Вавилов иммунитет растений к инфекционным заболеваниям
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 июня 2018;
проверки требует 1 правка.
Иммуните́т расте́ний (фитоиммунитет) — невосприимчивость растений к патогенам, а также насекомым. Фитоиммунитет обеспечивается множеством механизмов: выработкой низкомолекулярных фитонцидов, обладающих антибактериальными и фунгицидными свойствами, рецепторами распознавания специфических белковых и углеводных последовательностей (англ. pattern recognition receptors)[1][2], характерных для многих возбудителей, и системой подавления экспрессии генов при помощи РНК (RNA silencing)[3] в качестве противовирусной защиты.
Определения[править | править код]
Иммунитет растения к вредному организму — Способность растения в той или иной мере противостоять заселению или заражению вредным организмом или противодействовать его развитию в растении.[4]
Различают также толерантность растения к вредному организму — Способность растения сохранять удовлетворительную урожайность и качество продукции при поражении возбудителем болезни или повреждении вредителем.[4]
Механизмы иммунитета растения к болезням (устойчивость растения по отношению к фитопатогену) и иммунитета растения к вредителям (устойчивость растения к повреждению его вредителями) различны.
Учение Вавилова об иммунитете растений[править | править код]
Российский и советский учёный Н. И. Вавилов является основателем учения об иммунитете растений, положившего начало изучению его генетической природы. Он считал, что устойчивость против паразитов выработалась в процессе эволюции растений в центрах их происхождения на фоне длительного (в течение тысячелетий) естественного заражения возбудителями болезней. Согласно Вавилову, если в результате эволюции растения приобретали гены устойчивости к патогенам — возбудителям болезней, то последние приобретали способность поражать устойчивые сорта благодаря появлению новых физиологических рас. Так, каждый сорт пшеницы может быть восприимчивым к одним расам и иммунным к другим. Новые расы фитопатогенных микроорганизмов возникают в результате гибридизации, мутаций или гетерокариозиса (разноядерности) и других процессов[5].
Вавилов подразделял иммунитет растений на структурный (механический) и химический. Механический иммунитет растений обусловлен морфологическими особенностями растения-хозяина, в частности, наличием защитных приспособлений, которые препятствуют проникновению патогенов в тело растений. Химический иммунитет зависит от химических особенностей растений[5].
Типы иммунитета[4][править | править код]
* активный иммунитет растения: устойчивость растения, которая обеспечивается свойствами растений, проявляющимися у них только в случае нападения фитопатогена или фитофага, то есть в виде защитных реакций растения-хозяина на внедрение возбудителя болезни или повреждение вредителем.
* пассивный иммунитет растения: устойчивость растения, которая обеспечивается свойствами, проявляющимися у растений независимо от угрозы заражения или заселения.
* возрастной иммунитет растения: устойчивость растения к вредному организму, проявляющаяся в определённом возрасте.
* врожденный иммунитет растения: устойчивость
растения к вредному организму, передающаяся по наследству.
* приобретенный иммунитет растения: устойчивость растения к вредному организму, приобретаемая растением в процессе его индивидуального развития [онтогенеза] под влиянием определенных внешних факторов или в результате перенесения данной болезни.
* групповой иммунитет растения: устойчивость растения к нескольким видам одной биологической группы возбудителей заболеваний или вредителей.
* длительный иммунитет растения: способность растения длительное время сохранять индуцированный иммунитет к вредному организму.
* индуцированный иммунитет растения: устойчивость растения к вредному организму, вызванная ослабленными штаммами фитопатогенов или химическими иммунизаторами.
* комплексный иммунитет растения: устойчивость растения к разным группам возбудителей заболеваний и вредителей.
* олигогенный иммунитет растения: устойчивость растения к определенным расам вредного организма, контролируемая малым числом генов растения.
* полигенный иммунитет растения: устойчивость растения, не специфичная к расам вредного организма и контролируемая многими генами растения.
* неспецифический иммунитет растения: устойчивость растения, которая выражается в полной невосприимчивости растений к вредному организму.
* специфический иммунитет растения: устойчивость растения к вредному организму, которая проявляется на уровне отдельных форм в пределах вида.
Химическая иммунизация растения[править | править код]
Химическая иммунизация растения — это использование химического вещества для создания иммунитета растения к вредным организмам.[4]
Метод оценки иммунитета растений[править | править код]
Заключается в оценке устойчивости растений к вредным организмам с учётом биотических и абиотических факторов по проявлению симптомов заболевания или повреждения, по степени поражения или повреждения растений, по распространению болезни, или по потерям урожая.[4]
См. также[править | править код]
- Иммунитет (биология)
- Иммунная система
- Резистентность (биология)
- Патоген
- Фитопатология
Примечания[править | править код]
Литература[править | править код]
- Вавилов Н. И. Иммунитет растений к инфекционным заболеваниям (сб.) / Отв. ред. Л. Н. Андреев; (Предисл. Л. Н. Андреева, М. В. Горленко); АН СССР, Секция хим.-технол. и биол. наук. М. Наука 1986.
- Вавилов Н. И. Проблемы иммунитета культурных растений / Н. И. Вавилов. — Т. IV. — М.; Л.: Наука, 1964.
- Вердеревский Д. Д., Иммунитет растений к инфекционным болезням, Кишинев, 1968.
- Горленко М. В. Краткий курс иммунитета растений к инфекционным болезням, 2 изд., М., 1962.
- Дьяков Ю. Т., Шкаликов В. А. Иммунитет растений. Колос, 2005 (ISBN 5-9532-0328-4).
- Курсанова Т. А. Развитие представлений о природе иммунитета растений. М.: Наука, 1988.
- Плотникова Л. Я., Иммунитет растений и селекция на устойчивость к болезням и вредителям: Учебник для студентов вузов. КолосС, 2007 (ISBN 978-5-9532-0356-2).
- Рубин Б. А. Биохимия и физиология иммунитета растений / Б. А. Рубин, Е. В. Арциховская, В. А. Аксенова. М., 1975. — 320 с.
- Сухоруков К. Т. Физиология иммунитета растений. М.: Изд-во Акад. наук СССР, 1952.
- Физиология иммунитета растений (сб. статей) М.: Наука, 1968.
- Флористика, физиология и иммунитет растений (сб. статей) / Редкол.: Ю. Н. Прокудин (отв. ред.) и др. Харьков: Вища школа, Изд -во при Харьк. ун-те 1981.
- Шапиро И. Д. Иммунитет полевых культур к насекомым и клещам / И. Д. Шапиро. Л.: Наука, 1985.
Иммунитет растений, невосприимчивость растений к возбудителям болезней и вредителям, а также к продуктам их жизнедеятельности. Частные проявления иммунитет растений — устойчивость (резистентность) и выносливость. Устойчивость заключается в том, что растения какого-либо сорта (иногда вида) не поражаются болезнью или вредителями либо поражаются менее интенсивно, чем другие сорта (или виды). Выносливостью называется способность больных или поврежденных растений сохранять свою продуктивность (количество и качество урожая). Применение устойчивых сортов — наиболее надёжный метод борьбы со многими болезнями растений (ржавчиной хлебных злаков, головнёй и ржавчиной кукурузы и др.). Возделывание сортов подсолнечника, устойчивых против заразихи и моли, привело к почти полной ликвидации поражения его этими вредителями. Вавилов установил, что к заболеваниям контролируется сравнительно небольшим числом генов, поддающихся учёту при гибридологическом анализе. Например, у разных видов пшеницы обнаружено около 20 генов устойчивости к стеблевой ржавчине, которые локализованы на 9 хромосомах, находящихся в разных хромосомных наборах (геномах). Устойчивость или восприимчивость растений — результат взаимодействия двух геномов (растения и паразита), что и объясняет многообразие как генов устойчивости растений к одному и тому же виду возбудителя, так и физиологических рас паразита, способных преодолевать действие этих генов. Такое многообразие — следствие параллельной эволюции паразита и растения-хозяина (Н.И. Вавилов, П.М. Жуковский). Американский генетик и фитопатолог Х.Г. Флор выдвинул гипотезу «ген на ген». По этой теории, все гены резистентного растения (R-гены) рано или поздно должны быть преодолены генами вирулентности паразита, так как темп его размножения намного выше, чем у растения. Тем не менее в природе всегда можно найти растения, устойчивые ко всем известным расам паразитов. Одна из важнейших причин этой стойкости растений — наличие у них так называемой полевой устойчивости (типы устойчивости, при которых паразит может развиваться, но вследствие недостатка пищи в растении, из-за наличия механических преград, неблагоприятного строения устьиц и т. п. развивается медленно, и потери урожая в связи с этим невелики). Полевая устойчивость контролируется полимерными генами, каждый из которых не даёт видимого эффекта устойчивости, но их различные сочетания определяют ту или иную её степень.
Единой теории иммунитета растений нет вследствие большого разнообразия типов возбудителей болезней и защитных реакций растений. Н.И. Вавилов подразделял И. р. на структурный (механический) и химический. Механический иммунитет растений обусловлен морфологическими особенностями растения-хозяина, в частности наличием защитных приспособлений (например, густое опушение побегов и т. д.), которые препятствуют проникновению патогенов в тело растений. Химический иммунитет растений обусловлен многими химическими особенностями растений. Иногда иммунитет растений зависит от недостатка в растении какого-либо необходимого для паразита вещества, в других случаях растение вырабатывает вещества, вредные для паразита (фитоалексины немецкого биолога К. Мюллера; фитонциды советского биолога Б.П. Токина). Советский микробиолог Т.Д. Страхов наблюдал, что в тканях устойчивых к болезням растений происходят регрессивные изменения патогенных микроорганизмов, связанные с действием ферментов растения, его обменными реакциями. Советский биохимики Б.А. Рубин и другие связывают реакции растений, направленные на инактивацию возбудителя болезни и его токсинов, с деятельностью окислительных систем и энергетическим обменом клетки. Различные ферменты растений, регулирующие энергообмен, характеризуются разной степенью устойчивости к продуктам жизнедеятельности патогенных микроорганизмов. У иммунных форм растений доля участия ферментов, устойчивых к метаболитам патогенов, более значительна, чем у неиммунных. Наиболее устойчивы к влиянию метаболитов окислительные системы (пероксидазы и полифенолоксидазы), а также ряд флавиновых ферментов. В инфицированных клетках иммунных растений активность этих ферментов не только не падает, но даже возрастает. Это активирование обусловлено биосинтезом ферментных белков, как идентичных присутствующим в незаражённых тканях, так и отличающихся от них по ряду свойств (так называемых изоферментов). У растений, как и у беспозвоночных животных, не доказана способность вырабатывать антитела в ответ на антигены. Только у позвоночных имеются специальные органы, клетки которых вырабатывают антитела. В инфицированных тканях у иммунных растений образуются полноценные в функциональном отношении органоиды протоплазмы — митохондрии, пластиды, рибосомы, которые обусловливают присущую иммунным формам растений способность не только сохранять, но и повышать при инфекции энергетическую эффективность дыхания. Вызываемые болезнетворными агентами нарушения дыхания сопровождаются образованием различных соединений, выполняющих, в частности, роль своеобразных химических барьеров, препятствующих распространению инфекции. Следовательно, И. р. — выражение особенностей протопласта, клетки, ткани, органа и организма в целом, представляющего сложную, разнокачественную и в то же время функционально единую биологическую систему. Характер ответных реакций растений на повреждения вредителями, паразитами — образование химических, механических и ростовых барьеров, способность к регенерации поврежденных тканей, замена утраченных органов — всё это играет важную роль в иммунитета растений к вредителям и паразитам. Вместе с тем в ряде случаев существенное значение для проявления иммунитета растений имеют содержание в тканях некоторых химических соединений, анатомические особенности растений и т. д. В большой степени это относится к явлениям иммунитета растений к вредителям-насекомым. Так, ряд продуктов так называемого вторичного обмена растений (алкалоиды, гликозиды, терпены, сапонины и др.) оказывает токсическое действие на пищеварительный аппарат, эндокринную и нейрогуморальную системы насекомых и других вредителей растений.
В селекции растений на устойчивость к заболеваниям и вредителям наибольшее значение имеет гибридизация (внутрисортовая, межвидовая и даже межродовая). Исходным материалом для селекции служат авто — и амфиполиплоиды, на основе которых получают гибриды между разнохромосомными видами. Такие амфидиплоиды созданы, например, советским селекционером М.Ф. Терновским при получении сортов табака, устойчивых к мучнистой росе. Для создания устойчивых сортов можно использовать искусственный мутагенез, а у перекрёстноопыляемых растений — отбор среди гетерозиготных популяций. Таким способом советские селекционеры Л.А. Жданов и В.С. Пустовойт получили сорта подсолнечника, устойчивые к заразихе. Для длительного сохранения устойчивости сортов предложено:
- 1) создание многолинейных сортов путём скрещивания хозяйственно ценных сортов с сортами, несущими разные гены устойчивости. При этом вследствие разнообразия генов устойчивости у полученных гибридов новые расы паразитов не могут накопиться в достаточном количестве;
- 2) сочетание в одном сорте R-генов с генами полевой устойчивости. Повышению устойчивости способствует также периодическая смена сортового состава в том или ином районе или хозяйстве.
Людям постоянно вбивают в голову миф о том, что Вавилов – выдающийся генетик мирового класса. До сих пор можно найти подобные высказывания о Вавилове. Например, Стариков пишет, что Н.И.Вавилов занимался не философией, а генетикой, заложив теоретические положения её основ и уже тогда вышел на такие вершины понимания генетических процессов, до которых западные учёные доросли только лет через 30 (https://nstarikov.ru/blog/4697 ).
Чтобы понять, каким генетиком был Вавилов, смотрим список его научных работ. Как будто бы генетик Вавилов отметился только в научно популярных брошюрках, типа вот этой: «Генетика на службе социалистического земледелия» (Введение к плану генетических исследований в области растениеводства на 1933—1937 гг.). [Доклад и заключительное слово].— В кн. Труды Всесоюзной конференции по планированию генетико-селекционных исследований. Ленинград, 25— 29 июня 1932 г. Л., АН СССР, 1933, с. 17—46, 231—234). Наверное, это единственная его работа, которую можно отнести к генетическим, хотя Вавилов после Гражданской войны практически нигде не преподавал — он в основном ездил по странам мира и СССР, то есть по городам и весям. Как видим, это обычное выступление в стиле «ля-ля». Имеется также статейкa по методике преподавания генетики (Как строить курс генетики, селекции и семеноводства.— Яровизация, 1939, № 1, с. 131—135).
Знание генетики Вавиловым было четко оценено Кольцовым. На сессии 1936 г. Кольцов сказал Н.И.Вавилову: » Я обращаюсь к Николаю Ивановичу, знаете ли Вы генетику как следует, не знаете… Наш Ботанический журнал вы читаете, конечно, плохо. Вы мало занимаетесь дрозофилой, и, если Вам дать обычную студенческую зачетную задачу, определить тот пункт хромосомы, где лежит определенная мутация, то этой задачи Вы, пожалуй, сразу не решите, так как студенческого курса генетики в свое время не проходили (В. Сойфер, 2002. Глава 7. Ссылка 75).
Во время «научных» дискуссий 1936 и 1939 года, когда формальные генетики атаковали Лысенко, Вавилов занимал довольно пассивную позицию. Кстати Вавилов очень положительно оценил вегетативную гибридизацию Об этом свидетельствует его статья «Значение межвидовой и межродовой гибридизации в селекции а эволюции’. Изв. АН СССР, Серия биол., 1938, № 3, с. 543—563. Литература 25 назв. Ту же самую статью он публикует в журнале Природа (1938, № 4, с. 68—82.) Вавилов заявил на Общем собрании Академии наук СССР. (оно проходило в Москве 20–21 мая 1937 г.): “Наш коллектив Института генетики и другого большого института, которыми мне приходится руководить. Институт растениеводства, вероятно, больше, чем какое-либо учреждение Европы, работает в области подлинной гибридизации, по существу, продолжая дело Ивана Владимировича Мичурина… Я должен отметить и другой крупный раздел, который обойден в этом докладе при выпячивании других сторон, – это раздел по отдаленной гибридизации, возглавляемой профессором Костовым. Сельскохозяйственная академия премировала работы доктора Костова как выдающиеся работы”.
Он охотно публикуется в журнале «Яровизация», который редактировал Лысенко (Об основных понятиях и терминах в селекции и семеноводстве применительно к организации производства сортовых семян. (Докладная записка комиссии под председательством Н. И. Вавилова).—Яровизация, 1938, № 1-2, с. 137—142). И вдруг в 1939 Вавилов подверг резкой критике взгляды Лысенко на заседании Ленинградского областного бюро секции научных работников. В конце своего выступления Вавилов сказал: «Пойдем на костер, будем гореть, но от своих убеждений не откажемся».
Как и все тогдашние биологи в СССР Вавилов отметился брошюрой о дарвинизме (Линнеевский вид как система. М.— Л., Сельхозгиз, 1931, 32 с, табл.), но опять же эволюцией Вавилов никогда не занимался и не знал ее как следует. В 1941 году выходит последняя статья Вавилова на английском языке. Entering a new epoch. [Начало новой эпохи].— Chronica bot., 1941, v. 6, № 19-20, p. 433—437.
Вывод очевиден: генетикой Вавилов никогда не занимался и скорее всего вообщее ее не знал, по крайней мере знал ее хуже, чем Лысенко, писавший в Энциклопедию очень неплохие статьи по генетике. Я его намерение пойти на костер было не более, чем посланием потомкам, которые должны были поверить, что он невиновен.
09.01.2014
Иммунитет — это невосприимчивость организма к инфекционной болезни при контакте с ее возбудителем и наличии необходимых для заражения условий.
Частные проявления иммунитета — устойчивость (резистентность) и выносливость. Устойчивость заключается в том, что растения какого-либо сорта (иногда вида) не поражаются болезнью или вредителями либо поражаются менее интенсивно, чем другие сорта (или виды). Выносливостью называется способность больных или поврежденных растений сохранять свою продуктивность (количество и качество урожая).
Растения могут обладать абсолютным иммунитетом, который объясняется неспособностью патогена проникнуть в растение и развиваться в нем даже при самых благоприятных для этого внешних условиях. Например, хвойные растения не поражаются мучнистой росой, а лиственные — шютте. Помимо абсолютного иммунитета растения могут обладать относительной устойчивостью к другим заболеваниям, что зависит от индивидуальных свойств растения и его анатомо-морфологических или физиолого-биохимических особенностей.
Различают врожденный (естественный) и приобретенный (искусственный) иммунитет. Врожденный иммунитет — это наследственная невосприимчивость к болезни, сформировавшаяся в результате направленной селекции или длительной совместной эволюции (филогенеза) растения-хозяина и патогена. Приобретенный иммунитет — это устойчивость к болезни, приобретаемая растением в процессе его индивидуального развития (онтогенеза) под влиянием определенных внешних факторов или в результате перенесения данной болезни. Приобретенный иммунитет не передается по наследству.
Врожденный иммунитет может быть пассивным или активным. Под пассивным иммунитетом понимают устойчивость к болезни, которая обеспечивается свойствами, проявляющимися у растений независимо от угрозы заражения, т. е. эти свойства не являются защитными реакциями растения на нападение патогена. Пассивный иммунитет связан с особенностями формы и анатомического строения растений (форма кроны, строение устьиц, наличие опушения, кутикулы или воскового налета) или с их функционально-физиологическими и биохимическими особенностями (содержание в клеточном соке соединений, токсичных для патогенна, или отсутствие необходимых для его питания веществ, выделение фитонцидов).
Активный иммунитет — это устойчивость к болезни, которая обеспечивается свойствами растений, проявляющимися у них только в случае нападения патогена, т.е. в виде защитных реакций растения-хозяина. Ярким примером антиинфекционной защитной реакции может служить реакция сверхчувствительности, которая заключается в быстром отмирании клеток устойчивого растения вокруг места внедрения патогена. Образуется своеобразный защитный барьер, патоген локализуется, лишается питания и погибает. В ответ на заражение растение может также выделять особые летучие вещества — фитоалексины, которые обладают антибиотическим действием, задерживая развитие патогенов или подавляя процесс синтеза ими ферментов и токсинов. Существует также ряд антитоксических защитных реакций, направленных на обезвреживание ферментов, токсинов и других вредных продуктов жизнедеятельности патогенов (перестройка окислительной системы и др.).
Различают такие понятия, как вертикальная и горизонтальная устойчивость. Под вертикальной понимают высокую устойчивость растения (сорта) лишь к определенным расам данного патогена, а под горизонтальной — ту или иную степень устойчивости ко всем расам данного патогена.
Устойчивость растений к болезням зависит от возраста самого растения, физиологического состояния его органов. Например, сеянцы могут полегать только в раннем возрасте, а затем становятся устойчивыми к полеганию. Мучнистая роса поражает только молодые листья растений, а старые, покрытые более толстой кутикулой, не поражаются или поражаются в меньшей степени.
Факторы окружающей среды также значительно влияют на устойчивость и выносливость растений. Например, засушливая погода в течение лета снижает устойчивость к мучнистой росе, а минеральные удобрения делают растения устойчивее ко многим болезням.