Закономерности функционирования системы иммунитета
ЗАКОНОМЕРНОСТИ ФУНКЦИОНИРОВАНИЯ ИММУННОЙ СИСТЕМЫ И ИММУНОКОРРЕКЦИЯ ПРИ ЗАБОЛЕВАНИЯХ ВНУТРЕННИХ ОРГАНОВ
- Авторы
- Файлы
Функционирование иммунной системы (ИС) в условиях формирования патологии на этапах здоровье — предболезнь — болезнь характеризуют следующие закономерности:
- Закон изменчивости ИС отражает непостоянство величин показателей иммунитета под влиянием многочисленных и разнообразных экзо- и эндогенных воздействий и проявляется как у здоровых, так и у больных людей. Уменьшение вариабельности иммунологических показателей на протяжении достаточно длительного времени и достижение адекватности иммунного ответа — вот профилактическая задача, стоящая перед иммунологами на этом этапе.
- Закон деформации ИС определяет особенности функционирования ИС в условиях патологии, то есть повреждение и разрушение ИС под влиянием экстремальных факторов среды, воздействующих на этапе предболезни. Применение терминов иммунодефицит, иммунная недостаточность при этих состояниях не совсем оправдано: так как некоторые иммунологические показатели оказываются действительно низкими, другие же — значительно превышают нормальные уровни. Восстановление деформированного иммунитета является главной задачей на этом этапе.
- Закон гиперэргии и аутоагрессии ИС характеризует функционирование ИС в условиях болезни; чем больше гиперэргия, тем больше аутоагрессия ИС, тем тяжелее течение и прогноз заболевания.
В патогенезе возникновения и развития заболеваний внутренних органов решающая роль принадлежит иммунным механизмам формирования болезни. Практически любой хронический воспалительный процесс (ХВП) сопровождается выраженной аутоинтоксикацией организма, которая подавляет функционирование ИС. Именно этим объясняется необходимость управления реакциями иммунитета и включением в проводимую терапию иммуноактивных препаратов. К сожалению, как показали наши клинические наблюдения и проведенные иммунологические исследования, надежды на эффективность применения препаратов, относящихся к классу иммуностимуляторов, себя не оправдали. Эти препараты всё реже применяются в практике врачей многих специальностей при лечении заболеваний внутренних органов. Нередко применение иммуностимуляторов, благодаря активации ими провоспалительных цитокинов, приводит к утяжелению патологического процесса, переходу болезни к затяжному течению, многочисленным (распространенным и часто непредсказуемым) побочным эффектам: поражению печени, почек, эндокринных органов.
Применение иммуномодуляторов в период ремиссии ХВП нормализует работу ИС. При этом в иммунограмме возникают сдвиги, характерные для обострения ХВП — то есть проявляется субклиническое обострение, благоприятное для его завершения. Наши наблюдения показали, что полиоксидоний, благодаря своим иммуномодулирующим свойствам, не обладает способностью усиливать у больных воспалительные реакции, индуцировать аутоиммунные или аллергические процессы, вызывать побочные реакции. В то же время полиоксидоний обладает выраженной детоксикационной активностью и сильным антиоксидантным действием, повышает устойчивость мембран клеток к действию лекарственных препаратов и химических веществ, снижая их токсичность. Установлено, что полиоксидоний как иммуномодулятор с успехом применим на всех этапах формирования болезни: он уменьшает изменчивость иммунитета, восстанавливает деформированный иммунитет и снижает гиперэргию и аутоагрессию ИС в условиях болезни.
Показано, что деринат, как иммуномодулятор, нормализует иммунный статус на клеточном и гуморальном уровнях, является универсальным метаболическим препаратом, обладающим неспецифическим общебиологическим воздействием на все органы и ткани, является мощным стимулятором клеточной репарации, регенерации и стабилизации гемопоэза. Он способен активировать противобактериальный, противовирусный, противогрибковый, противоопухолевый эффекты. При коррекции нарушений иммунитета у больных с сочетанием доброкачественной гиперплазии предстательной железы и хронического простатита деринатом нормализуется большинство показателей функционирования ИС. При лечении больных с хирургической инфекцией иммуномодулирующее действие дерината проявлялось в уменьшении общего числа лейкоцитов (за счёт гранулоцитов), увеличении абсолютного количества лимфоцитов за счёт популяций В-лимфоцитов и Т-хелперов, а также стимуляции бактерицидной активности лейкоцитов по данным лизосомально-катионного теста и антигенсвязывающей активности. Проведена оценка эффективности иммунокоррегирующих свойств дерината при комплексной терапии больных с патологией ЖКТ. Выявлены: нормализация числа лейкоцитов, а также количества иммунокомпетентных клеток. На фоне терапии возросло число CD3+, CD+, CD8+-лимфоцитов до нормальных значений, содержание В-лимфоцитов увеличилось, повысилась фагоцитарная активность нейтрофилов.
Таким образом, практическое использование полиоксидония и дерината в качестве иммуномодуляторов способствует профилактике и коррекции иммунопатологических состояний при заболеваниях внутренних органов.
Библиографическая ссылка
Парахонский А.П. ЗАКОНОМЕРНОСТИ ФУНКЦИОНИРОВАНИЯ ИММУННОЙ СИСТЕМЫ И ИММУНОКОРРЕКЦИЯ ПРИ ЗАБОЛЕВАНИЯХ ВНУТРЕННИХ ОРГАНОВ // Современные наукоемкие технологии. – 2006. – № 5. – С. 88-89;
URL: https://top-technologies.ru/ru/article/view?id=22822 (дата обращения: 26.06.2020).
Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»
(Высокий импакт-фактор РИНЦ, тематика журналов охватывает все научные направления)
Как устроен иммунитет: Объясняем по пунктам
Наш организм непрерывно меняется, но при этом очень «любит» постоянство и может нормально работать только при определенных параметрах своей внутренней среды. Например, нормальная температура тела колеблется между 36 и 37 градусами по Цельсию. Вспомните последнюю простуду и то, как плохо вы себя чувствовали, стоило температуре подняться всего на полградуса. Такая же ситуация и с другими показателями: артериальным давлением, рН крови, уровнем кислорода и глюкозы в крови и другими. Постоянство значений этих параметров называется гомеостазом, а поддержкой его стабильного уровня занимаются практически все органы и системы организма: сердце и сосуды поддерживают постоянное артериальное давление, легкие — уровень кислорода в крови, печень — уровень глюкозы и так далее.
Иммунная же система отвечает за генетический гомеостаз. Она помогает поддерживать постоянство генетического состава организма. То есть ее задача — уничтожать не только все чужеродные организмы и продукты их жизнедеятельности, проникающие извне (бактерии, вирусы, грибки, токсины и прочее), но также и клетки собственного организма, если «что-то пошло не так» и, например, они превратились в злокачественную опухоль, то есть стали генетически чужеродными.
Как клетки иммунной системы уничтожают «врагов»?
Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.
Иммунитет бывает врожденным (он же неспецифический) и приобретенным (он же адаптивный, или специфический). Врожденный иммунитет одинаков у всех людей и идентичным образом реагирует на любых «врагов». Реакция начинается немедленно после проникновения микроба в организм и не формирует иммунологическую память. То есть, если такой же микроб проникнет в организм снова, система неспецифического иммунитета его «не узнает» и будет реагировать «как обычно». Неспецифический иммунитет очень важен — он первым сигнализирует об опасности и немедленно начинает давать отпор проникшим микробам.
Однако эти реакции не могут защитить организм от серьезных инфекций, поэтому после неспецифического иммунитета в дело вступает приобретенный иммунитет. Здесь уже реакция организма индивидуальна для каждого «врага», поэтому «арсенал» специфического иммунитета у разных людей различается и зависит от того, с какими инфекциями человек сталкивался в жизни и какие прививки делал.
Специфическому иммунитету нужно время, чтобы изучить проникшую в организм инфекцию, поэтому реакции при первом контакте с инфекцией развиваются медленнее, зато работают гораздо эффективнее. Но самое главное, что, один раз уничтожив микроба, иммунная система «запоминает» его и в следующий раз при столкновении с таким же реагирует гораздо быстрее, часто уничтожая его еще до появления первых симптомов заболевания. Именно так работают прививки: когда в организм вводят ослабленных или убитых микробов, которые уже не могут вызвать заболевание, у иммунной системы есть время изучить их и запомнить, сформировать иммунологическую память. Поэтому, когда человек после вакцинации сталкивается с реальной инфекцией, иммунная система уже полностью готова дать отпор, и заболевание не начинается вообще или протекает гораздо легче.
Кто отвечает за работу различных видов иммунитета?
- Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
- Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
- Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
- Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.
Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.
- Т-лимфоциты. Названы так, потому что после образования в костном мозге дозревают в вилочковой железе — тимусе. Разные подвиды Т-лимфоцитов отвечают за разные функции. Например, Т-киллеры могут убивать зараженные вирусами клетки, чтобы остановить развитие инфекции, Т-хелперы помогают иммунной системе распознавать конкретные виды микробов, а Т-супрессоры регулируют силу и продолжительность иммунной реакции.
- B-лимфоциты. Название их происходит от Bursa fabricii (сумка Фабрициуса) — особого органа у птиц, в котором впервые обнаружили эти клетки. В-лимфоциты умеют синтезировать антитела (иммуноглобулины). Это специальные белки, которые «прилипают» к микробам и вызывают их гибель. Также антитела могут нейтрализовывать некоторые токсины.
- Натуральные киллеры. Эти клетки находят и убивают раковые клетки и клетки, пораженные вирусами.
- Нейтрофилы и макрофаги умеют ловить и переваривать микробов — осуществлять фагоцитоз. Кроме того, макрофаги выполняют важнейшую роль в процессе презентации антигена, когда макрофаг знакомит другие клетки иммунной системы с кусочками переваренного микроба, что позволяет организму лучше бороться с инфекцией.
- Эозинофилы защищают наш организм от паразитов — обеспечивают антигельминтный иммунитет.
- Базофилы — выполняют главным образом сигнальную функцию, выделяя большое количество сигнальных веществ (цитокинов) и привлекая этим другие иммунные клетки в очаг воспаления.
Как клетки иммунной системы отличают «своих» от «чужих» и понимают, с кем нужно бороться?
В этом им помогает главный комплекс гистосовместимости первого типа (MHC-I). Это группа белков, которая располагается на поверхности каждой клетки нашего организма и уникальна для каждого человека. Это своего рода «паспорт» клетки, который позволяет иммунной системе понимать, что перед ней «свои». Если с клеткой организма происходит что-то нехорошее, например, она поражается вирусом или перерождается в опухолевую клетку, то конфигурация MHC-I меняется или же он исчезает вовсе. Натуральные киллеры и Т-киллеры умеют распознавать MHC-I рецептор, и как только они находят клетку с измененным или отсутствующим MHC-I, они ее убивают. Так работает клеточный иммунитет.
Но у нас есть еще один вид иммунитета — гуморальный. Основными защитниками в этом случае являются антитела — специальные белки, синтезируемые B-лимфоцитами, которые связываются с чужеродными объектами (антигенами), будь то бактерия, вирусная частица или токсин, и нейтрализуют их. Для каждого вида антигена наш организм умеет синтезировать специальные, подходящие именно для этого антигена антитела. Молекулу каждого антитела, также их называют иммуноглобулинами, можно условно разделить на две части: Fc-участок, который одинаков у всех иммуноглобулинов, и Fab-участок, который уникален для каждого вида антител. Именно с помощью Fab-участка антитело «прилипает» к антигену, поэтому строение этого участка молекулы зависит от строения антигена.
Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?
Рассмотрим этот процесс на примере развития бактериальной инфекции. Например, вы поцарапали палец. При повреждении кожи в рану чаще всего попадают бактерии. При повреждении любой ткани организма сразу же запускается воспалительная реакция. Поврежденные клетки выделяют большое количество разных веществ — цитокинов, к которым очень чувствительны нейтрофилы и макрофаги. Реагируя на цитокины, они проникают через стенки капилляров, «приплывают» к месту повреждения и начинают поглощать и переваривать попавших в рану бактерий — так запускается неспецифический иммунитет, но до синтеза антител дело пока еще не дошло.
Расправляясь с бактериями, макрофаги выводят на свою поверхность разные их кусочки, чтобы познакомить Т-хелперов и B-лимфоцитов со строением этих бактерий. Этот процесс называется презентацией антигена. Т-хелпер и B-лимфоцит изучают кусочки переваренной бактерии и подбирают соответствующую структуру антитела так, чтобы потом оно хорошо «прилипало» к таким же бактериям. Так запускается специфический гуморальный иммунитет. Это довольно длительный процесс, поэтому при первом контакте с инфекцией организму может понадобиться до двух недель, чтобы подобрать структуру и начать синтезировать нужные антитела.
После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.
Есть ли еще какие-то механизмы?
Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.
Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.
Иммунная система имеет сложную организацию — для осуществления специфической функции задействовано множество различных клеточных популяций и растворимых факторов иммунитета. Клетки постоянно циркулируют в организме, погибают в процессе жизнедеятельности и воспроизводятся.
В зависимости от конкретной потребности специфическая функция иммунной системы может быть активирована либо подавлена (супрессирована). Однако любое реагирование иммунной системы осуществляется только при постоянном взаимодействии практически всех типов ее клеток, т.е. в условиях межклеточной кооперации. Раздражителем (активирующим сигналом) является антиген. В развитии любого иммунного реагирования прослеживается каскад последовательно сменяющихся этапов.
10.2.2.1. Взаимодействие клеток иммунной системы
Необходимым условием функционирования иммунной системы является тесная межклеточная кооперация,основу которой составляет рецептор-лигандное взаимодействие. Для связи между собой клетки используют различные дистантные растворимые факторы и прямой контакт.
Синтез растворимых факторов является одним из универсальных способов коммутации клеток между собой. К таковым относятся цитокины, которых в настоящее время известно более 25. Они представляют собой гетерогенное семейство разнообразных по структуре и функции биологически активных молекул, имеющих ряд общих свойств:
• как правило, цитокины не депонируются в клетке, а синтезируются после соответствующего стимула;
• для восприятия цитокинового сигнала клетка экспрессирует соответствующий рецептор, который может взаимодействовать с несколькими различными цитокинами;
• цитокины синтезируются клетками разных ростков, уровней и направлений дифференцировки;
• субпопуляции клеток иммунной системы различаются по спектру синтезируемых цитокинов и их рецепторов;
• цитокины обладают универсальностью, множественностью эффектов и синергизмом;
• цитокины могут воздействовать как на рядом расположенную клетку (паракринная регуляция), так и на сам продуцент (аутокринная регуляция);
• цитокиновая регуляция носит каскадный характер: активация клетки одним цитокином вызывает синтез другого;
• в подавляющем большинстве это короткодистантные медиаторы — их эффекты проявляются на месте выработки. Вместе с тем ряд провоспалительнъгх цитокинов (ИЛ-1, 6, α-ФНО и др.) могут оказывать системное действие.
Цитокины различаются по ведущей функциональной направленности:
• медиаторы доиммунного воспаления (ИЛ-1, 6,12, α-ФНОидр);
• медиаторы иммунного воспаления (ИЛ-5, 9, 10, γ-ИФН
и др.);
• стимуляторы пролиферации и дифференцировки лимфоцитов (ИЛ-2, 4, 13, трансформирующий фактор роста — β-ТФР
и др.);
• факторы роста клеток, или колониестимулирующие факторы
(ИЛ-3, 7, ГМ-КСФ и др.);
• хемокины, или клеточные хемоаттрактанты (ИЛ-8 и др.). Краткая характеристика некоторых цитокинов приведена в
табл. 10.3.
Прямое межклеточное взаимодействие основано на рецепции структур, экспрессированных на мембране клетки-оппонента. Для этого требуется достаточно продолжительный и стабильный контакт клеток. Такой способ коммутации используют Т-хелперы и Т-киллеры при анализе чужеродности презентированных структур. Механизм действия ко-стимулирующих факторов (пары CD40- CD40-лиганд, CD28-CD80, 86) также требует непосредственного контакта.
10.2.2.2. Активация иммунной системы
Активация иммунной системы подразумевает развитие продуктивной иммунной реакции в ответ на антигенное раздражение
Таблица 10.3. Характеристика основных цитокинов
Продолжение табл. 10.3
Продолжение табл. 10.3
Окончание табл. 10.3
Примечание. МИФ — миграцию ингибирующий фактор.
и появление продуктов деструкции тканей макроорганизма. Это сложный многоступенчатый процесс, требующий продолжительного времени для своей индукции — около 4 сут. Критическим событием является невозможность элиминации антигена факторами врожденного иммунитета в течение указанного срока.
Пусковым механизмом адаптивного иммунитета является распознавание «свой-чужой», которое осуществляют Т-лимфоциты при помощи своих прямых иммунорецепторов — TCR. В случае установления чужеродности биоорганической молекулы включается второй этап реагирования — запускается интенсивное тиражирование клона высокоспецифичных для антигена лимфоцитовэффекторов, способных прервать антигенную интервенцию. Это явление получило название «экспансия клона». Параллельно, но несколько позже пролиферации стимулируются дифференцировка иммунных лимфоцитов и формирование из него клеток иммунологической памяти, гарантирующих выживание в будущем.
Таким образом, продуктивная активация иммунной системы связана с размножением и дифференцировкой антигенореактивных клонов иммунокомпетентных клеток. Антигену в этом процессе отведена роль индуктора и фактора клональной селекции. Механизмы основных этапов активации иммунной системы рассмотрены ниже.
Активация Т-хелпера. Процесс (см. рис. 10.6) осуществляется при непосредственном участии АПК (дендритные клетки, В-лимфоциты и макрофаги). После эндоцитоза и процессинга антигена во внутриклеточных везикулах АПК встраивает образовавшийся олигопептид в молекулу MHC II класса и выставляет полученный комплекс на наружной мембране. На поверхности АПК также экспрессируются ко-стимулирующие факторы — молекулы CD40, 80, 86, мощным индуктором которых являются продукты разрушения покровных тканей на этапе доиммунного воспаления.
Т-хелпер при помощи молекул адгезии прочно соединяется с поверхностью АПК. Иммунорецептор Т-хелпера совместно с молекулой CD3 при поддержке ко-рецепторной молекулы CD4 взаимодействует с комплексом антиген-MHC II класса и анализирует чужеродность его структуры. Продуктивность рецепции зависит от ко-стимулирующих воздействий в парах CD28-CD80/86 и CD40- лиганд-CD40.
В случае признания чужеродности комплекса антиген-MHC II класса (точнее, «не своего») Т-хелпер активируется. Он экспресси-
рует рецептор к ИЛ-2 и начинает синтезировать ИЛ-2 и другие цитокины. Итогом активации Т-хелпера являются его размножение и дифференцировка в одного из своих потомков — T1- или Т2-хелпер (см. рис. 10.2). Любое изменение условий рецепции прекращает активацию Т-хелпера и может индуцировать в нем апоптоз.
Активация В-лимфоцита. Для активации В-лимфоцита (рис. 10.9) необходима суммация трех последовательных сигналов. Первый сигнал — результат взаимодействия молекулы антигена со специфичным для него BCR, второй — интерлейкиновый стимул активированного Т-хелпера и третий — результат взаимодействия ко-стимулирующих молекул CD40 с CD40-лигандом.
Активация инициирует размножение и дифференцировку специфичного для конкретного антигена В-лимфоцита (см. рис. 10.2). В итоге в пределах зародышевых (герминативных) центров лимфоидных фолликулов появляется клон специфических антителопродуцентов. Дифференцировка позволяет переключить биосинтез иммуноглобулинов с классов M и D на более экономные: G, A или Е (редко), повысить аффинность синтезируемых антител и образовать В-клетки иммунологической памяти или плазматические клетки.
Активация В-лимфоцита — весьма тонкий процесс. Отсутствие хотя бы одного из стимулов (нарушение межклеточной кооперации, неспецифичность рецептора В-лимфоцита или элиминация антигена) блокирует развитие антительного иммунного ответа.
Активация Т-киллера. Для исполнения надзорной функции Т-киллер вступает в тесный и прочный контакт с потенциальной
Рис. 10.9.Схема активации В-лимфоцита (пояснения в тексте)
клеткой-мишенью, используя молекулы адгезии (см. рис. 10.8). Затем иммунорецептор Т-киллера (αβTCR)совместно с молекулой CD3 при поддержке ко-рецепторной молекулы CD8 взаимодействует с антигенным комплексом MHC I класса и анализирует его структуру. Обнаружение отклонений в пользу аллогенности активирует Т-киллер к экспрессии рецептора к ИЛ-2 и синтезу ИЛ-2 и высвобождение эффекторных молекул (перфорин, гранзимы, гранулизин) из цитоплазматических гранул в синаптическую щель межклеточного контакта.
Для адекватного развития клеточной формы иммунного ответа требуются активизирующие стимулы со стороны Т1-хелпера. Т-киллер может функционировать автономно, самостоятельно инициируя и поддерживая клонообразование за счет аутокринной стимуляции ИЛ-2. Однако это свойство реализуется редко.
10.2.2.3. Супрессия иммунного ответа
Супрессия или подавление иммунного ответа является физиологической реакцией организма, которая в норме завершает иммунный ответ и направлена на торможение экспансии антигенспецифических клонов лимфоцитов. В отличие от иммунологической толерантности, супрессии подвергается уже инициированное иммунное реагирование. Различают три механизма иммуносупрессии: уничтожение клонов иммунокомпетентных клеток, торможение активности иммунокомпетентных клеток, элиминация антигенного стимула.
Устранить иммунокомпетентные клетки можно путем апоптоза. При этом элиминации подвергаются следующие группы клеток:
• терминально дифференцированные лимфоциты, завершившие свою биологическую программу;
• активированные лимфоциты, не получившие антигенного стимула;
• «изношенные» лимфоциты;
• аутореактивные клетки.
Естественными факторами, инициирующими апоптоз, яляются глюкокортикоидные гормоны, Fas-лиганд, α-ФНО и другие иммуноцитокины, гранзимы и гранулизин. Апоптотическое уничтожение клеток-мишеней могут активировать Т-киллеры, ЕК с фенотипом CD16-CD56много и Т1-хелперы.
Помимо апоптоза возможен антителозависимый лимфоцитолиз. Например, с медицинской целью применяют антилимфоцитарную
сыворотку, которая в присутствии комплемента вызывает лизис лимфоцитов. Устранить лимфоидную популяцию возможно также воздействием ионизирующего излучения или цитостатиков.
Функциональная активность иммунокомпетентных клеток может быть ингибирована растворимыми факторами их конкурентов или потомков. Ведущая роль принадлежит иммуноцитокинам с множественными эффектами. Известно, например, что Т2- хелперы, γδТ-лимфоциты и тучные клетки при помощи ИЛ-4, 13 препятствуют дифференцировке Т0-хелпера в Т1-клетку. Последний, в свою очередь, может блокировать образование Т2-хелпера, синтезируя γ-ИФН. Пролиферацию Т- и В-лимфоцитов ограничивает β-ТФР, который продуцируют терминально дифференцированные Т-хелперы. Уже упомянутые продукты Т2-хелпера (ИЛ-4, 13 и β-ТФР) подавляют биологическую активность макрофагов.
Супрессия гуморального звена иммунитета может быть вызвана иммуноглобулинами. Избыточные концентрации иммуноглобулина класса G, связываясь со специальными рецепторами на мембране В-лимфоцита, тормозят биологическую активность клетки и ее способность дифференцироваться в плазмоцит.
Устранение из организма антигена в природе наблюдается при полном освобождении организма от патогена при развитии стерильного иммунитета. В клинической практике эффект достигается очищением организма плазмоили лимфосорбцией, а также нейтрализацией антигена антителами, специфичными для высокоиммуногенных эпитопов.
10.2.2.4. Возрастные изменения иммунной системы
В развитии иммунной системы четко прослеживаются два этапа. Первый, антигеннезависимый, который начинается с эмбрионального периода развития и частично продолжается всю жизнь. В течение этого периода образуются стволовые клетки и разнообразные антигенспецифические клоны лимфоцитов. Предшественники γδT и В1-лимфоцитов мигрируют в покровные ткани и формируют автономные лимфоидные ростки.
Второй этап, антигензависимый, продолжается с момента рождения особи до ее гибели. В этот период идет «ознакомление» иммунной системы с многообразием окружающих нас антигенов. По мере накопления биологического опыта, т.е. количества и качества продуктивных контактов с антигенами, происходят селекция
и тиражирование отдельных клонов иммунокомпетентных клеток. Особенно интенсивная экспансия клонов характерна для детского возраста. В течение первых 5 лет жизни иммунной системе ребенка приходится усваивать примерно 90% биологической информации. Еще 9% воспринимается до наступления пубертата, на взрослое состояние остается лишь около 1%.
Иммунной системе ребенка приходится справляться с чудовищными нагрузками, которые в основном падают на гуморальное звено иммунитета. В местах с повышенной плотностью населения и частыми межиндивидуальными контактами (крупные города) создаются условия для длительной персистенции высокой концентрации разнообразных патогенов. Поэтому дети в мегаполисах часто болеют. Однако создается впечатление о тотальном иммунодефиците, порожденном крайним экологическим неблагополучием. Между тем эволюционно заложенные механизмы иммунной защиты позволяют организму ребенка успешно справиться с трудными естественными испытаниями на жизнеспособность и адекватно отреагировать на вакцинопрофилактику.
С возрастом иммунная система меняет свою структуру. В организме взрослого до 50% всего лимфоидного пула представлено клонами клеток, прошедших антигенную стимуляцию. Накопленный иммунной системой биологический опыт проявляется образованием узкой «библиотеки» жизненно важных (актуальных) клонов лимфоцитов, специфичных для основных патогенов. Благодаря долгоживучести клеток иммунологической памяти актуальные клоны со временем становятся самодостаточными. Они приобретают способность к самоподдержанию и независимость от центральных органов иммунной системы. Функциональная нагрузка на тимус снижается, что проявляется его возрастной инволюцией. Тем не менее в организме сохраняется широкий набор невостребованных «наивных» клеток. Они способны отреагировать на любую новую антигенную агрессию.
Структура популяции Т-лимфоцитов также претерпевает возрастные изменения. Установлено, что в организме новорожденных преобладают Т2-хелперы, необходимые для развития антительной защиты. Однако со временем перед организмом все острее встает проблема внутриклеточного паразитизма, различных инвазий, мутаций, что требует надежного и хорошо организованного иммунологического надзора за морфогенетическим постоянством кле-
точных элементов организма. Поэтому после рождения начинает усиленно развиваться система адаптивного клеточного иммунитета, а вместе с ним образование клонов Т1-хелперов и Т-киллеров. Отмечено, что нарушение постнатальной колонизации желудочнокишечного тракта нормальной флорой тормозит процесс адекватного формирования популяции Т1-хелперов в пользу Т2-клеток. Избыточная активность последних оборачивается аллергизацией детских организмов.
Продуктивный иммунный ответ после своего завершения (нейтрализации и элиминации антигена из организма) также сопровождается изменениями клональной структуры антигенореактивных лимфоцитов. При отсутствии активирующих стимулов клон инволюционирует. Невостребованные клетки со временем погибают от старости или индукции апоптоза, причем этот процесс начинается с более дифференцированных лимфоцитов-эффекторов. Численность клона постепенно снижается и проявляется постепенным угасанием иммунного ответа. Однако в организме длительно персистируют клетки иммунологической памяти.
Старческий период жизни характеризуется доминированием в иммунной системе актуальных клонов антигенспецифических лимфоцитов в сочетании с нарастающей иммунодепрессией и снижением общей реактивности. Инфекции, вызванные даже условно-патогенными микробами, зачастую принимают затяжной или угрожающий характер. Клеточный иммунитет также теряет эффективность, постепенно нарастает объем злокачественно трансформированных клеток. Поэтому у пожилых людей часто встречаются новообразования.