

27. Fleischer J., Grage-Griebenow E., Kasper B., Heine H., Ernst M., Brandt E., Flad H.-D., Petersen F. Platelet factor 4 inhibits proliferation and cytokine release of activated human T cells. J. Immunol., 2002, Vol. 169, pp. 770-777.

28. Foy T.M., Aruffo A., Bajorath J., Buhlmann J.E., Noelle R.J. Immune regulation by CD40 and its ligand GP39. Annu. Rev. Immunol., 1996, Vol. 14, pp. 591-617.

29. Gear A.R.L., Camerini D. Platelet chemokines and chemokine receptors: linking hemostasis, inflammation, and host defense. Microcirculation, 2003, no. 10, pp. 335-350.

30. Gerdes N., Zhu L., Ersoy M., Hermansson A., Hjemdahl P., Hu H., Hansson G.K., Li N. Platelets regulate CD4+ T-cell differentiation viamultiple chemokines in humans. Thromb. Haemost., 2011, Vol. 106, pp. 353-362.

31. Gudbrandsdottir S., Hasselbalch H.C., Nielsen C.H. Activated platelets enhance IL-10 secretion and reduce TNF-αsecretion by monocytes. J. Immunol., 2013, Vol. 191, no. 8, pp. 4059-4067.

32. Hagihara M., Higuchi A., Tamura N., Ueda Y., Hirabayashi K., Ikeda Y., Kato S., Sakamoto S., Hotta T., Handa S., Goto S. Platelets, after exposure to a high shear stress, induce IL-10-producing, mature dendritic cells in vitro. J. Immunol., 2004, Vol. 172, no. 9, pp. 5297-5303.

33. Halvorsen B., Smedbakken L.M., Michelsen A.E., Skjelland M., Bjerkeli V., Sagen E.L., Taskén K., Bendz B., Gullestad L., Holm S., Biessen E.A., Aukrust P. Activated platelets promote increased monocyte expression of CXCR5 through prostaglandin E2-related mechanisms and enhance the anti-inflammatory effects of CXCL13. Atherosclerosis, 2014, Vol. 234, no. 2, pp. 352-359.

34. Hamzeh-Cognasse H., Cognasse F., Palle S., Chavarin P., Olivier T., Delézay O., Pozzetto B., Garraud O. Direct contact of platelets and their released products exert different effects on human dendritic cell maturation. BMC Immunol., 2008, Vol. 9, no. 1, pp. 54-60.

35. Hartwig H., Drechsler M., Lievens D., Kramp B., von Hundelshausen P., Lutgens E., Weber C., Döring Y., Soehnlein O. Platelet-derived PF4 reduces neutrophil apoptosis following arterial occlusion. Thromb. Haemost., 2014, Vol. 111, no. 3, pp. 562-564.

36. Hasegawa S., Pawankar R., Suzuki K., Nakahata T., Furukawa S., Okumura K., Ra C. Functional expression of the high affinity receptor for IgE (FcepsilonRI) in human platelets and its’ intracellular expression in human megakaryocytes. Blood, 1999, Vol. 93, pp. 2543-2551.

37. Hawrylowicz C.M., Howells G.L., Feldmann M. Platelet-derived interleukin 1 induces human endothelial adhesion molecule expression and cytokine production.J. Exp. Med., 1991, Vol. 174, pp. 785-790.

Читайте также:  Вырабатывается иммунитет от гриппа

38. Henn V., Slupsky J.R., Gräfe M., Anagnostopoulos I., Förster R., Müller-Berghaus G., Kroczek R.A. CD40 ligand on activated platelets triggers an inflammatory reaction of endothelial cells. Nature, 1998, Vol. 391, pp. 591-594.

39. Herter J.M., Rossaint J., Zarbock A. Platelets in inflammation and immunity. J. Thromb. Haemost., 2014, Vol. 12, no. 11, pp. 1764-1775.

40. von Hundelshausen P., Weber K.S., Huo Y., Proudfoot A.E., Nelson P.J., Ley K., Weber C. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation, 2001, Vol. 103, pp. 1772-1777.

41. Iannacone M., Sitia G., Isogawa M., Marchese P., Castro M.G., Lowenstein P.R., Chisari F.V., Ruggeri Z.M., Guidotti L.G. Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat. Med., 2005, no. 11, pp. 1167-1170.

42. Joseph M., Auriault C., Capron A., Vorng H., Viens P. A new function for platelets: IgE-dependent killing of schistosomes. Nature, 1983, Vol. 303, pp. 810-812.

43. Kameyoshi Y., Schröder J.M., Christophers E., Yamamoto S. Identification of the cytokine RANTES released from platelets as an eosinophil chemotactic factor. Int. Arch. Allergy Immunol., 1994, Vol. 104, no. 1, pp. 49-51.

44. Kaneider N.C., Kaser A., Tilg H., Ricevuti G., Wiedermann C.J. CD40 ligand-dependent maturation of human monocyte-derived dendritic cells by activated platelets. Int. J. Immunopathol. Pharmacol., 2003, Vol. 16, pp. 225-231.

45. Katsounas A., Schlaak J.F., Lempicki R.A. CCL5: a double-edged sword in host defense against the hepatitis C virus. Int. Rev. Immunol., 2011, Vol. 30, no. 5-6, pp. 366-378.

46. Kerrigan A.M., Navarro-Nuñez L., Pyz E., Finney B.A., Willment J.A., Watson S.P., Brown G.D. Podoplaninexpressing inflammatory macrophages activate murine platelets via CLEC-2. J. Thromb. Haemost., 2012, no. 10, pp. 484-486.

47. Kim K., Li J., Tseng A., Andrews R.K., Cho J. NOX2 is critical for heterotypic neutrophil-platelet interactions during vascular inflammation. Blood, 2015, Vol. 126, no. 16, pp. 1952-1964.

48. Kissel K., Berber S., Nockher A., Santoso S., Bein G., Hackstein H. Human platelets target dendritic cell differentiation and production of proinflammatory cytokines.Transfusion, 2006, Vol. 46, pp. 818-827.

49. Koupenova M., Vitseva O., MacKay C.R., Beaulieu L.M., Benjamin E.J., Mick E., Kurt-Jones E.A., Ravid K., Freedman J.E. Platelet-TLR7 mediates host survival and platelet count during viral infection in the absence of platelet-dependent thrombosis. Blood, 2014, Vol. 124, pp. 791-802.

50. Kraemer B.F., Campbell R.A., Schwertz H., Cody M.J., Franks Z., Tolley N.D., Kahr W.H., Lindemann S., Seizer P., Yost C.C., Zimmerman G.A., Weyrich A.S. Novel anti-bacterial activities of β-defensin 1 in human platelets: suppression of pathogen growth and signaling of neutrophil extracellular trap formation. PLoS Pathog., 2011, Vol. 7, no. 11, e1002355. doi:10.1371/journal.ppat.1002355.

51. Krotz F., Sohn H.Y., Pohl U. Reactive oxygen species: players in the platelet game. Arterioscler. Thromb. Vasc. Biol., 2004, Vol. 24, no. 11, pp. 1988-1996.

52. Langer H.F., Daub K., Braun G., Schönberger T., May A.E., Schaller M., Stein G.M., Stellos K., Bueltmann A., Siegel-Axel D., Wendel H.P., Aebert H., Roecken M., Seizer P., Santoso S., Wesselborg S., Brossart P., Gawaz M. Platelets recruit human dendritic cells viaMac-1/JAM-C interaction and modulate dendritic cell function in vitro. Arterioscler. Thromb. Vasc. Biol., 2007, Vol. 27, no. 6, pp. 1463-1470.

53. Larsen E., Celi A., Gilbert G.E., Furie B.C., Erban J.K., Bonfanti R., Wagner D.D., Furie B. PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes.Cell, 1989, Vol. 59, pp. 305-312.

54. León-Ponte M., Ahern G.P., O’Connell P.J. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor. Blood, 2007, Vol. 109, no. 8, pp. 3139-3146.

55. Li G., Kim Y.J., Mantel C., Broxmeyer H.E. P-selectin enhances generation of CD14 + CD16+ dendritic-like cells and inhibits macrophage maturation from human peripheral blood monocytes.J. Immunol., 2003, Vol. 171, pp. 669-677.

56. Li N. Platelet-lymphocyte cross-talk.J. Leukoc. Biol., 2008, Vol. 83, pp. 1069-1078.

57. Li Zh., Yang F., Dunn S., A. Gross K., Smyth S.S. Platelets as immune mediators: Their role in host defense responses and sepsis.Thromb. Res., 2011, Vol. 127, no. 3, pp. 184-188.

58. Liu C.Y., Battaglia M., Lee S.H., Sun Q-H., Aster R.H., Visentin G.P. Platelet factor 4 differentially modulates CD4+ CD25+ (Regulatory) versus CD4 + CD25-(Nonregulatory) T cells. J. Immunol., 2005, Vol. 174, pp. 2680-2686.

59. Loppnow H., Bil R., Hirt S., Schonbeck U., Herzberg M., Werdan K., Rietschel E.T., Brandt E., Flad H.D. Platelet-derived interleukin-1 induces cytokine production, but not proliferation of human vascular smooth muscle cells. Blood, 1998, Vol. 91, pp. 134-141.

60. Matsuda H., Ushio H., Geba G.P., Askenase P.W. Human platelets can initiate Tcell-dependent contact sensitivity through local serotonin release mediated by IgE antibodies.J. Immunol., 1997, Vol. 158, pp. 2891-2897.

61. Maugeri N., Rovere-Querini P., Evangelista V., Covino C., Capobianco A., Bertilaccio M.T., Piccoli A., Totani L., Cianflone D., Maseri A., Manfredi A.A. Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and (beta)2 integrin-dependent cell clearance program. Blood, 2009, Vol. 113, no. 21, pp. 5254-5265.

62. Mei J., Liu Y., Dai N., Favara M., Greene T., Jeyaseelan S., Poncz M., Lee J.S., Worthen G.S. CXCL5 regulates chemokine scavenging and pulmonary host defense to bacterial infection. Immunity, 2010, Vol. 33, pp. 106-117.

63. Michetti N., Weyrich A.S., Zimmerman G.A. Platelet-leukocyte interactions in inflammation and thrombosis. US Hematology, 2009, no. 2, pp. 24-27.

64. Nakanishi T., Inaba M., Inagaki-Katashiba N., Tanaka A., Vien P.T.X., Kibata K., Ito T., Nomura S. Plateletderived RANK ligand enhances CCL17 secretion from dendritic cells mediated by thymic stromal lymphopoietin. Platelets, 2014, Vol. 25, pp. 425-431.

65. Nomura S., Fujita S., Nakanishi T., Yokoi T., Shimamoto K., Miyamoto R., Ito T. Platelet-derived microparticles cause CD154-dependent activation of dendritic cells. Platelets, 2012, Vol. 23, no. 1, pp. 81-82.

66. Nurden A.T., Nurden P., Sanchez M., Andia I., Anitua E. Platelets and wound healing. Front. Biosci., 2008, Vol. 13, pp. 3532-3548.

67. O’Brien M. The reciprocal relationship between inflammation and coagulation. Top Companion Anim. Med., 2012, Vol. 27, no. 2, pp. 46-52.

68. Page C., Pitchford S. Neutrophil and platelet complexes and their relevance to neutrophil recruitment and activation. Int. Immunopharmacol., 2013, Vol. 17, no. 4, pp. 1176-1184.

69. Passacquale G., Vamadevan P., Pereira L., Hamid C., Corrigall V., Ferro A. Monocyte-platelet interaction induces a pro-inflammatory phenotype in circulating monocytes. PLoS ONE, 2011, Vol. 6, no. 10, e25595. doi: 10.1371/journal.pone.0025595.

70. Peerschke E.I., Yin W., Ghebrehiwet B. Сomplement activation on platelets: implications for vascular inflammation and thrombosis. Mol. Immunol., 2010, Vol. 47, no. 13, pp. 2170-2175.

71. Peerschke E.I., Yin W., Grigg S.E., Ghebrehiwet B. Blood platelets activate the classical pathway of human complement. J. Thromb. Haemost., 2006, Vol. 4, no. 9, pp. 2035-2042.

72. Petrucci G., de Cristofaro R., Rutella S., Ranelletti F.O., Pocaterra D., Lancellotti S., Habib A., Patrono C., Rocca B. Prostaglandin E2 differentially modulates human platelet function through the prostanoid EP2 and EP3 receptors. J. Pharmacol. Exp. Ther., 2011, Vol. 336, pp. 391-402.

73. Pintucci G., Froum S., Pinnell J., Mignatti P., Rafii S., Green D. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF).Thromb. Haemost., 2002, Vol. 88, pp. 834-842.

74. Qian K., Xie F., Gibson A.W., Edberg J.C., Kimberly R.P., Wu J. Functional expression of IgA receptor FcalphaRI on human platelets. J. Leukoc. Biol., 2008, Vol. 84, pp. 1492-1500.

75. Rahman M., Roller J., Zhang S., Syk I., Menger M.D., Jeppsson B., Thorlacius H. Metalloproteinases regulate CD40L shedding from platelets and pulmonary recruitment of neutrophils in abdominal sepsis. Inflamm. Res., 2012, Vol. 61, pp. 571-579.

76. Ramadan A. Ali, Leah M. Wuescher, Randall G. Worth. Platelets: essential components of the immune system. Curr. Trends Immunol., 2015, Vol. 16, pp. 65-78.

77. Rosenfeld S.I., Looney R.J., Leddy J.P., Phipps D.C., Abraham G.N., Anderson C.L. Human platelet Fc receptor for immunoglobulin G. Identification as a 40,000-molecular-weight membrane protein shared by monocytes. J. Clin. Invest., 1985, Vol. 76, no. 6, pp. 2317-2122.

Читайте также:  Как приготовить имбирь с лимоном для иммунитета

78. Rossaint J., Herter J.M., van Aken H., Napirei M., Döring Y., Weber C. Soehnlein O., Zarbock A. Synchronized integrin engagement and chemokine activation is crucial in neutrophil extracellular trap-mediated sterile inflammation. Blood, 2014, Vol. 123, no. 16, pp. 2573-2584.

79. Rossaint J., Kühne K., Skupski J., van Aken H., Looney M.R., Hidalgo A., Zarbock A. Directed transport of neutrophil-derived extracellular vesicles enables platelet-mediated innate immune response. Nat. Commun., 2016, no. 7, 13464. doi: 10.1038/ncomms13464.

80. Rouhiainen A., Imai S., Rauvala H., Parkkinen J. Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb. Haemost., 2000, Vol. 84, no. 6, pp. 1087-1094.

81. Rozman P., Bolta Z. Use of platelet growth factors in treating wounds and soft-tissue injuries.Acta Dermatovenerol. Alp. Panonica Adriat., 2007, Vol. 16, pp. 155-165.

82. Scheuerer B., Ernst M., Dürrbaum-Landmann I., Fleischer J., Grage-Griebenow E., Brandt E., Flad H.D., Petersen F. The CXC-chemokine platelet factor 4 promotes monocyte survival and induces monocyte differentiation into macrophages.Blood, 2000, Vol. 95, pp. 1158-1166.

83. Scull C.M., Hays W.D., Fischer T.H. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J. Inflamm. (Lond.), 2010, no. 7, pp. 53-58.

84. Shiraki R., Inoue N., Kawasaki S., Takei A., Kadotani M., Ohnishi U., Ejiri J., Kobayashi S., Hirata K., Kawashima S., Yokoyama M. Expression of Toll-like receptors on human platelets. Thromb. Res., 2004, Vol. 113, pp. 375-385.

85. Simon D.I., Chen Z., Xu H., Li C.Q., Dong J.F., McIntire L.V., Ballantyne C.M., Zhang L., Furman M.I., Berndt M.C., López J.A. Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/ CD18). J. Exp. Med., 2000, Vol. 192, pp. 193-204.

86. Spycher M.O., Nydegger U.E. Participation of the blood platelet in immune reactions due to plateletcomplement interaction.Infusionsther. Transfusionsmed., 1995, Vol. 22, no. 1, pp. 36-43.

87. Steinhubl. S.R., Badimon J.J., Bhatt D.L., Herbert J.M., Luscher T.F. Clinical evidence for anti-inflammatory effects of anti-platelet therapy Steinhubl in patients with atherothrombotic disease. Vasc. Med., 2007, Vol. 12, no. 2, pp. 113-122.

88. Stephen J., Emerson B., Fox K.A., Dransfield I. The uncoupling of monocyte-platelet interactions from the induction of proinflammatory signaling in monocytes. J. Immunol., 2013, Vol. 191, no. 11, pp. 5677-5683.

89. Tilley S.L., Coffman T.M., Koller B.H. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J. Clin. Invest., 2001, Vol. 108, pp. 15-23.

90. Vieira-de-Abreu A., Campbell R.A., Weyrich A.S., Zimmerman G.A. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin. Immunopathol., 2012, Vol. 3, no. 1, pp. 5-30.

91. Violi F., Pignatelli P. Platelet NOX a novel target for anti-thrombotic treatment. Thromb. Haemost., 2014, Vol. 111, no. 5, pp. 817-823.

92. Waehre T., Damas J.K., Pedersen T.M., Gullestad L., Yndestad A., Andreassen A.K., Froland S.S., Semb A.G., Hansteen V., Gjertsen E., Ueland T., Brosstad F., Solum N.O., Aukrust P. Clopidogrel increases expression of chemokines in peripheral blood mononuclear cells in patients with coronary artery disease: results of a doubleblind placebo-controlled study.J. Thromb. Haemost., 2006, Vol. 4, no. 10, pp. 2140-2147.

93. Weltermann A., Wolzt M., Petersmann K. Czerni C., Graselli U., Lechner K., Kyrle P.A. Large amounts of vascular endothelial growth factor at the site of hemostatic plug formation in vivo. Arterioscler. Thromb. Vasc. Biol., 1999, Vol. 19, pp. 1757-1760.

94. Xiang B., Zhang G., Guo L., Li X-A., Morris A.J., Daugherty A., Whiteheart S.W., Smyth S.S., Li Z. Platelets protect from septic shock by inhibiting macrophage-dependent inflammation via the cyclooxygenase 1 signalling pathway. Nat. Commun., 2013, no. 4, p. 2657.

95. Yeaman M.R. Platelets in defense against bacterial pathogens. Cell Mol. Life Sci., 2010, Vol. 67, no. 4, pp. 525-544.

96. Zamora C., Cantó E., Nieto J.C., Ortiz M.A., Diaz-Torné C., Diaz-Lopez C., Llobet J.M., Juarez C., Vidal S. Functional consequences of platelet binding to T lymphocytes in inflammation. J. Leukoc. Biol., 2013, Vol. 94, no. 3, pp. 521-529.

97. Zander D.M., Klinger M. The blood platelets contribution to innate host defense – what they have learned from their big brothers. Biotechnol. J., 2009, Vol. 4, no. 6, pp. 914-926.

98. Zarbock A., Polanowska-Grabowska R.K., Ley K. Platelet-neutrophil-interactions: linking hemostasis and inflammation. Blood Rev., 2007, Vol. 21, no. 2, pp. 99-111.

99. Zhu L., Huang Z., Stålesen R., Hansson G.K., Li N. Platelets provoke distinct dynamics of immune responses by differentially regulating CD4 + T-cell proliferation. J. Thromb. Haemost., 2014, Vol. 12, pp. 1156-1165.

Источник

Состав крови

Кровеносная, она же сердечно-сосудистая система обеспечивает циркуляцию крови и лимфы в организме человека. Среди всех органов тела только поверхность глаз может получать кислород непосредственно из воздуха. Все остальные органы и ткани, даже кожа, получают кислород с током крови.

Кровь относится к соединительной ткани, клетки в ней занимают гораздо меньший объем, чем межклеточное вещество. Кровь состоит из жидкости с растворенными веществами (плазмы) и форменных элементов: лейкоцитов, эритроцитов и тромбоцитов. Плазма крови образует внутреннюю среду организма: жидкость из крови «выдавливается» в ткани и становится тканевой жидкостью, избыток тканевой жидкости попадает в лимфатические сосуды, становясь лимфой. Лимфа в итоге попадает в кровоток, возвращая жидкость в кровь.

Плазма крови содержит 0,9% хлорида натрия (поваренная соль), поэтому для внутривенных вливаний используют водный 0,9% раствор NaCl («физиологический», или изотонический раствор). Другие соли и органические вещества в сумме занимают около 9% массы плазмы. Большую роль играют белки плазмы, особенно альбумины.

Для поддержания постоянной кислотности в плазме присутствуют буферные системы. Водородный показатель крови человека (pH) в среднем равен 7,4. При его смещении в кислотную или основную сторону происходят химические реакции в буферных системах, которые уравновешивают изменения кислотности.

Поддерживать постоянство внутренней среды (гемостаз) необходимо для нормальной жизни клеток. Клеточная мембрана проницаема для молекул воды, поэтому если снаружи концентрация раствора повышается (гипертонический раствор), вода стремится выйти из клетки по закону осморегуляции. Клетка при этом скукоживается, становится неправильной формы, многие ее органеллы перестают правильно работать.

Если же концентрация соли в окружающем растворе слишком мала (гипотонический раствор), вода стремится внутри клетки, чтобы «разбавить» ее содержимое. В этом случае клетки разбухают, мембрана может не выдержать и лопнуть. Таким образом, изменение солености крови может привести к необратимым изменениям в организме.

Клетки составляют около 45% объема крови. Выделяют «белую» кровь – лейкоциты и «красную» кровь – эритроциты. Эритроциты имеют небольшой размер и двояковогнутую дисковидную форму. Такая форма дает большую площадь поверхности при минимальном объеме, что повышает эффективность газообмена. Эритроциты человека не имеют ядра, они теряют его в процессе созревания.

Эритроциты

В 1 мл крови содержится 4-6 млн эритроцитов. Их главная функция – перенос кислорода, за это отвечает крупный белок – гемоглобин. Одна молекула гемоглобина состоит из четырех полипептидных цепей (глобина) и железосодержащих групп (гема). Каждая молекула гемоглобина может перенести четыре молекулы кислорода, причем способность связывать и отдавать кислород зависит от условий среды: в более щелочной среде (легких) гемоглобин лучше связывает кислород, в то время как в более кислой среде (тканях), он лучше отдает его.

Механизм действия гемоглобина

Помимо кислорода с гемоглобином могут связываться другие газы, самым опасным из которых является угарный (СО). Он образуется при неполном сгорании органики в условиях нехватки кислорода и не имеет цвета и запаха. Сродство гемоглобина к угарному газу гораздо выше, чем к кислороду, поэтому, однажды связавшись с гемоглобином, угарный газ будет еще долго циркулировать в крови. При этом свободных сайтов связывания кислорода станет меньше и ткани начнут страдать от его нехватки. Тяжелое отравление угарным газом требует немедленной специализированной помощи.

Клетки крови

Лейкоциты

Лейкоциты являются основой клеточного иммунитета, это сферические клетки с достаточно крупным ядром. 1 мл крови содержит 4-11 тысяч лейкоцитов. Из всех клеток организма они наиболее уязвимы к действию радиации.

В зависимости от свойств лейкоциты делятся на несколько типов: содержащие гранулы, или гранулоциты (эозинофилы, нейтрофилы, базофилы) и не содержащие – агранулоциты.

Тромбоциты

Также кровь содержит тромбоциты, которые представляют собой отшнуровавшиеся куски гигантской клетки. Сами тромбоциты клетками не являются, они выглядят как мелкие пластинки неправильной формы и содержат только цитоплазму с гранулами. В гранулах находятся ферменты свертывающей системы, которые активируются при повреждении сосуда: образуется сгусток крови (тромб), который закупоривает поврежденный участок. 1 мл крови содержит 200-500 тысяч тромбоцитов.

Читайте также:  Наличие иммунитета к коклюшу

Начало всем форменным элементам крови дают стволовые клетки красного костного мозга. Клетки крови постоянно обновляются, но у разных типов клеток обновление происходит с разной периодичностью. Эритроциты могут циркулировать 120-130 суток, в то время как лейкоциты и тромбоциты обычно живут не дольше 5-7 суток.

Иммунитет

Иммунная система защищает организм от воздействия бактерий, вирусов, грибов и паразитов, вредных веществ. В случае сбоя в работе иммунитета могут возникать аутоиммунные заболевания, в организме человека есть несколько механизмов, чтобы их предотвратить.

Органы, участвующие в формировании иммунитета

Основными органами иммунной системы являются селезенка, тимус (вилочковая железа) и костный мозг, где появляются и начинают созревать иммунные клетки. Клетки иммунитета циркулируют с кровью, располагаются в лимфоузлах и тканях, особенно много их в местах контакта с внешней средой (кожа, ЖКТ, дыхательные пути). Некоторые органы защищены от иммунного ответа барьерами, они называются иммунологически привилегированными органами. Это мозг, камеры глаза, семенники, плацента и плод и т.д. При травмах иммунологически привилегированных органов, когда нарушается целостность барьера, могут возникнуть аутоиммунные реакции.

Макрофаги

Другие клетки неспецифического иммунитета, которые первыми отвечают на воздействие, – макрофаги. Это крупные клетки, которые способны к активному передвижению и фагоцитозу, они пожирают бактерии и инородные тела. Самостоятельно распознавать чужеродные белки макрофаги не способны, их действие не избирательно. «Ориентируют» макрофагов на уничтожение конкретных клеток антитела.

Макрофаг, фагоцитирующий бактерии.

Другими клетками иммунитета являются нейтрофилы и эозинофилы. Они, как и макрофаги, являются фагоцитами (то есть способны к фагоцитозу). Кроме того, в их цитоплазме есть гранулы с едкими веществами, которые высвобождаются при активации клетки. Запускается каскад химических реакций, в ходе которых образуются активные формы кислорода, это называется кислородным взрывом. Нейтрофилы и эозинофилы, а также окружающие здоровые клетки тоже погибают в результате кислородного взрыва, их остатки фагоцитируют макрофаги. Эозинофилы играют основную роль в развитии аллергий.

Нейтрофил, эозинофил, базофил

Фагоциты способны к направленному движению (хемотаксису), их можно обнаружить во многих тканях и органах, даже на поверхности кожи. Благодаря их постоянной активности большая часть атакующих агентов не вызывает инфекции, то есть системного ответа организма. Инфекция возникает в том случае, если иммунитет ослаблен (переутомление, переохлаждение, голодание и т.д.) или если инфекционный агент не был вовремя распознан фагоцитами.

Различают два вида иммунитета: клеточный и гуморальный. Гуморальный иммунитет – это система комплемента и циркулирующие с плазмой крупные молекулы – антитела. Белки системы комплемента «помечают» чужеродные агенты, вызывая направленное движение клеток иммунитета. Также система комплемента может формировать поры в мембране бактерий, что будет вести к их разрушению.

Антитела

Каждое антитело имеет на конце вариабельные домены (участки), комплементарные к чужеродному белку и специфические для конкретного возбудителя. Они прикрепляются к комплементарным участкам белков, «помечая» их для других клеток иммунного ответа, например, для фагоцитов. Также антитела могут слипаться между собой, что вызывает агглютинацию возбудителя. Особенно эффективны антитела против бактерий.

На рисунке изображены молекулы антител. Каждая состоит из двух пар цепей, синим цветом нарисованы тяжелые цепи, коричневым – легкие.

Клеточный иммунитет состоит из Т и В-лимофцитов. Т-лимофоциты могут быть двух видов: Т-хелперы и Т-киллеры. Т-киллеры клетки-убийцы, они запускают процессы апоптоза, то есть запрограммированной гибели клеток, их самоуничтожения. Это необходимо, если клетки организма заражены вирусами или бактериями или если при делении в геноме появились мутации (то есть Т-киллеры борются также с раковыми клетками).

В-лимфоциты синтезируют антитела и таким образом управляют гуморальным иммунитетом. При миграции В-клеток из крови в ткань они дифференцируются в плазматические клетки.

Лимфоциты действуют избирательно, они «настроены» на уничтожение возбудителя с конкретными антигенами. Чтобы правильно «настроить» лимфоциты, нужны антиген-презентирующие клетки (АПК). АПК фагоцитируют чужеродных агентов и выставляют на своей поверхности участки их молекул в комплексе с МНС II (главный комплекс гистосовместимости II). Т-хелперы способны распознавать чужие молекулы на поверхности АПК и активировать иммунный ответ.

Специфический иммунитет очень эффективен, но требует времени на развертывание. От попадания возбудителя в кровь до выработки антител может пройти несколько дней.

К неспецифическому иммунитету относят в основном фагоциты, которые пытаются поглотить или разрушить любое инородное тело или подозрительную клетку, которую встречают.

Немаловажную роль в иммунной защите организма играет воспаление. Это сложный стадийный процесс, который имеет следующие признаки: отек, местное повышение температуры, покраснение, боль и утрата функции органа. Благодаря отеку затрудняется распространение возбудителей по организму, место проникновения ограничивается. При повышении температуры повышается активность некоторых белков гуморального иммунитета, в то время как активность бактерий и скорость их размножения снижаются. Воспалительный процесс особенно эффективен против паразитов.

N-киллеры (натуральные киллеры), как и Т-киллеры могут запускать процессы клеточной гибели. Однако они, в отличии от Т-клеток, не требуют специальной подготовки – презентации антигена и активации. N-киллеры хорошо борются с опухолями.

Интерфероны – белки крови, которые составляют основу противовирусного гуморального иммунитета. Вирусы проникают в клетки организма, после чего здоровые клетки перестают синтезировать необходимые белки и начинают воспроизводить белки и генетическую информацию вирусов. Чтобы остановить распространение вирусных частиц и выиграть время на формирование специфического иммунитета, интерфероны замедляют или даже останавливают синтез белка в зараженных клетках.

Неспецифический иммунитет не требует времени на развертывание, его действие начинается уже в первые минуты после воздействия. Однако и точность неспецифического иммунитета низкая, при развитии иммунного ответа могут страдать здоровые клетки.

Синтез клеток специфического иммунитета (лимфоцитов) включает в себя элемент случайности, только так можно достигнуть неимоверного разнообразия иммунных клеток. Чтобы в кровоток не выходили клетки, которые способны атаковать собственный организм, они проходят строгий отбор в органах иммунной системы, где происходит созревание лимфоцитов (тимус, лимфоузлы). Если в результате отбора оказывается, что юный лимфоцит распознает клетки своего организма в качестве «врагов», в нем запускается процесс апоптоза, самоуничтожения.

Группы крови. Гемотрансфузия.

На поверхности эритроцитов могут находиться белки-агглютиногены А и В. В зависимости от того, какие агглютиногены есть в организме, выделяют: I группу крови (без агглютиногенов), II (только А), III (только В) и IV (оба агглютиногена).

При гемотрансфузии (переливании крови) необходимо учитывать группу, чтобы избежать возникновения иммунного конфликта. Если человеку с I группой крови перелить любую другую, клетки его иммунитета распознают чужеродные белки-агглютиногены и выработают антитела. В результате все чужие эритроциты «слипнутся» (агглютинируют), что может быть очень опасно для организма хозяина. Поэтому людям с I группой крови можно переливать только кровь такой же группы.

Если же перелить кому-нибудь эритроциты I группы крови, не имеющие белков-агглютиногенов, реакции иммунитета не последует. Можно сказать, что обладатели I группы самые «щедрые», потому что могут поделиться своей кровью со всеми. Также их называют универсальными донорами.

Обратная ситуация с IV группой: в крови таких людей нет антител ни к агглютиногену А, ни к агглютиногену В, поэтому им можно перелить кровь любой группы. Однако при попадании эритроцита группы IV в организм с другой группой произойдет агглютинация, поэтому обладателей IV группы крови можно назвать самыми «жадными» или универсальными реципиентами. Соответственно, II группу крови нельзя перелить обладателю III и наоборот.

Помимо агглютиногенов А и В существует много других белков, которые могут привести к возникновению иммунного конфликта. Международное общество трансфузиологов в настоящее время признает всего 36 систем деления крови на группы. Наиболее часто применяют систему АВО, в которой также учитывают резус-фактор. Впервые этот белок был описан у макак-резусов, за что и получил свое название.

Большая часть людей резус-положительна (Rh+), то есть имеет на эритроцитах белок-резус. Им можно переливать кровь с любым резусом. Людям же с резус-отрицательной кровью (Rh-) можно переливать только резус-отрицательную кровь.

Резус-фактор может стать причиной резус-конфликта между матерью и плодом. Если у резус-отрицательной матери будет резус-положительный ребенок, то при попадании крови плода в кровоток матери сформируются антитела к Rh+ белку. Чаще всего смешение крови происходит при родах и не несет опасности для ребенка. Если же антитела каким-то образом появились до родов, они могут проникнуть через плаценту и вызвать агглютинацию эритроцитов плода, что приведет к его гибели. Такая опасность часто возникает при повторной беременности резус-отрицательных женщин.

Распространенность групп крови варьирует в разных популяциях. На картинке приведена частота встречаемость разных групп по системе АВО в мире.

Распространенность групп крови

Источник