Значение селекции на иммунитет

Значение селекции на иммунитет thumbnail

Интересы улучшения обеспеченности человека продовольствием, промышленности — растительным сырьем, а также охрана окружающей среды все настойчивее выдвигают задачу создания новых сортов.

Уровень творческого процесса в селекции сельскохозяйственных культур существенно повысился, а сама селекция, стала сложным делом, базирующимся на хорошо слаженной комплексной работе специалистов самых разных дисциплин. Роль специалистов по иммунитету в современном процессе селекции намного возросла.

Несмотря на известные сложности в организации селекции растений на устойчивость к вредителям, ее экономическая эффективность весьма высока. Одной из основных трудностей в селекции растений на устойчивость их к вредителям является генетическая сцепленность признаков устойчивости с признаками «дикости» растений. Такая сцепленность обусловлена исторически, т. е. самим ходом эволюции растений в естественных биогеоценозах (Н. И. Вавилов, 1965; П. М. Жуковский, 1974 и др.).

Общая задача селекционеров, иммунологов и генетиков — найти пути сочетания высокой продуктивности и других хозяйственно ценных признаков с признаками устойчивости. В идеале устойчивый сорт должен обладать признаками, обеспечивающими снижение степени привлекательности сорта для вредителей, свойствами антибиотического воздействия растения на вредные организмы и выносливостью к ним.

При определении программ по селекции устойчивых сортов не всегда должна ставиться задача получения их с абсолютным иммунитетом к вредителям. Важно, чтобы вновь создаваемый сорт был существенно устойчивее своего предшественника. Известно, что даже частичное повышение устойчивости сорта, особенно за счет усиления степени отвержения растением вредителя и его антибиотического действия на вредные организмы, способствует снижению потерь урожая. Это уменьшает потребность в использовании пестицидов в данном сезоне, а также дает многолетний эффект благодаря возрастающему подавлению размножения вредителя или патогена в каждом последующем поколении. Поэтому в тех случаях, когда отсутствует возможность сразу добиться очень высокого уровня устойчивости к какому-либо агрессивному вредителю, в перспективных селекционных программах следует предусматривать постепенное (ступенчатое) улучшение сортов по признакам устойчивости.

При создании устойчивых сортов необходимо, чтобы они обладали достаточной экологической пластичностью и адаптивностью. К числу основных признаков, обусловливающих высокую адаптивность сортов, относятся скороспелость, нейтральность к фотопериоду, эффективное использование удобрений и оросительной воды, а также устойчивость к стрессовым (экстремальным) условиям. Сорта должны иметь такую архитектонику растений, которая обеспечивает устойчивость к загущению посевов и пригодность для механизированного возделывания и уборки, высокую активность фотосинтетического аппарата, низкую интенсивность фотодыхания и др. (А. А. Жученко, 1980). Многие из перечисленных свойств имеют важное значение и в повышении устойчивости растений к вредным организмам. Так, скороспелые сорта, как правило, ограничивают возможности повышения численности вредителей в течение сезона. Особенно это касается вредителей, дающих за вегетационный период несколько генераций. Сорта с хорошей отзывчивостью на удобрения и их сбалансированность оказывают сдерживающее влияние на нарастание численности многих видов вредителей и возбудителей заболеваний. Высокая активность фотосинтеза ускоряет процессы регенерации клеток и тканей растений, что способствует быстрейшему формированию новых стеблей и репродуктивных органов взамен погибших и повышает выносливость растений к повреждениям.

Архитектоника (внешняя структура) растений имеет отношение не только к процессам механизированного ухода и уборки, но она во многих случаях способствует повышению эффективности утилизации растениями энергии солнца, влияет на создание на посевах неблагоприятного микроклимата для вредных организмов. Так, например, плотный колос злаков неблагоприятен для поселения на нем тлей и клопов; направленные под острым углом листья злаков и разрезные листья хлопчатника создают неблагоприятные условия для размножения влаголюбивых и тенелюбивых насекомых; сорта подсолнечника, у которых корзинки наклонены под острым углом к стеблю, слабее поражаются серой и белой гнилями.

Повышение устойчивости растений становится возможным за счет изменения с помощью селекции продолжительности прохождения наиболее уязвимых этапов онтогенеза растений. Так, ускорение прохождения начальных этапов онтогенеза злаков ухудшает условия питания на их колосьях тлей, клопов.

Часто отбор форм с повышенной холодостойкостью и ускоренным ростом листьев и других осевых органов, создание форм с одновременно созревающими плодами, хорошо разветвленной корневой системой обеспечивают одновременно и повышение устойчивости к вредителям. Так, наиболее холодостойкие формы кукурузы с высокими темпами роста первых листьев более устойчивы к шведской мухе. Отбор холодостойких форм хлопчатника по специальной методике, разработанной L. Bird (1972), позволил ускорить создание комплексно-устойчивых к вредителям и болезням сортов этой культуры. Кукуруза, у которой развивается большое число зародышевых и настоящих корней, более устойчива к повреждению проволочниками и личинками жуков из рода Diabrotica. От особенностей строения гипокотиля и корней капусты в значительной степени зависит устойчивость растений к личинкам капустных мух и киле.

Таким образом, многие генетические признаки растений, играя важную роль в системе адаптивного растениеводства, выступают и как элементы усиления их иммунитета. Поэтому они наряду с другими, более специфическими признаками должны учитываться при разработке модели новых сортов и селекционных программ, отвечающих современным требованиям и перспективных для обозримого будущего. Важно, чтобы новые сорта характеризовались пониженным уровнем требований к вносимой человеком на поля искусственной энергии в виде минеральных удобрений, пестицидов, дефолиантов и др. на единицу получаемой продукции.

Читайте также:  Как повысить иммунитет у детей народными методами

Следует подчеркнуть, что возможности селекции растений на устойчивость к вредителям и возбудителям заболеваний огромны. В настоящее время уже созданы научные и методические предпосылки для селекции сортов, устойчивых не только к одному какому-либо вредителю, но и к комплексу вредителей и болезней.

В целом принципы и методы селекции растений на устойчивость к вредным организмам не отличаются от применяемых в программах селекции растений по другим хозяйственным признакам. Основные трудности при создании устойчивых к вредным организмам сортов обусловлены тем, что здесь приходится иметь дело с разными по уровню организации живыми организмами, непрерывно приспосабливающимися друг к другу. Поэтому селекционер должен вести работу с учетом биологических и генетических особенностей каждого из сочленов системы вредный организм — селектируемое растение.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

ОСНОВЫ ИММУНИТЕТА РАСТЕНИЙ К БОЛЕЗНИ

При самой суровой эпифитотии растения поражаются болезнью неодинаково, что связано с устойчивостью и иммунитетом растений. Под иммунитетом понимается абсолютная непоражаемость при наличии инфекции в условиях, благоприятных для заражения растений и развития болезней. Устойчивость — это свойство организма противостоять сильному поражению болезнями. Эти два свойства зачастую отождествляют, имея в виду слабое поражение растений болезнями.

Устойчивость и иммунитет — сложные динамичные состояния, которые зависят от особенностей растения, возбудителя болезни и условий внешней среды. Изучение причин и закономерностей устойчивости очень актуально, так как только в этом случае возможна успешная работа по выведению устойчивых сортов.

Категории иммунитета

Иммунитет бывает врожденным (наследственным) и приобретенным. Врожденный иммунитет передается от родителей потомству. Он изменяется только с изменением генотипа растения.

Приобретенный иммунитет формируется в процессе онтогенеза, что достаточно часто встречается в медицинской практике. У растений такого четко выраженного приобретенного свойства нет, но существуют приемы, позволяющие повысить устойчивость растений к болезням. Они активно изучаются.
 

Пассивная устойчивость определяется конституциональными особенностями растения, независимо от действия патогена. Нанример, толщина кутикулы некоторых органов растений является фактором пассивного иммунитета. Факторы активного иммунитета действуют только при контакте растения и возбудителя, т.е. возникают (индуцируются) в период патологического процесса.

Выделяют понятие специфического и неспецифического иммунитета. Неспецифический — это неспособность некоторых возбудителей вызвать заражение определенного вида растений. Например, свекла не поражается возбудителями головневых заболеваний зерновых культур, фитофторозом картофеля, картофель не поражается церкоспоро-зом свеклы, зерновые — макроспориозом картофеля и т. д. Иммунитет, проявляющийся на уровне сорта по отношению к специализированным возбудителям, называется специфическим.

Установлено, что устойчивость определяется суммарным действием защитных факторов на всех этапах патологического процесса. Все многообразие защитных факторов подразделяется на 2 группы: препятствующие внедрению патогена в растение (аксения); препятствующие распространению патогена в тканях растений (истинная устойчивость).

В первую группу входят факторы или механизмы морфологического, анатомического и физиологического характера.

Анатомо-морфологические факторы. Преградой для внедрения возбудителей может служить толщина покровных тканей, строение устьиц, опушенность листьев, восковой налет, особенности строения органов растений. Толщина покровных тканей является защитным фактором в отношении тех возбудителей, которые проникают в растения непосредственно через эти ткани. Это в первую очередь мучнисто-росяные грибы и некоторые представители класса Оомицеты. Строение устьиц имеет значение для внедрения в ткань бактерий, возбудителей ложных мучнистых рос, ржавчин и др. Обычно через плотно прикрывающиеся устьица возбудителю внедриться труднее. Опушенность листьев защищает растения от вирусных болезней, насекомых, передающих вирусную инфекцию. Благодаря восковому налету на листьях, плодах и стеблях капли на них не задерживаются, что препятствует прорастанию грибных патогенов.

Габитус растений и форма листьев также являются факторами, препятствующими начальным стадиям заражения. Так, сорта картофеля с рыхлым строением куста меньше поражаются фитофторозом, так как лучше проветриваются и инфекционные капли на листьях высыхают быстрее. На узкие листовые пластинки оседает меньше спор.
 

Роль строения органов растений можно проиллюстрировать на примере цветков ржи и пшеницы. Рожь очень сильно поражается спорыньей, в то время как пшеница — очень редко. Это объясняется тем, что у цветков пшеницы цветковые чешуи не раскрываются и споры возбудителя практически не проникают в них. Открытый тип цветения у ржи не препятствует попаданию спор.

Физиологические факторы. Быстрому внедрению возбудителей может препятствовать высокое осмотическое давление в клетках растений, скорость физиологических процессов, приводящих к затягиванию ран (образование раневой перидермы), через которые проникают многие патогены. Важна также скорость прохождения отдельных фаз онтогенеза. Так, возбудитель твердой головни пшеницы внедряется только в молодые проростки, поэтому сорта, дружно и быстро прорастающие, поражаются меньше.

Читайте также:  Искусственный активный иммунитет обусловлен

К механическим преградам относятся клетки с толстыми оболочками или клетки, у которых в стенках откладывается лигнин — вещество, не поддающееся разрушению ферментами паразитов.

Отсутствие (или недостаток) в растительных тканях веществ, необходимых для развития патогена. Любая растительная ткань представляет собой питательный субстрат, на котором патоген способен паразитировать. Обычно наиболее сильно поражаются хорошо обводненные ткани, богатые растворимыми углеводами и аминокислотами. На определенных этапах онтогенеза, когда какое-либо вещество еще не синтезировано растением или оно уже претерпело изменения в процессе метаболизма, устойчивость к заболеваниям выше. Так, гриб Fu-sarium graminearum Schw. паразитирует на зерновых только при наличии в тканях таких сложных органических соединений, как холин и бетаин. Их больше всего содержится в пыльниках, поэтому колос поражается фузариозом после фазы цветения.

Ингибиторы. Это соединения, содержащиеся в растительных тканях или синтезированные в ответ на заражение, которые подавляют развитие патогенов. К ним относятся фитонциды — вещества различной химической природы, являющиеся факторами врожденного пассивного иммунитета. В большом количестве фитонциды вырабатываются тканями лука, чеснока, черемухи, эвкалипта, лимона и др.

Алкалоиды — азотсодержащие органические основания, образующиеся в растениях. Особенно богаты ими растения семейства бобовых, маковых, пасленовых, астровых и др. Например, соланин картофеля и томатин помидоров токсичны для многих возбудителей. Так, развитие грибов рода Fusarium тормозится соланином в разведении 1:105. Подавлять развитие возбудителей могут фенолы, эфирные масла и ряд других соединений. Все перечисленные группы ингибиторов всегда присутствуют в интактных (неповрежденных тканях).

Индуцированные вещества, которые синтезируются растением в процессе развития патогена, называют фитоалексинами. По химическому составу все они — низкомолекулярные вещества, многие из них
 

имеют фенольную природу. Установлено, что сверхчувствительная реакция растения на заражение зависит от скорости индукции фитоалексинов. Известны и идентифицированы многие фитоалексины. Так, из растений картофеля, зараженных возбудителем фитофтороза, выделены ришитин, любимин, фитуберин, из гороха — пизатин, из моркови — изокумарин. Образование фитоалексинов представляет типичный пример активного иммунитета.

К активному иммунитету относится также активизация ферментных систем растения, в частности окислительных (пероксидаза, поли-фенолоксидаза). Это свойство позволяет инактивировать гидролитические ферменты возбудителя болезни и обезвреживать им токсины.

Приобретенный, или индуцированный, иммунитет. Для повышения устойчивости растений к инфекционным болезням применяется биологическая и химическая иммунизация растений.

Биологическая иммунизация достигается обработкой растений ослабленными культурами патогенов или продуктами их жизнедеятельности (вакцинация). Ее применяют при защите растений от некоторых вирусных болезней, а также бактериальных и грибных патогенов.

Химическая иммунизация основана на действии некоторых химических веществ, в том числе и пестицидов. Ассимилируясь в растениях, они изменяют обмен веществ в направлении, неблагоприятном для возбудителей болезней. Примером таких химических иммунизаторов служат фенольные соединения: гидрохинон, пирогаллол, ортонитрофенол, паранитрофенол, которыми обрабатывают семена или молодые растения. Иммунизирующим свойством обладает ряд фунгицидов системного действия. Так, дихлорциклопропан защищает рис от пирикуляриоза благодаря усилению синтеза фенолов и образованию лигнина.

Известна иммунизирующая роль и некоторых микроэлементов, входящих в состав ферментов растений. Кроме того, микроэлементы улучшают поступление основных элементов питания, что благоприятно сказывается на устойчивости растений к болезням.

Генетика устойчивости и патогенности. Типы устойчивости

Устойчивость растений и патогенность микроорганизмов, как и все другие свойства живых организмов, контролируются генами, одним или несколькими, качественно отличающимися друг от друга. Наличие таких генов обусловливает абсолютный иммунитет к определенным расам патогена. Возбудители болезни, в свою очередь, имеют ген (или гены) вирулентности, позволяющий ему преодолевать защитное действие генов устойчивости. По теории X. Флора, на каждый ген устойчивости растения может выработаться соответствующий ген вирулентности. Это явление называют комплементарностью. При воздействии патогена, обладающего комплементарным геном вирулентности, растение становится восприимчивым. Если гены устойчивости и вирулентности некомплементарны, клетки растения локализуют возбудитель в результате сверхчувствительной реакции на него.

Например (табл. 4), согласно этой теории, сорта картофеля, имеющие ген устойчивости R,, поражаются только расой 1 возбудителя P. infestans или более сложной, но обладающей обязательно геном вирулентности 1 (1,2; 1,3; 1,4; 1,2,3) и т. д. Сорта, не имеющие генов устойчивости (г), поражаются всеми без исключения расами, в том числе и расой без генов вирулентности (0).
Гены устойчивости чаще всего доминантны, поэтому их сравнительно легко передать потомству при селекции. Гены сверхчувствительности, или R-гены, определяют сверхчувствительный тип устойчивости, которую называют также олигогенной, моногенной, истинной, вертикальной. Она обеспечивает растению абсолютную непоражаемость при воздействии на него рас без комплементарных генов вирулентности. Однако с появлением в популяции более вирулентных рас патогена устойчивость теряется.

Другой тип устойчивости — полигенная, полевая, относительная, горизонтальная, которая зависит от совокупного действия множества генов. Полигенная устойчивость в различной степени присуща каждому растению. При высоком ее уровне патологический процесс замедляется, что дает возможность растению расти и развиваться, несмотря на пораженность болезнью. Как любой полигенный признак, подобная устойчивость может колебаться под воздействием условий выращивания (уровень и качество минерального питания, влагообеспеченность, длина дня и ряд других факторов).
 

Читайте также:  Способы отказа от иммунитета

Полигенный тип устойчивости наследуется трансгрессивно, поэтому закрепить его путем селекции сортов проблематично.

Распространенным является сочетание сверхчувствительной и по-лигенной устойчивости в одном сорте. В этом случае сорт будет иммунным до появления рас, способных преодолевать моногенную устойчивость, после чего защитные функции определяет полигенная устойчивость.

Методы создания устойчивых сортов

В практике наиболее широко используются направленная гибридизация и отбор.

Гибридизация. Передача генов устойчивости от род ительских растений потомству происходит при межсортовой, межвидовой и межродовой гибридизации. Для этого в качестве родительских форм подбирают растения с желаемыми хозяйственно-биологическими характеристиками и растения, обладающие устойчивостью. Донорами устойчивости чаще бывают дикие виды, поэтому в потомстве могут появиться нежелательные свойства, которые устраняются при возвратных скрещиваниях, или беккроссах. Бейер ос сы повторяют до тех пор, пока все признаки <<дикаря», кроме устойчивости, не поглотятся сортом.

С помощью межсортовой и межвидовой гибридизации создано много сортов зерновых, зернобобовых культур, картофеля, подсолнечника, льна и других культур, устойчивых к наиболее вредоносным и опасным болезням.

При нескрещиваемости некоторых видов друг с другом прибегают к методу «посредника», при котором каждый вид родительских форм или один из них скрещивают сначала с третьим видом, а затем полученные гибриды скрещивают между собой или с одним из первоначально планируемых видов.

В любом случае устойчивость гибридов проверяют на жестком инфекционном фоне (естественном или искусственном), т. е. при большом количестве инфекции возбудителя, в условиях, благоприятных для развития болезни. Для дальнейшего размножения отбирают растения, сочетающие высокую устойчивость и хозяйственно ценные признаки.

Отбор. Этот прием — обязательный этап при любой гибридизации, но он может быть и самостоятельным методом получения устойчивых сортов. Методом постепенного отбора в каждом поколении растений с нужными признаками (в том числе и с устойчивостью) получено много сортов сельскохозяйственных растений. Он особенно эффективен для перекрестноопыляющихся растений, так как потомство их представлено гетерозиготной популяцией.

С целью создания устойчивых к болезням сортов все более широко применяются искусственный мутагенез, генная инженерия и др.

Причины потери устойчивости

Со временем сорта, как правило, утрачивают устойчивость либо в результате изменения патогенных свойств возбудителей инфекционных болезней, либо нарушения иммунологических свойств растений в процессе их воспроизводства. У сортов со сверхчувствительным типом устойчивости она теряется с появлением более вирулентных рас или комплементарных генов. Сорта с моногенной устойчивостью поражаются из-за постепенного накопления новых рас патогена. Вот почему селекция сортов только со сверхчувствительным типом устойчивости является бесперспективной.

Причин, способствующих образованию новых рас, несколько. Первая и наиболее частая — мутации. Они обычно проходят спонтанно под действием различных мутагенных факторов и присущи фитопатогенным грибам, бактериям и вирусам, причем для последних мутации — единственный способ изменчивости. Вторая причина — гибридизация генетически разных особей микроорганизмов при половом процессе. Этот путь характерен главным образом для грибов. Третий путь — гетерокариоз, или разноядерность, гаплоидных клеток. У грибов разноядерность может возникать из-за мутаций отдельных ядер, перехода ядер из разнокачественных гиф по анастомозам (сросшимся участкам гиф) и перекомбинации генов при слиянии ядер и последующем их делении (парасексуальный процесс). Разноядерность и пар асексуальный процесс имеют особенное значение для представителей класса несовершенных грибов, у которых отсутствует половой процесс.

У бактерий, помимо мутаций, существует трансформация, при которой ДНК, выделенная одним штаммом бактерий, поглощается клетками другого штамма и включается в их геном. При трансдукции отдельные сегменты хромосомы из одной бактерии переносятся в другую с помощью бактериофага (вируса бактерии).

У микроорганизмов образование рас идет постоянно. Многие из них сразу же погибают, будучи неконкурентоспособными из-за более низкого уровня агрессивности или отсутствия других важных признаков. Закрепляются в популяции, как правило, более вирулентные расы при наличии сортов и видов растений с генами устойчивости к существующим расам. В таких случаях новая раса даже при слабой агрессивности, не встречая конкуренции, постепенно накапливается и распространяется.

Например, при возделывании картофеля с генотипами устойчивости R,, R4 и R1R4 в популяции возбудителя фитофтороза будут преобладать расы 1; 4 и 1,4. При введении в производство сортов с генотипом R2 вместо R4 из популяции патогена постепенно исчезнет раса 4, а распространятся расы 2; 1,2; 1,2,4.
 

Иммунологические изменения сортов могут происходить и в связи с изменением условий их произрастания. Поэтому перед районированием сортов с полигенной устойчивостью в других эколого-географи-ческих зонах обязательно проводят их иммунологическое испытание в зоне будущего районирования.
 

Источник