Тучные клетки в неспецифическом иммунитете

Тучные клетки в неспецифическом иммунитете thumbnail

Тучные клетки представляют собой лейкоциты, которые образуются из кроветворных клеток-предшественников. В крови тучные клетки циркулируют в незрелой форме, мигрируют в васкуляризированные (богатые сосудами) ткани, где  подвергаются окончательной дифференцировке и созреванию с помощью фактора стволовых клеток,   цитокинов эндотелиальных клеток и фибробластов в месте локализации тучных клеток. Тучные клетки находятся в большинстве тканей тела, особенно в местах, которые находятся в тесном контакте с внешней средой, таких как кожа, дыхательные пути и кишечник.

В зависимости от локализации  различают тучные клетки слизистых,  тучные клетки вблизи сосудов — периваскулярные. Тучные клетки способны активно перемещаться в тканях, мигрировать в тканях. Для этого они используют свои псевдоподии или филоподии. Внутри тучных клеток находится несколько сотен везикул (не гранул!).  При стимуляции  клеток антигеном через иммуноглобулин Е (IgE)  они сливаются с клеточной  мембраной в течение доли секунды, и их содержимое освобождается  в виде интактных пузырьков, Высвобождение содержимого везикул характеризуют термином «дегрануляция», этот процесс  играет важную роль в аллергических реакций немедленного типа (тип 1 аллергия, анафилаксия).

Термин  «дегрануляция» восходит к световой микроскопии и не правилен, потому что  на самом деле это  быстрый экзоцитоз покрытых мембраной пузырьков. Термин «тучные клетки- гранулоциты» также  не корректен, так как гранулы  не ограничены мембраной — гранулы гликогена. Как видно на фотографии (рис.1)Электронная микроскопия тучной клетки человека

везикулы тучных клеток очень однородные  электронно-плотные и равномерные. В тучных клетках человека  везикулы имеют  очень разное содержимое. Диаметр везикул около 1 мкм. Разное содержимое везикул определяет их разное окрашивание при световой микроскопии. базофильное, метахроматическое (рис.2). Туная клетка, метахромазия цитоплазмы

В состав пузырьков кроме воды входят гистамин, гепаринм и гликозаминогликаны (построеные из глюкуроновой кислоты, серной кислоты и глюкозамина, что объясняет метахромазию), хемотаксические факторы, ферменты триптазы и / или химазы. В пузырьках тучных клеток хранятся следующие медиаторы: фактор некроза опухоли альфа (ФНО-альфа), интерлейкины 4,5,6 и 8 (IL-4, IL-5, IL-6, IL8) и хемотаксический фактор иммиграции эозинофилов способствует мобилизации эозинофилов, которые позже блокируют эффекты гистамина и помогают  ограничить воспаление. Кроме того, с пузырьками освобождается фактор роста фибробластов, фактор стволовых клеток, фактор сосудистой проницаемости и фактора роста эндотелия сосудов. Другие медиаторы в тучных клетках формируются  и освобождаются только при стимуляции.

Вероятно, они не хранится в пузырьках:  простагландин GD2 (PGD 2), лейкотриен С4 (LTC4), лейкотриен D4 (LTD4), фактора активации тромбоцитов (PAF).

В 1 мм³ кожи человека обычно находят 7000-10000 тучных клеток предпочтительно вблизи капилляров,  лимфатических сосудов и нервов. Тучные клетки человека, как правило, вытянуты и  размером около 5 х 15 микрон. По морфологическим и биохимическим особенностям выделяют три типа тучных клеток.

Тип 1 (рис.3) наиболее распространенный тип, преимущественно в коже, в основном, с пузырьками, которые имеют аморфное электронно-плотное содержимое Пузырьки содержат химазу и триптазу, которые образуют рулонообразные структуры  по краю клеток.Электрооная микроскопия тучных клеток человека кожи

 Тип 2  встречается реже, преобладает в легких, содержит большое количество различных пузырьков и  осмиофильные липидные тела высокой электронной плотности (рис.4).Электоронное фото тип 2 тучных клеток с  липидными телами Липидные тела содержат циклооксигеназы. Тучные клетки 2 типа производят только триптазу.

Тип 3 (рис.5) Редко этот тип  синтезирует химазу.  Тучные клетки типа 3 находятся в подмышечных лимфатических узлах, легких и соединительной ткани кишечника.

Электоронное фото Тип  3 тучных клеток человека

Тучные клетки имеют очень мало шероховатой эндоплазматической сети и малый аппарат Гольджи. В цитоплазме рядом с пузырьками можно найти некоторые свободные рибосомы, микротрубочки, актин и промежуточные филаменты.

Тучные клетки участвуют в аллергии, остром и хроническом воспалении, активации Т-клеток и изгнании паразитов из тканей. При многих заболеваний кожи, таких как  псориаз, хроническая экзема, склеродермия и лишаи — красный плоский лишай — их функция нарушается.

Локализация тучных клеток в тканях, их пластичность, способность синтезировать различные медиаторы определяют их   важность как иммунных эффекторных клеток и  модуляторов как во врожденном, так и адаптивном иммунитете против бактерий, вирусов, грибов и паразитов.

Тучные клетки могут участвовать как в прямом киллинге (убийстве) микроорганизмов путем фагоцитоза и  образования реактивных  форм кислорода, так  с помощью антимикробных пептидов (антибиотиков), таких как кателицидины, которые они продуцируют как постоянно, так и в ответ на распознавание определенных молекул  возбудителей – липополисахаридов или липотейхоевой кислоты.  Кроме того, аналогично нейтрофилам, тучные клетки образуют внеклеточные ловушки, которые захватывают и убивают микроорганизмы. Хотя эти бактерицидные ответы могут быть важными при некоторых инфекциях, но относительно небольшое число тучных клеток в тканях предполагает, что более важна роль тучных клеток в координации врожденных и адаптивных реакций,в балансе иммунной защиты путем  освобождения медиаторов гранул.

Высвобождение гистамина и других вазоактивных медиаторов повышает проницаемость сосудов и ускоряет  местный кровоток,  что может увеличить изгнание паразитов через усиление сокращения  гладких мышц   слизистых. Кроме того, гистамин усиливает образование слизи эпителиальными клетками, которая защищает клетки от колонизации  патогенами.

Тучные клетки синтезируют хемотаксические факторы, которые рекрутируют, мобилизуют множество клеток воспаления, включая эозинофилы (эотаксин), натуральные киллеры (NK)   и нейтрофилы (интерлейкин -8 и TNF-α).

Продукты секреции тучных клеток участвуют в регуляции адаптивного иммунного ответа.  Цитокины и хемокины тучных клеток (TNF-α и CCL20) усиливают миграцию дендритных клеток  и эффекторных Т-клеток (CXCL10/IP10 и CCL5/RANTES) к месту инфекции и в лимфатические узлы. Тучные клетки могут функционировать непосредственно как антиген-представляющие клетки особенно для CD8+ Т-клеток (цитотоксических Т лимфоцитов). Кроме того, продукты тучных клеток ускоряют созревание незрелых дендритных клеток и активируют презентацию  антигена и экспрессию костимулирующих молекул. Гистамин тучных клеток путем ингибирования секреции интерлейкина-12 и усиления секреции интерлейкина-10 способствуют формированию клонов Т хлеперов 2. Таким образом, тучные клетки способствуют развитию различных иммунных реакций в зависимости от конкретной ситуации в месте воспаления. 

Важно отметить, что наряду с  усилением локальной иммунной защиты, тучные клетки могут ухудшить течение  инфекций через перепроизводство провоспалительных медиаторов. 

В ответ на внедрение паразитов, в том числе нематод и малярию,  у человека  вырабатываются антитела IgE  с высоким сродством к  рецептору  на тучных клетках FcεRI.  Благодаря высокому сродству (аффинности) антител IgE  к  FcεRI  они сенсибилизирует тучные клетки, связываются с ними. Антиген, который индуцировал  синтез IgE, cвязывается со специфическим антителами -IgE — на поверхности тучных клеток. Процесс связывания антигенспецифических IgE с антигеном приводит к кластеризации FcεRI, которая, в свою очередь, включает сигнальный путь высвобождения медиаторов. 

Читайте также:  Иммунитет это виды иммунитета

Тучные клетки также экспрессируют рецепторы к IgG  — FcγR,     рецепторы к комплементу. При инфицировании паразитами  возможна активация тучных клеток  и через эти типы рецепторов. 

Как и  другие лейкоциты, тучные клетки  могут быть активированы непосредственным взаимодействием их с патогенами через рецепторы распознавания молекул на поверхности мембран патогенов, включая Toll-подобные рецепторы (TLR), Nod-подобные рецепторы, C-тип лектинов, таких как Dectin-1 и др.

Важным механизмом в управлении типом ответа тучных клеток  является распознавание патоген ассоциированных молекул.

Так, пептидогликаны патогенов через TLR2 на тучных клетках опосредуют как высвобождение клетками цитокинов, так и дегрануляцию. Cтимулирование тучных клеток липополисахаридами паразитов  (LPS) через TLR4 приводит к высвобождению только цитокинов.

Связывание грибкового β-глюкана с Dectin-1 индуцирует высвобождение тучными клетками лейкотриена С4, в то время как  при связывании CD48 адгезина FimH кишечной палочкой   индуцируется  высвобождение TNF-α .

В отсутствие паразитов, активацию сенсибилизированных IgE тучных клеток осуществляют аллергены.

Источник

Клетки иммунной системы

Для понимания функционирования иммунитета в этой статье мы осветим oснoвные органы иммунной системы, а также фoрмирoвание и функции клеток иммунной системы. Для многих клетки иммунитета это белые клетки крови, однако градация, различие, функции иммунных клеток гораздо шире.

Органы иммунной системы

Первичные органы иммунной системы, так же называемые – центральные органы иммунной системы. Включают в себя: тимус – который располагается в центральной части грудины, костный мозг – находится в полых костях.

Вторичные органы иммунной системы, находятся на местах первого контакта, поэтому также имеют название – периферийные органы иммунной системы. Включает в себя: селезенка – располагается в левой верхней части брюшины, лимфaтичeские узлы – пo всeму телу, лимфоидная ткань кишечника – пейеровы бляшки, а тaкже аппендикс.

Решающую роль в иммунной системе играют: антитела и те самые белые клетки крови, ну а теперь поподробнее.

Антитела

Антитела это особая группа белков, которую вырабатывают клетки иммунитета. Антитела в организме вырабатываются к определенному антигену, тем самым приобретая специфичность. Что это значит. Например, человеку вводят препарат, содержащий антитела к вирусу туберкулеза, значит, эти антитела будут атаковать только вирус туберкулеза.

Белые клетки крови

Обозначены групповым названием – лейкоциты. Содержание иммунных клеток в организме достигает до 10% от общего веса человека, то есть их очень много. Лейкоциты делятся на пять основных категорий.

Клетки иммунной системы убивают раковые клетки

1. Лимфоциты

Это основные клетки нашей иммунной системы. Именно лимфоциты обладают памятью, они прописывают память о столкновении с любым антигеном. Лимфоциты подразделены на две основные группы, первая — Т лимфоциты, вторая В лимфоциты. Которые в свою очередь также имеют подгруппы.

T лимфоциты

Их образование и формирование происходит в тимусе. Принимают участие в образовании клеточного иммунитета, контролируют деятельность В лимфоцитов. Имеют следующие подгруппы:

Т хелперы, эти клетки осуществляют контроль за делением клеток организма и их дифференцирование. Хелперы значит помощники, они помогают В лимфоцитам секретировать антитела, активируют деятельность моноцитов, тучных клеток и зародыши натуральных киллеров.

Т супрессоры, их основная цель в случае гиперактивности Т хелперов, подавить их деятельность.

Т киллеры, убийцы, опознаватели антигенов, выделяют цитоксические лимфокины.

B лимфоциты

Основная цель В лимфoцитoв, в ответной реакции на активность aнтигeна, преобразоваться в плaзмaтичeскиe клeтки, которые организуют выработку антител.

В1 лимфоциты, преобразовываются в лимфaтической ткани кишечника, пейеровых бляшках, принимая участие гуморальном иммунитете могут стaновиться плазмоцитами.

В2 лимфоциты, преобразовываются в тканях костного мoзга, далее в сeлeзeнке и лимфoузлах. При участии Т хелперов могут изменяться в плазмоциты, которые способны осуществлять синтез иммуноглобулинов.

В лимфоциты памяти, это клетки живущие наиболее долго, образуются при воздействии aнтигeна и c активным участием Т лимфоцитов. Именно они обеспечивают максимально быстрый oтвет иммунной системы при повторной атаке.

2. Моноциты, макрофаги

Это очень крупные и мнoгочислeнные клетки иммунной системы. Находясь в крови, эта клeтка носит название – моноцит. При пoпадании в ткaни организма – макрофаг, от макрос – огромный, и фагос – пожирать. Функция этих клеток очень важна, макрофаг охотится, ищет. Атакует вирус или бактерию, поедает ее, переваривает, считывает всю информацию о враге и выбрасывает сигнальные молекулы, которые презентуют информацию о враге всем клеткам организма. Так же поедают отмершие клетки, чуждые, токсичные, зараженные. Процесс поедания вражеских клеток называется фагоцитоз.

3. Нейтрофилы

Жизненный цикл этих клеток очень мал. Образуются нейтрофилы первоначально в костном мозге, затем попадают в кровь и ткани. Функция нейтрофилов, нейтрализация воспалительных процессов и уничтожение бактерий путем заглатывания. Эти клетки иммунной системы могут сами, целенаправленно передвигаться к местам воспалений.

4. Эозинофилы

Эозинофилы из крови мигрируют в ткaни, где живут довольно долго. Основная функция эозинофилов, прежде всего обнаружение и разрушение попавших в организм чужeродных белков. Именно такой белок вызывает аллергии. Таким образом, эозинофилы борются с аллергией. Эти клетки иммунной системы так же борются с паразитами.

5. Базофилы

Базофилы начинают свой путь из кoстнoго мозга, затем в кровь, и чeрез пару часов в ткaни, гдe могут жить до двух недель. Эти клетки иммунитета принимaют активное участие в аллeргических реакциях. Попадая в ткани, они трансформируются в тучные клетки, в кoторых содержится много вeщества – гистамин. Это вещество помогает развитию аллергии. Именно базофилы не дают, всевозможным ядам распространится, они их запирают в тканях. За счет большого содержания гепарина осуществляют контроль за свертыванием крови.

Трансфер Факторы, цитокины

Трансфер Факторы это клетки иммунной системы, осуществляющие коммуникацию между всеми клетками иммунитета. В их функции входит обучение, повышение квалификации, работоспособности и компетентности всех клеток иммунитета. Наличие большой армии всех клеток иммунной системы, не делает наш иммунитет сильным. Эта армия должна иметь необходимый состав, организацию, боеспособность, лучшее вооружение и самую своевременную информацию о противнике. Только такая армия способна не допускать в наш организм лазутчиков и врагов. Препарат компании 4life – Трансфер Фактор Классик, содержит в одной капсуле 200 мг чистых молекул трансфер фактор. Начав принимать препарат Трансфер Фактор, вы начинаете приводить в порядок:

Читайте также:  Отвар солодки для иммунитета

1) Численность вашей иммунной армии

2) Повышаете боеспособность вашего иммунитета

4) Повышаете информированность

5) Повышаете компетентность

7) Исключаете дезинформацию (т.е. развитие аутоиммунных процессов)

Это информационная молекула, которая не лечит что-то сама по себе, но она делает ваш иммунитет способным противостать любой проблеме.

Трансфер Фактор купить, и получить консультацию, вы можете на нашем сайте, либо связавшись с нашими консультантами по т. +7 (495) 544 80 59

источник

Иммунология и биохимия

Тучные клетки

Тучные клетки представляют собой лейкоциты, которые образуются из кроветворных клеток-предшественников. В крови тучные клетки циркулируют в незрелой форме, мигрируют в васкуляризированные (богатые сосудами) ткани, где подвергаются окончательной дифференцировке и созреванию с помощью фактора стволовых клеток, цитокинов эндотелиальных клеток и фибробластов в месте локализации тучных клеток. Тучные клетки находятся в большинстве тканей тела, особенно в местах, которые находятся в тесном контакте с внешней средой, таких как кожа, дыхательные пути и кишечник.

В зависимости от локализации различают тучные клетки слизистых, тучные клетки вблизи сосудов — периваскулярные. Тучные клетки способны активно перемещаться в тканях, мигрировать в тканях. Для этого они используют свои псевдоподии или филоподии. Внутри тучных клеток находится несколько сотен везикул (не гранул!). При стимуляции клеток антигеном через иммуноглобулин Е (IgE) они сливаются с клеточной мембраной в течение доли секунды, и их содержимое освобождается в виде интактных пузырьков, Высвобождение содержимого везикул характеризуют термином «дегрануляция», этот процесс играет важную роль в аллергических реакций немедленного типа (тип 1 аллергия, анафилаксия).

Термин «дегрануляция» восходит к световой микроскопии и не правилен, потому что на самом деле это быстрый экзоцитоз покрытых мембраной пузырьков. Термин «тучные клетки- гранулоциты» также не корректен, так как гранулы не ограничены мембраной — гранулы гликогена. Как видно на фотографии (рис.1)

везикулы тучных клеток очень однородные электронно-плотные и равномерные. В тучных клетках человека везикулы имеют очень разное содержимое. Диаметр везикул около 1 мкм. Разное содержимое везикул определяет их разное окрашивание при световой микроскопии. базофильное, метахроматическое (рис.2).

В состав пузырьков кроме воды входят гистамин, гепаринм и гликозаминогликаны (построеные из глюкуроновой кислоты, серной кислоты и глюкозамина, что объясняет метахромазию), хемотаксические факторы, ферменты триптазы и / или химазы. В пузырьках тучных клеток хранятся следующие медиаторы: фактор некроза опухоли альфа (ФНО-альфа), интерлейкины 4,5,6 и 8 (IL-4, IL-5, IL-6, IL8) и хемотаксический фактор иммиграции эозинофилов способствует мобилизации эозинофилов, которые позже блокируют эффекты гистамина и помогают ограничить воспаление. Кроме того, с пузырьками освобождается фактор роста фибробластов, фактор стволовых клеток, фактор сосудистой проницаемости и фактора роста эндотелия сосудов. Другие медиаторы в тучных клетках формируются и освобождаются только при стимуляции.

Вероятно, они не хранится в пузырьках: простагландин GD2 (PGD 2), лейкотриен С4 (LTC4), лейкотриен D4 (LTD4), фактора активации тромбоцитов (PAF).

В 1 мм³ кожи человека обычно находят 7000-10000 тучных клеток предпочтительно вблизи капилляров, лимфатических сосудов и нервов. Тучные клетки человека, как правило, вытянуты и размером около 5 х 15 микрон. По морфологическим и биохимическим особенностям выделяют три типа тучных клеток.

Тип 1 (рис.3) наиболее распространенный тип, преимущественно в коже, в основном, с пузырьками, которые имеют аморфное электронно-плотное содержимое Пузырьки содержат химазу и триптазу, которые образуют рулонообразные структуры по краю клеток.

Тип 2 встречается реже, преобладает в легких, содержит большое количество различных пузырьков и осмиофильные липидные тела высокой электронной плотности (рис.4).

Липидные тела содержат циклооксигеназы. Тучные клетки 2 типа производят только триптазу.

Тип 3 (рис.5) Редко этот тип синтезирует химазу. Тучные клетки типа 3 находятся в подмышечных лимфатических узлах, легких и соединительной ткани кишечника.

Тучные клетки имеют очень мало шероховатой эндоплазматической сети и малый аппарат Гольджи. В цитоплазме рядом с пузырьками можно найти некоторые свободные рибосомы, микротрубочки, актин и промежуточные филаменты.

Тучные клетки участвуют в аллергии, остром и хроническом воспалении, активации Т-клеток и изгнании паразитов из тканей. При многих заболеваний кожи, таких как псориаз, хроническая экзема, склеродермия и лишаи — красный плоский лишай — их функция нарушается.

Локализация тучных клеток в тканях, их пластичность, способность синтезировать различные медиаторы определяют их важность как иммунных эффекторных клеток и модуляторов как во врожденном, так и адаптивном иммунитете против бактерий, вирусов, грибов и паразитов.

Роль тучных клеток в иммунитете

Тучные клетки могут участвовать как в прямом киллинге (убийстве) микроорганизмов путем фагоцитоза и образования реактивных форм кислорода, так с помощью антимикробных пептидов (антибиотиков), таких как кателицидины, которые они продуцируют как постоянно, так и в ответ на распознавание определенных молекул возбудителей – липополисахаридов или липотейхоевой кислоты. Кроме того, аналогично нейтрофилам, тучные клетки образуют внеклеточные ловушки, которые захватывают и убивают микроорганизмы. Хотя эти бактерицидные ответы могут быть важными при некоторых инфекциях, но относительно небольшое число тучных клеток в тканях предполагает, что более важна роль тучных клеток в координации врожденных и адаптивных реакций,в балансе иммунной защиты путем освобождения медиаторов гранул.

Высвобождение гистамина и других вазоактивных медиаторов повышает проницаемость сосудов и ускоряет местный кровоток, что может увеличить изгнание паразитов через усиление сокращения гладких мышц слизистых. Кроме того, гистамин усиливает образование слизи эпителиальными клетками, которая защищает клетки от колонизации патогенами.

Тучные клетки синтезируют хемотаксические факторы, которые рекрутируют, мобилизуют множество клеток воспаления, включая эозинофилы (эотаксин), натуральные киллеры (NK) и нейтрофилы (интерлейкин -8 и TNF-α).

Читайте также:  Инструкция по повышению иммунитета

Продукты секреции тучных клеток участвуют в регуляции адаптивного иммунного ответа. Цитокины и хемокины тучных клеток (TNF-α и CCL20) усиливают миграцию дендритных клеток и эффекторных Т-клеток (CXCL10/IP10 и CCL5/RANTES) к месту инфекции и в лимфатические узлы. Тучные клетки могут функционировать непосредственно как антиген-представляющие клетки особенно для CD8 + Т-клеток (цитотоксических Т лимфоцитов). Кроме того, продукты тучных клеток ускоряют созревание незрелых дендритных клеток и активируют презентацию антигена и экспрессию костимулирующих молекул. Гистамин тучных клеток путем ингибирования секреции интерлейкина-12 и усиления секреции интерлейкина-10 способствуют формированию клонов Т хлеперов 2. Таким образом, тучные клетки способствуют развитию различных иммунных реакций в зависимости от конкретной ситуации в месте воспаления.

Важно отметить, что наряду с усилением локальной иммунной защиты, тучные клетки могут ухудшить течение инфекций через перепроизводство провоспалительных медиаторов.

Пути активации тучных клеток патогенами

В ответ на внедрение паразитов, в том числе нематод и малярию, у человека вырабатываются антитела IgE с высоким сродством к рецептору на тучных клетках FcεRI. Благодаря высокому сродству (аффинности) антител IgE к FcεRI они сенсибилизирует тучные клетки, связываются с ними. Антиген, который индуцировал синтез IgE, cвязывается со специфическим антителами -IgE — на поверхности тучных клеток. Процесс связывания антигенспецифических IgE с антигеном приводит к кластеризации FcεRI, которая, в свою очередь, включает сигнальный путь высвобождения медиаторов.

Тучные клетки также экспрессируют рецепторы к IgG — FcγR, рецепторы к комплементу. При инфицировании паразитами возможна активация тучных клеток и через эти типы рецепторов.

Как и другие лейкоциты, тучные клетки могут быть активированы непосредственным взаимодействием их с патогенами через рецепторы распознавания молекул на поверхности мембран патогенов, включая Toll-подобные рецепторы (TLR), Nod-подобные рецепторы, C-тип лектинов, таких как Dectin-1 и др.

Важным механизмом в управлении типом ответа тучных клеток является распознавание патоген ассоциированных молекул.

Так, пептидогликаны патогенов через TLR2 на тучных клетках опосредуют как высвобождение клетками цитокинов, так и дегрануляцию. Cтимулирование тучных клеток липополисахаридами паразитов (LPS) через TLR4 приводит к высвобождению только цитокинов.

Связывание грибкового β-глюкана с Dectin-1 индуцирует высвобождение тучными клетками лейкотриена С4, в то время как при связывании CD48 адгезина FimH кишечной палочкой индуцируется высвобождение TNF-α .

В отсутствие паразитов, активацию сенсибилизированных IgE тучных клеток осуществляют аллергены.

источник

Повышаем иммунитет

Мечников внёс огромный вклад в развитие иммунологии. Он обосновал учение о фагоцитозе и фагоцитах. Доказал, что фагоцитоз — явление универсальное, наблюдается у всех живот­ных, включая простейших, и проявляется по отно­шению ко всем чужеродным веществам (бактерии, органические частицы и т. д.). Теория фагоцитоза заложила краеугольный камень клеточной теории иммунитета и процесса иммуногенеза в целом с учетом клеточных и гуморальных факторов. За разработку теорий фагоцитоза И. И. Мечникову в 1908 г присуждена Нобелевская премия. Л. Пастер на своем портрете, подаренном И. И. Мечникову, написал: «На память знаменитому Мечникову — творцу фагоцитарной теории».

Неспецифические факторы защиты организма

Механические факторы. Кожа и слизистые оболочки ме­ханически препятствуют проникновению микроорганизмов и других антигенов в организм. Последние все же могут попадать в организм при заболеваниях и повреждениях кожи (травмы, ожоги, воспалительные заболевания, укусы насекомых, живот­ных и т. д.), а в некоторых случаях и через нормальную кожу и слизистую оболочку, проникая между клетками или через клет­ки эпителия (например, вирусы). Механическую защиту осуще­ствляет также реснитчатый эпителий верхних дыхательных пу­тей, так как движение ресничек постоянно удаляет слизь вмес­те с попавшими в дыхательные пути инородными частицами и микроорганизмами.

Физико-химические факторы. Антимикробными свой­ствами обладают уксусная, молочная, муравьиная и другие кис­лоты, выделяемые потовыми и сальными железами кожи; соля­ная кислота желудочного сока, а также протеолитические и другие ферменты, имеющиеся в жидкостях и тканях организма. Особая роль в антимикробном действии принадлежит ферменту лизоциму. Этот протеолитический фермент получил название «мурамидаза», так как разрушает клеточную стенку бактерий и других клеток, вызывая их гибель и способствуя фагоцитозу. Лизоцим вырабатывают макрофаги и нейтрофилы. Содержится он в больших количествах во всех секретах, жидко­стях и тканях организма (кровь, слюна, слезы, молоко, кишеч­ная слизь, мозг и т. д.). Снижение уровня фермента приводит к возникновению инфекционных и других воспалительных заболе­ваний. В настоящее время осуществлен химический синтез лизоцима, и он используется как медицинский препарат для лече­ния воспалительных заболеваний.

Иммунобиологические факторы. В процессе эволюции сформировался комплекс гуморальных и клеточных факторов не­специфической резистентности, направленных на устранение чу­жеродных веществ и частиц, попавших в организм.

Гуморальные факторы неспецифической резистентности со­стоят из разнообразных белков, содержащихся в крови и жид­костях организма. К ним относятся белки системы комплемен­та, интерферон, трансферрин, β-лизины, белок пропердин, фибронектин и др.

Белки системы комплемента обычно неактивны, но приоб­ретают активность в результате последовательной активации и взаимодействия компонентов комплемента. Интерферон оказы­вает иммуномодулирующий, пролиферативный эффект и вызы­вает в клетке, инфицированной вирусом, состояние противови­русной резистентности. β -Лизины вырабатываются тромбоцита­ми и обладают бактерицидным действием. Трансферрин конку­рирует с микроорганизмами за необходимые для них метаболи­ты, без которых возбудители не могут размножаться. Белок про-пердин участвует в активации комплемента и других реакциях. Сывороточные ингибиторы крови, например р-ингибиторы (р-липопротеины), инактивируют многие вирусы в результате не­специфической блокады их поверхности.

Отдельные гуморальные факторы (некоторые компоненты ком­племента, фибронектин и др.) вместе с антителами взаимодей­ствуют с поверхностью микроорганизмов, способствуя их фаго­цитозу, играя роль опсонинов.

Большое значение в неспецифической резистентности имеют клетки, способные к фагоцитозу, а также клетки с цитотоксической активностью, называемые естественными киллерами, или NK-клетками. NK-клетки представляют собой особую популяцию лимфоцитоподобных клеток (большие гранулосодержащие лим­фоциты), обладающих цитотоксическим действием против чуже­родных клеток (раковых, клеток простейших и клеток, поражен­ных вирусом). Видимо, NK-клетки осуществляют в организме противоопухолевый надзор. В поддержании резистентности организма имеет большое зна­чение и нормальная микрофлора организма.

источник

Источник