Что такое кровь лимфа иммунитет

Что такое кровь лимфа иммунитет thumbnail

Внутренняя среда организма складывается из 3 тесно взаимосвязанных компонентов: кровь, лимфа и межклеточная жидкость (тканевая,
интерстициальная).

Внутренние среды организма

В капиллярах стенка состоит из одного слоя клеток, что делает возможным газообмен и обмен питательными веществами с окружающими капилляр тканями. Через стенку
сосуда газы, питательные вещества и вода из крови устремляются к клеткам. В клетках происходит тканевое дыхание, в межклеточную
жидкость выделяется углекислый газ, который затем поступает в кровь, соединяется с гемоглобином и, достигая альвеол в легких,
удаляется из организма.

У лимфатических сосудов есть особенность, которую вы всегда обнаружите на рисунке: они начинаются слепо, в отличие от кровеносных
сосудов. Лимфу в них образует вода, поступающая из межклеточной жидкости. Лимфа участвует в перераспределении жидкости в организме.

Состав и функции крови

Кровь — важнейшая составляющая внутренней среды организма. Напомню, что эта ткань относится к жидким соединительным
тканям и состоит из плазмы (на 55%) и форменных элементов (оставшиеся 45%). У взрослого человека объем крови составляет 4-6 литра.

Состав крови

Давайте систематизируем и углубим наши знания о крови. Кровь состоит из:

  • Плазмы на 55%
  • В состав плазмы входят различные белки: альбумины, глобулины, фибриноген, ионы Ca2+, K+,
    Mg2+, Na+, Cl-, HPO4-, HCO3-.

    Плазма выполняет ряд важных функций:

    • Трофическую (питательную) — белки плазмы являются источником аминокислот
    • Буферную — поддерживают кислотно-щелочное состояние (pH крови = 7,35-7,4)
    • Транспортную — белки глобулины транспортируют питательные вещества — жиры, а также гормоны, витамины
    • Защитную — в крови циркулируют антитела, белки крови (в частности фибриноген) обеспечивают гемостаз
      (свертывание крови)

    Отметьте, что плазма крови без фибриногена называется сывороткой (она не свертывается, в отличие от плазмы).
    Концентрация соли NaCl (хлорида натрия) в крови примерно постоянна и составляет 0,9%.

    Плазма и сыворотка крови

  • Форменных элементов
  • К ним относятся:

    • Эритроциты — от греч. ἐρυθρός — красный и κύτος — вместилище, клетка
    • Эритроциты — красные кровяные тельца, основная их
      функция — дыхательная — перенос газов: кислорода от альвеол легких к тканям и углекислого газа от тканей к альвеолам.
      В 1 мм3 крови находится около 4-5 млн.
      Основной белок эритроцита — гемоглобин, состоящий из железосодержащего гема (Fe) и белка глобина.

      Перенос кислорода эритроцитом

      Эритроциты имеют характерную двояковогнутую форму, лишены ядра (в отличие от эритроцитов других животных, например,
      эритроциты лягушки содержат ядро). Их маленький диаметр и способность складываться помогает им проникать через самые
      мельчайшие сосуды нашего тела — капилляры, диаметр которых меньше, чем диаметр эритроцита!

      Эритроциты

      Эритроциты дифференцируются в красном костном мозге (в губчатом веществе костей), срок их жизни составляет 120 дней. К окончанию жизненного цикла их форма становится шарообразной. Такие старые шарообразные эритроциты
      задерживаются в печени и селезенке, которая называется кладбищем эритроцитов. Здесь они разрушаются, а их остатки
      фагоцитируются.

      Из статьи о легких вы уже знаете, что гемоглобин образует соединения:

      • C кислородом — оксигемоглобин
      • C углекислым газом — карбгемоглобин
      • C угарным газом — карбоксигемоглобин

      Сродство гемоглобина к угарному газу в 300 раз выше, чем к кислороду, поэтому карбоксигемоглобин
      очень устойчив.

      Вообразите: при содержании во вдыхаемом воздухе 0,1% угарного газа 80% от общего количества гемоглобина
      связываются с угарным газом, а не кислородом! Угарный газ образуется при пожарах в замкнутом пространстве,
      отравиться им и потерять сознание можно очень быстро. Если немедленно не вынести человека на свежий воздух,
      то летальный исход становится неизбежным.

      Дым угарный газ

      Запомните, что у людей, живущих в горной местности, количество эритроцитов в крови несколько выше, чем у
      обитателей равнины. Это связано с тем, что концентрация кислорода в горах ниже средней, вследствие чего
      компенсаторно увеличивается содержание эритроцитов в крови, чтобы переносить больше кислорода.

      Горное поселение

    • Лейкоциты — от др.-греч. λευκός — белый и κύτος — вместилище, тело
    • Лейкоциты — белые кровяные тельца, имеющие ядро и не содержащие гемоглобин. Дифференцируются в красном костном мозге,
      лимфатических узлах. С кровью переносятся к тканям организма, где проходит основная часть их жизненного цикла: они выполняют защитную функцию, которая заключается в:

      • Осуществлении фагоцитоза
      • Обезвреживании ядов, токсинов
      • Участие в клеточном и гуморальном иммунитете

      Число лейкоцитов в 1 мм3 крови 4-9 тысяч. Лейкоциты разнообразны по форме и строению, среди них встречаются
      нейтрофилы, лимфоциты, моноциты. Их деятельность направлена на защиту организма: они обеспечивают иммунитет.

      Если лейкоциты
      увеличены в анализе крови, то врач может заподозрить инфекционный процесс: во время него лейкоциты возрастают, чтобы
      уничтожить бактерии и вирусы, попавшие в организм.

      Нормальная кровь и лейкоцитоз

      Около 25-40% от всех лейкоцитов составляют лимфоциты, в популяции которых можно обнаружить T- и B-лимфоциты. Они
      выполняют важнейшие функции, благодаря которым формируется иммунитет.

      T-лимфоциты созревают в специальном органе — тимусе (вилочковой железе). Они обеспечивают клеточный иммунитет, выявляют
      и уничтожают мутантные (раковые) клетки, миллионы которых ежедневно образуются даже у здорового человека. Уничтожают в организме подобные клетки T-лимфоциты путем фагоцитоза.

      Тимус

      Фагоцитоз — процесс, при котором клетки захватывают и переваривают твердые частицы (другие клетки). Создатель фагоцитарной
      теории иммунитета И.И. Мечников провел опыт, который наглядно демонстрирует, что лейкоциты способны выходить из кровеносного
      русла в ткани (при воспалении), фагоцитировать попавшие в рану чужеродные белки, бактерии.

      Опыт Мечникова

      Гуморальный (греч. humor — жидкость) иммунитет обеспечивается B-лимфоцитами. После контакта с антигеном (чужеродное вещество в организме) B-лимфоцит
      превращается в плазмоцит — клетку, которая вырабатывает антитела. Антитела (иммуноглобулины) — белковые молекулы, препятствующие размножению микроорганизмов и нейтрализующие выделяемые ими токсины.

      Часть плазмоцитов может оставаться в организме после устранения антигена многие годы, эта часть обеспечивает иммунную память, благодаря которой
      в случае повторного попадания того же антигена — человек не заболеет, либо легко и быстро перенесет болезнь.

      B-лимфоциты антитела

    • Тромбоциты — от греч. θρόμβος — сгусток и κύτος — клетка
    • Устаревшее название тромбоцитов — кровяные пластинки. Тромбоциты — клеточные элементы крови, представляющие собой круглые безъядерные
      образования. В 1 мм3 насчитывается 250-400 тысяч клеток.

      Дифференцируются (образуются) тромбоциты в красном костном мозге. На их поверхности имеются рецепторы,
      которые активируются при повреждении кровеносного русла. Они играют важную роль в процессе
      гемостаза — свертывания крови, предотвращают кровопотерю.

      Тромбоциты

      Процесс гемостаза требует нашего особого внимания. Гемостаз (от греч. haima — кровь + stasis — стояние) —
      процесс свертывания крови, являющийся важнейшим защитным механизмом от кровопотери. Активируется при
      повреждении кровеносных сосудов.

      Гемостаз зависит от множества факторов, среди которых важное место отводится ионам Ca2+. Гемостаз происходит
      следующим образом: при повреждении сосуда из тромбоцитов высвобождаются тромбопластины, которые способствуют переходу протромбина в тромбин. В свою очередь, тромбин способствует переходу растворимого белка крови, фибриногена, в нерастворимый фибрин.

      Гемостаз

      Истинный тромб образуется при переходе растворимого белка крови, фибриногена, в нерастворимый фибрин, нити которого
      создают «сетку», где застревают эритроциты. В результате останавливается кровотечение из сосуда.

      Нити фибрина и эритроциты

Группы крови и трансфузия (переливание)

Не могу утаить, что существует более 30 различных систем групп крови. Наиболее широко используемая (в том числе и в
медицине при переливании крови) — система AB0. Она основана на том факте, что на мембране эритроцитов располагаются различные
антигены, определенные генетически. На основании сходства этих антигенов людей делят на 4 группы.

Читайте также:  Срок иммунитета бешенства у людей

Наибольшее значение в системе AB0 имеют агглютиногены A и B, расположенные на поверхности эритроцитов, и агглютинины α и β.
Если встречаются два одинаковых компонента, к примеру: агглютиноген A и агглютинины α, то начинается реакция агглютинации —
эритроциты начинают склеиваться.

Агглютиногены и агглютинины

Агглютинацию ни в коем случае нельзя допустить, она может сильно ухудшить состояние пациента
вплоть до летального исхода. При переливании крови строго соблюдается следующее правило: переливается только кровь,
относящаяся к одной и той же группе. Это наилучший вариант, однако, и здесь бывают неудачные переливания, заканчивающиеся
гибелью пациента, ведь ранее я уточнил, что система AB0 является лишь одной из 30 систем групп крови, а учесть их все
не представляется возможным.

Ниже вы найдете схему, где группы крови (по системе AB0) проверяют на совместимость. Реципиентом называют того, кому переливают кровь,
а донором — от кого переливают. Если вы видите сгустки эритроцитов, то это значит, что произошла агглютинация, и переливание крови от донора к реципиенту ни к чему хорошему не приведет.

Проверка крови на совместимость

Предлагаю еще раз расставить все точки над i, ответив на вопрос — «Почему агглютинация произошла при смешении
II (A) и I (O) групп крови?» Ответить можно, вспомнив, что II(A) содержит агглютиноген A и агглютинин β;
I (O) группа содержит агглютинины α и β.

Из-за того, что вместе оказываются агглютинин α и агглютиноген A между эритроцитами начинается агглютинация — они
склеиваются.

Резус-фактор (Rh-фактор) и резус-конфликт

Помимо агглютиногенов системы AB0 на поверхности эритроцитов могут присутствовать резус-антигены. «Могут» — потому что
у большинства людей они есть (85%), а у некоторых резус-антигены отсутствуют (15%). Если данные белки имеются, то
говорят, что у человека положительный резус-фактор, если белки отсутствуют — отрицательный резус-фактор.

Проверка крови на совместимость

Особую важность приобретает резус-фактор у матери и плода. Если женщина резус-отрицательна, а плод
резус-положителен, то при повторной беременности существует риск резус-конфликта: антитела матери начнут атаковать
эритроциты плода, которые разрушатся и плод погибент от гипоксии (нехватки кислорода).

Резус-конфлик

Заметьте — при первой беременности нет угрозы резус-конфликта. Если женщина резус-положительна, то никакого резус-конфликта
не может быть априори, независимо от того резус-положительный или резус-отрицательный плод.

Опасность резус-конфликта вовсе не значит, что вы должны выбирать свою половинку руководствуясь наличием или отсутствием
резус-антигенов)) Они не должны вам препятствовать!) Доложу вам, что на сегодняшней день арсенал лекарственных препаратов
помогает устранить резус-конфликт и успешно рожать женщине во 2, 3, и т.д. раз. Главное, чтобы беременность протекала под наблюдением врача с самого раннего срока.

Резус-конфлик

Лимфа, лимфатическая система

Лимфа, как и кровь, образует внутреннюю среду организма. В самом начале статьи была схема, на которой видно, как кровь,
тканевая жидкость и лимфа соотносятся друг с другом. В норме избыток жидкости выводится из тканей по лимфатическим сосудам.

Состав лимфы близок к плазме крови: в лимфе можно обнаружить антитела, фибриноген и ферменты. Лимфатические сосуды
впадают в лимфатические узлы, которые М.Р. Сапин, выдающийся анатом, называл «сторожевые посты». Здесь появляются
лимфоциты — важнейшее звено иммунитета, и происходит фагоцитоз бактерий.

Подытоживая полученные знания, давайте соберем вместе функции лимфатической системы:

  • Защитная — в лимфатических узлах образуются лимфоциты, происходит фагоцитоз бактерий
  • Транспортная — в лимфатические сосуды кишечника всасываются жиры
  • Возврат белка в кровь из тканевой жидкости
  • Перераспределение жидкости в организме

Лимфатические сосуды и узлы

Куда же течет вся лимфа с жирами, лимфоцитами и белками? В конечном итоге лимфатическая система соединяется с кровеносной,
впадая в нее в области левого и правого венозных углов. Таким образом, лимфатическая и кровеносная системы теснейшим образом
связаны друг с другом.

Лимфатическая система

Виды иммунитета

Мы уже отчасти касались темы иммунитета в нашей статье и отмечали особый вклад И.И. Мечникова в создании фагоцитарной теории
иммунитета.

Иммунитет — способ защиты организма и поддержания гомеостаза внутренней среды, предупреждающий размножение
в организме инфекционных агентов. Выделяют естественный и искусственный иммунитет.

Виды иммунитета

Естественный иммунитет включает в себя врожденный (видовой) и приобретенный (индивидуальный).

Врожденный иммунитет заключается в невосприимчивости человека к болезням животных: человек не может заболеть многими
болезнями собак, и, наоборот, собаки невосприимчивы ко многим заболеваниям человека.

Приобретенный (индивидуальный) иммунитет бывает активный и пассивный.

  • Активный
  • Вырабатывается человеком в ответ на внедрение инфекционного агента через 10-12 дней (образование антител)

  • Пассивный
  • Состоит в переходе материнских антител в кровь плода, также антитела поступают вместе
    с грудным молоком. Пассивным этот вид иммунитета называется потому, что сам организм антитела не вырабатывает, а использует уже готовые.

Естественный иммунитет

Искусственный иммунитет делится на активный и пассивный.

Активный искусственный создается с помощью прививок — вакцинации. При вакцинации в организм здорового человека вводят разрушенные или ослабленные инфекционные агенты (вакцину), с которыми лейкоциты легко справляются, в результате чего вырабатываются антитела. Это напоминает тренировку перед матчем: когда настоящий вирус/бактерия попадут
в организм, лейкоцитам будет все о них известно, и они быстро выработают антитела, за счет чего заболевание пройдет либо в легкой,
либо в бессимптомной форме.

Пассивный искусственный иммунитет подразумевает применение лечебной сыворотки, которая содержит готовые антитела к возбудителю
заболевания. Часто сыворотки применяются в экстренных случаях, когда заболевание протекает тяжело и медлить нельзя. Существует
противоботулиническая сыворотка (применятся при тяжелейшем заболевании — ботулизме), антирабическая сыворотка (против вируса
бешенства).

Лечебные сыворотки получают из крови животных, зараженных определенным вирусом или бактерией. Получение сыворотки заключается
в выделении из крови готовых антител к данному возбудителю. Применяются сыворотки не только в лечебных, но и в профилактических
целях.

Искусственный иммунитет

Позвольте добавить краткую и важную историческую сводку. Первая прививка была сделана Эдвардом Дженнером в 1796 году. Он заметил, что
доярки, переболевшие коровьей оспой, невосприимчивы к натуральной. Получив согласие родителей ребенка, Дженнер заразил ребенка (!) коровьей оспой, тот перенес ее и через две недели был невосприимчив к натуральной оспе. Так Эдвард Дженнер начал эпоху вакцинации.

Эдуард Дженнер делает первую прививку

Луи Пастер также внес огромнейший вклад, создав и сделав первую прививку от бешенства в 1885 году. Мать привезла к нему в Париж сына,
которого покусала бешеная собака. Было очевидно, что без вмешательства мальчик умрет. Пастер взял на себя огромную ответственность (к слову,
не имея врачебной лицензии) и 14 дней вводил мальчику изобретенную вакцину. Мальчик вылечился, симптомы бешенства не развились. Примечательно,
что всю взрослую жизнь спасенный юноша посвятил Пастеру, работая сторожем в Пастеровском музее.

Луи Пастер изобрел вакцину от бешенства

Заболевания

Анемия (от др.-греч. ἀν- — приставка со значением отрицания и αἷμα «кровь»), или малокровие — снижение концентрации гемоглобина в крови,
очень часто с одновременным уменьшением количества эритроцитов. Вам уже известна основная функция эритроцитов, и вы легко сможете догадаться,
что при анемии кислорода к тканям поступает меньше должного уровня — отсюда и развиваются симптомы анемии.

Пациенты могут жаловаться на непривычную одышку (учащение дыхания) при незначительных физических нагрузках, общую слабость, быструю утомляемость,
головную боль, сердцебиение, шум в ушах. При анализе крови анемию выявить легко, гораздо сложнее выявить причину, из-за которой анемия возникла.

Читайте также:  Алоэ с медом для детей для иммунитета

Анемия

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Иммунная и лимфатическая системы являются две тесно связанные системы органов, которые объединяют несколько органов и их физиологические функции. Иммунная система является системой защиты нашего организма от инфекционных патогенных вирусов, бактерий и грибов, а также паразитических животных и простейшими. Иммунная система работает, чтобы сдерживать эти вредные агенты в организме и нападать на тех, которые пытаются войти. Лимфатическая система представляет собой систему капилляров, сосудов, узлов … [Читайте ниже]

[Начало сверху] … и других органов, которые перевозят жидкость под названием лимфы из тканей тогда, как она возвращается в кровоток. Лимфатическая ткань этих органов фильтрует и очищает лимфу любого мусора, аномальных клеток или патогенов. Лимфатическая система также транспортирует жирные кислоты из кишечника в систему кровообращения.

Красный костный мозг и лейкоциты

Красный костный мозг является очень сосудистой тканью в промежутках губчатой кости. Он встречается в основном в концах длинных костей и в плоских костях тела. Красный костный мозг является кроветворной тканью, содержащей много стволовых клеток, которые производят клетки крови. Все лейкоциты, или белые клетки крови, иммунной системы производятся красным костным мозгом. Лейкоциты могут быть разбиты на 2 группы, основанные на типе стволовых клеток, которые производят их: миелоидные стволовые клетки и лимфоидные стволовые клетки.
Миелоидные стволовые клетки продуцируют моноциты и зернистые лейкоциты — эозинофилы, базофилы и нейтрофилы.

Моноциты — агранулярные лейкоциты, которые могут образовывать 2 типа клеток: макрофаги и дендритные клетки.
Макрофаги.
Моноциты медленно реагируют на инфекции и один раз присутствовав на месте инфекции, развиваются в макрофаги. Макрофаги являются фагоцитами, способными потреблять болезнетворные микроорганизмы, разрушенные клетки и мусор с помощью фагоцитоза. Таким образом, они играют определенную роль в предотвращении инфекции, а также производят очистку последствий инфекции.
Дендритные клетки.
Моноциты также могут превращаться в дендритные клетки в здоровых тканях кожи и слизистых оболочках. Дендритные клетки отвечают за обнаружение патогенных антигенов, которые используются для активации Т — клеток и В — клеток.

Гранулированные лейкоциты

Эозинофилы. Эозинофилы — зернистые лейкоциты, которые уменьшают аллергическое воспаление и помогают организму бороться с паразитами.
Базофилы.
Базофилы являются зернистые лейкоцитами, которые вызывают воспаление, разрушив химические вещества гепарин и гистамин. Базофилы принимают активное участие в производстве воспаления во время аллергических реакций и паразитарных инфекций.
Нейтрофилы.
Нейтрофилы являются зернистыми лейкоцитами, которые доставляют первые ответные меры к месту инфекции. Нейтрофилы способны использовать хемотаксис для обнаружения химических веществ, производимых инфекционными агентами и быстро перейти к месту инфекции. Оказавшись там, нейтрофилы глотают патогены через фагоцитоз и выбрасывают химические вещества, чтобы заманить в ловушку и убивать болезнетворные микроорганизмы.
Лимфоидные стволовые клетки вырабатывают Т-лимфоциты и В-лимфоциты.

Т — лимфоциты. Т — лимфоциты, также известные как Т — клетки, представляют собой клетки, участвующие в борьбе с конкретными возбудителями заболеваний в организме. Т — клетки могут выступать в качестве помощников других иммунных клеток или осуществлять нападение на патогены непосредственно. После того, как инфекции уничтожены, Т — клетки сохраняются в памяти организма, чтобы обеспечить более быструю реакцию на последующую инфекцию, выражающую один и тот же антиген.

В — лимфоциты. В — лимфоциты, также широко известны как В — клетки, также клетки, участвующие в борьбе с конкретными возбудителями заболеваний в организме. После того, как В — клетки были активированы путем контакта с патогеном, они образуют плазматические клетки, которые вырабатывают антитела. Антитела затем нейтрализуют патогенные микроорганизмы, пока другие иммунные клетки не могут уничтожить их. После того, как инфекции устранены, В — клетки сохраняются в организме, чтобы быстро произвести антитела к последующей инфекции, выражающую один и тот же антиген.

Природные клетки — киллеры
Естественными клетками — киллерами являются лимфоциты, которые способны реагировать на широкий спектр патогенов и раковых клеток. Такие клетки перемещаются в крови и находятся в лимфатических узлах, селезенке, и красном костном мозге, где они борются с большинством видов инфекций.
Лимфатические капилляры
Когда кровь проходит через ткани организма, она входит в тонкостенные капилляры для облегчения диффузии питательных веществ, газов и отходов. Плазма крови также диффундирует через тонкие стенки капилляров и проникает в промежутки между клетками тканей. Некоторые из этой плазмы диффундирует обратно в кровь капилляров, но значительная часть остаётся в тканях межклеточной жидкости. Для того, чтобы предотвратить накопление избыточной жидкости, небольшие тупиковые сосуды, называемые лимфатическими капиллярами, располагаются в тканях и призваны поглощать жидкость и возвращать её в кровообращение.

Лимфа

Межклеточная жидкость лимфатических капилляров известна как лимфа. Лимфатическая жидкость очень близко напоминает плазму, найденную в венах: она представляет собой смесь около 90% воды и 10% растворимых веществ, таких как белки, продукты клеточных отходов, растворенных газов и гормонов. Лимфа может также содержать бактериальные клетки, которые попадают из пораженных тканей и белых кровяных клеток, которые борются с этими патогенами. У больных раком на поздних стадиях, лимфа часто содержит раковые клетки, которые содержат метастазы из опухолей и могут образовывать новые опухоли в пределах лимфатической системы. Особый тип лимфы, известный как млечный сок, вырабатывается в пищеварительной системе, так как лимфа поглощает триглицериды из ворсинок кишечника. Благодаря присутствию триглицеридов, млечный сок имеет молочно — белую окраску.

Лимфатические сосуды
Лимфатические капилляры сливаются в более крупные лимфатические сосуды, чтобы нести лимфe через тело. Структура лимфатических сосудов близко напоминает вены: они имеют тонкие стенки и многие обратные клапаны из — за их общей функции — переноса жидкости под низким давлением. Лимфа транспортируется через лимфатические сосуды с помощью сокращений скелетных мышц сужающих сосуды, толкающих вперед жидкость. Обратные клапаны предотвращают протекание жидкости обратно к лимфатическим капиллярам.

Лимфатические узлы
Лимфатические узлы мелкие, почковидные органы лимфатической системы. Есть несколько сотен лимфатических узлов, встречаются они по всей грудной клетке и в брюшной полости тела, с наибольшей концентрацией — в подмышечных (подмышки) и паховом (пах) регионах. Снаружи каждый лимфатический узел выполнен из плотной волокнистой соединительной ткани — капсулы. Внутри капсулы, лимфатический узел заполнен сетчатой тканью, содержащей много лимфоцитов и макрофагов. Лимфатические узлы функционируют как фильтры лимфы, которая поступает от нескольких афферентных лимфатических сосудов. Ретикулярные волокна лимфатических узлов действуют как сеть, чтобы поймать любой мусор или клетки, которые присутствуют в лимфе. Макрофаги и лимфоциты атакуют и убивают любые микробы, пойманные в ретикулярных волоках. Эфферентные лимфатические сосуды затем несут фильтрованную лимфу из лимфатических узлов к лимфатическим путям.

Лимфатические протоки

Все лимфатические сосуды имеют 2 лимфатических протока: грудной проток и правый лимфатический протоки. Эти каналы служат для возврата лимфы обратно в венозное кровоснабжение.

Читайте также:  Народные средства для иммунитета курага лимон

Грудной проток.
Грудной проток соединяет лимфатические сосуды ног, левой стороны головы живота, левой руки, шеи и грудной клетки с левой плечеголовной веной.

Правый лимфатический проток.
Он соединяет лимфатические сосуды правой руки и правой стороны головы, шеи и грудной клетки с правой плечеголовной веной.
Лимфатические узлы
Вне системы лимфатических сосудов есть масса неинкаплусированной лимфатической ткани, известной как лимфатические узлы. Лимфатические узлы связаны со слизистой оболочкой тела, чтобы защитить организм от патогенных микроорганизмов, поступающих в организм через открытые полости тела.

Миндалины.
Есть 5 миндалин в организме -2 язычные, 2 нёбные и глоточная 1. Язычные миндалины расположены на заднем корне языка возле глотки. Нёбные миндалины находятся в задней области рта возле глотки. Глоточная, также известна как лимфоидная, находится в носоглотке на заднем конце носовой полости. Миндалины содержат множество Т и В — клеток, чтобы защитить организм от вдыхании или заглатывании вредных веществ. Миндалины часто воспаляются в ответ на инфекцию.

Селезенка.
Селезенка представляет собой сплюснутый, овальной формы орган, расположенный в верхнем левом квадрате живота латеральнее желудка. Селезенка состоит из плотной волокнистой соединительнотканной капсулы, заполненной красной и белой пульпой. Мякоть красная — составляет большую часть массы селезенки, так названа потому, что содержит много пазух, которые фильтруют кровь. Макрофаги в красной пульпе призваны переварить и переработать гемоглобин захваченных красных кровяных телец. Красная пульпа также хранит много тромбоциты, которые будут выпущены в ответ на кровопотерю. Белая пульпа находится в красной пульпе, окружающей артериол селезенки. Она изготовлена из лимфатической ткани и содержит множество Т — лимфоциты, В — лимфоциты и макрофаги, чтобы бороться с инфекциями.

Тимус

Тимус представляет собой небольшой, треугольный орган, находящийся позади грудины и спереди к сердцу. Тимус в основном состоит из железистого эпителия и кроветворной соединительной ткани. Тимус производит и обучает Т — клетки в период внутриутробного развития и в детстве. Т — клетки, образующиеся в вилочковой железе и красном костном мозге, развиваются и размножаются в тимусе в детстве. Подавляющее большинство Т — клеток не выживают в тимусе и уничтожаются макрофагами. Выжившие Т — клетки распространяются по всему телу к другим лимфатическим тканям для борьбы с инфекциями. К тому времени, человек достигает половой зрелости, иммунная система является зрелой и роль тимуса уменьшается. После полового созревания, неактивный тимус медленно заменяется жировой тканью.

Лимфообращение
Одной из основных функций лимфатической системы является движение межклеточной жидкости из тканей в кровеносную систему. Как и вены кровеносной системы, лимфатические капилляры и сосуды лимфы могут двигаться с очень небольшим давлением, чтобы помочь циркуляции. Для того, чтобы помочь переместить лимфу по направлению к лимфатическим путям, существует ряд многих односторонних обратных клапанов, найденных на протяжении лимфатических сосудов. Эти обратные клапаны позволяют лимфе двигаться к лимфатическим путям и закрывается, когда лимфа пытается утекать из каналов. В конечностях, скелетные мышцы сдавливают стенки лимфатических сосудов, чтобы толкать лимфу через клапаны и к грудной клетке. Повышенное внутрибрюшное давление толкает лимфу в грудную клетку с меньшим давлением.

Транспорт жирных кислот

Еще одна важная функция лимфатической системы — транспортировка жирных кислот из пищеварительной системы. Пищеварительная система разбивает большие макромолекулы углеводов, белков и липидов в меньшие питательные вещества, которые могут быть поглощены через ворсинки кишечной стенки. Большинство из этих питательных веществ всасываются непосредственно в кровь, но большинство жирных кислот, строительные блоки жиров, абсорбируются через лимфатическую систему.

Ворсинками тонкой кишки являются лимфатические капилляры, они называются млечными сосудами. Млечные сосуды способны поглощать жирные кислоты из кишечного эпителия и транспортировать их вместе с лимфой. Жирные кислоты помогают превратить лимфу в белое, молочного цвета вещество, называемое хилус. Хилус транспортируется через лимфатические сосуды в грудной проток, где он входит в кровоток и отправляется в печень, чтобы быть усвоен.

Виды иммунитета

Тело использует множество различных типов иммунитета, чтобы защитить себя от инфекции от, казалось бы, бесконечного количества патогенных микроорганизмов. Эти защиты могут быть внешними и способны предотвратить болезнетворные микроорганизмы от попадания в организм. С другой стороны, внутренние средства защиты и борьбы с патогенными микроорганизмами, которые уже вошли в тело. Среди внутренних защит, некоторые являются специфическими для только одного патогена или могут быть врожденным от многих патогенов. Некоторые из этих специфических защит могут быть приобретены превентивно, способны предотвратить инфекцию до того, как возбудитель попадает в организм человека.

Врожденный иммунитет.
Тело имеет множество врожденных способов защитить себя от широкого спектра возбудителей. Эти средства защиты могут быть внешние или внутренние средства защиты. Внутренние средства защиты включают лихорадку, воспаление, естественные клетки — киллеры и фагоциты.

Внешние
Покрытия и накладки тела способны предотвратить инфекции, прежде чем они начинают действовать на организм, запрещая болезнетворным микроорганизмам попадание в организм. Клетки эпидермиса постоянно растут, умирают и линяют, чтобы обеспечить обновленный физический барьер для патогенных микроорганизмов. Выделения, такие как кожное сало, ушная сера, слизь, слезы, слюна — используются для улавливания, перемещения, а иногда даже убивают бактерии, которые оседают на них или в теле.

Желудочная кислота действует как химический барьер для уничтожения микробов, найденных на продуктах питания, поступающих в организм. Моча и кислые вагинальные выделения также помогают убивать и удалить патогенные микроорганизмы, которые пытаются проникнуть в организм. И, наконец, флора природные полезные бактерии, которые живут на и в нашем организме обеспечивают уровень защиты от вредных микробов, которые стремятся колонизировать наше тело для себя.

Внутренние

Лихорадка. В ответ на инфекцию, организм может начать лихорадку путем повышения внутренней температуры от ее нормального гомеостатического диапазона. Лихорадка поможет ускорить систему реагирования организма на инфекцию, в то же время, замедляя размножение возбудителя.
Воспаление. Тело может также начать воспаление в повреждённой области, чтобы остановить распространение инфекции. Воспаление является результатом вазодилатации, это позволяет дополнительной крови течь в инфицированную область. Дополнительный поток крови ускоряет поступление лейкоцитов для борьбы с инфекцией. Увеличение кровеносных сосудов позволяет жидкостям и клеткам поступать к месту утечки из кровеносного сосуда, чтобы вызвать отёк и обеспечить перемещение лейкоцитов в ткани для борьбы с инфекцией.
Естественные киллеры.
Естественные киллеры — клетки являются специальными лимфоцитами, способными распознавать и убивать инфицированные вирусом клетки и опухолевые клетки.
Фагоциты.
Термин фагоцитов означает «захватывать клетки» и относится к группе клеток, включая нейтрофилы и макрофаги. Фагоцитом поглощаются патогенные микроорганизмы с их клеточной мембраной перед использованием пищеварительных ферментов, чтобы убить и растворить клетку в его химических частей. Фагоциты способны распознавать и потребляют много различных типов клеток, в том числе погибших или поврежденных клеток организма.

Клеточный специфический иммунитет

Если патоген заражает организм, он часто встречает макрофаги и дендритные клетки врожденной иммунной системы. Эти клетки могут стать антиген-представляющими клетками (АПК), потребляя и обрабатывая патогенные антигены. Они способны путешествовать в лимфатическую систе?