Что значит повышен сигнал мрт

Что значит повышен сигнал мрт thumbnail
Токсоплазмоз на МРТ головного мозгаТоксоплазмоз на МРТ головного мозга

Магнитно-резонансная томография является безболезненным и информативным способом исследования головного мозга. Послойное МР-сканирование позволяет детально рассмотреть все участки органа, оценить их структуру. С помощью определенных последовательностей можно подробно изучить белое и серое вещество, сосуды, желудочковую систему.

МРТ считают эффективным методом выявления очаговых поражений мозга. К таковым относят ограниченные участки с нарушенной структурой внутри вещества органа. Подобные изменения часто сопровождаются масс-эффектом, отеком, деформацией окружающих областей. Очаги в головном мозге на МРТ выглядят как зоны изменения МР-сигнала. По специфическим признакам, локализации, размерам и степени влияния на окружающие структуры рентгенолог может сделать предположения о характере патологии. Пользуясь перечисленными сведениями, врач ставит диагноз, составляет для пациента прогноз и подбирает лечение.

Очаги на МРТ головного мозга: что значит?

Результатом магнитно-резонансной томографии является серия послойных снимков исследуемой области. На изображениях здоровые ткани выглядят как чередующиеся светлые и темные участки, что зависит от концентрации в них жидкости и применяемой импульсной последовательности. По срезам врач-рентгенолог оценивает:

  • развитость и положение отдельных структур;
  • соответствие интенсивности МР-сигнала норме;
  • состояние извилин и борозд;
  • размеры и строение желудочковой системы и подпаутинного пространства;
  • параметры слуховых проходов, глазниц, придаточных синусов;
  • структуру сосудистого русла;
  • строение черепных нервов и церебральных оболочек;
  • наличие признаков патологии (очаговые изменения, отек, воспаление, повреждения стенок артерий и вен).

Липома четверохолмной цистерны на МРТЛипома четверохолмной цистерны на МРТ (обведена кругом)

МРТ назначают, если у пациента наблюдаются неврологические отклонения, обусловленные поражением мозговой ткани. Симптомами могут быть:

  • головные боли;
  • нарушения координации движений;
  • дисфункции органов слуха или зрения;
  • нарушения концентрации внимания;
  • расстройства памяти;
  • проблемы со сном;
  • психоэмоциональные расстройства;
  • парезы/параличи конечностей и/или мышц лица;
  • чувствительные нарушения;
  • судороги и пр.

Магнитно-резонансная томография головы позволяет врачу точно определить локализацию очаговых изменений и выяснить природу плохого самочувствия у пациента. В ДЦ «Магнит» на вооружении специалистов новейшие аппараты для МР-сканирования, которые позволяют с высокой достоверностью провести исследование.

Виды очагов на МРТ головы

Цвет получаемого изображения нормальных мозговых структур и патологических изменений зависит от используемой программы. При сканировании в ангиорежиме, в том числе с применением контраста, на снимках появляется разветвленная сеть артерий и вен. Очаговые изменения бывают нескольких типов, по их характеристикам врач может предположить природу фокусов.

При патологии мозгового вещества нарушаются свойства пораженных фокусов, что проявляется резким изменением МР-сигнала по сравнению со здоровыми областями. Применение определенных последовательностей (диффузионно-взвешенных, FLAIR и пр.) или контрастирования позволяет более четко визуализировать локальные изменения. То есть, если рентгенолог видит на результатах МРТ единичный очаг, для более подробного его изучения будут применены разные режимы сканирования либо контрастирование.

При сравнении изменений со здоровыми участками мозга выделяют гипер-, гипо- и изоинтенсивные зоны (соответственно яркие, темные и такие же по своему цвету, как рядом расположенные структуры).

Абсцесс головного мозга на МРТАбсцесс головного мозга на МРТ (указан стрелкой)

Гиперинтенсивные очаги

Выявление гиперинтенсивных, т.е. ярко выделяющихся на МР-сканах, очагов заставляет специалиста подозревать опухоль головного мозга, в том числе метастатического происхождения, гематому (в определенный момент от начала кровоизлияния), ишемию, отек, патологии сосудов (каверномы, артерио-венозные мальформации и пр.), абсцессы, обменные нарушения и т.п.

Опухоль головного мозга на МРТОпухоль головного мозга на МРТ (указана стрелкой)

Субкортикальные очаги

Поражение белого вещества головного мозга обычно характеризуют, как изменения подкорковых структур. Выявленные при МРТ субкортикальные очаги говорят о локализации повреждения сразу под корой. Если обнаруживают множественные юкстакортикальные зоны поражения, есть смысл подозревать демиелинизирующий процесс (например, рассеянный склероз). При указанной патологии деструктивные изменения происходят в различных участках белого вещества, в том числе прямо под корой головного мозга. Перивентрикулярные и лакунарные очаги обычно выявляют при ишемических процессах.

Очаги глиоза

При повреждении мозговой ткани включаются компенсаторные механизмы. Разрушенные клетки замещаются структурами глии. Последняя обеспечивает передачу нервных импульсов и участвует в метаболических процессах. За счет описываемых структур мозг восстанавливается после травм.

Выявление глиозных очагов указывает на предшествующее разрушение церебрального вещества вследствие:

  • родовой травмы;
  • гипоксических процессов;
  • наследственных патологий;
  • гипертонии;
  • эпилепсии;
  • энцефалита;
  • интоксикации организма;
  • склеротических изменений и др.

По количеству и размерам измененных участков можно судить о масштабах повреждения мозга. Динамическое наблюдение позволяет оценить скорость прогрессирования патологии. Однако изучая зоны глиоза нельзя точно установить причину разрушения нервных клеток.

Очаги демиелинизации

Некоторые заболевания нервной системы сопровождаются повреждением глиальной оболочки длинных отростков нейронов. В результате патологических изменений нарушается проведение импульсов. Подобное состояние сопровождается неврологической симптоматикой различной степени интенсивности. Демиелинизация нервных волокон может быть вызвана:

  • мультифокальной лейкоэнцефалопатией;
  • рассеянным склерозом;
  • диссимулирующим энцефаломиелитом;
  • болезнью Марбурга, Девика и многими другими.

Обычно очаги демиелинизации выглядят как множественные мелкие участки гиперинтенсивного МР-сигнала, расположенные в одном или нескольких отделах головного мозга. По степени их распространенности, давности и одновременности возникновения врач судит о масштабах развития заболевания.

Очаг демиелинизации на МРТОчаг демиелинизации на МРТ

Очаг сосудистого генеза

Недостаточность мозгового кровообращения являются причиной ишемии церебрального вещества, что ведет к изменению структуры и потере функций последнего. Ранняя диагностика сосудистых патологий способна предотвратить инсульт. Очаговые изменения дисциркуляторного происхождения обнаруживают у большинства пациентов старше 50 лет. В последующем такие зоны могут стать причиной дистрофических процессов в мозговой ткани.

Лакунарный инфаркт головного мозга на МРТЛакунарный инфаркт головного мозга на МРТ (указан стрелкой)

Заподозрить нарушения церебрального кровообращения можно по очаговым изменениям периваскулярных пространств Вирхова-Робина. Последние представляет собой небольшие полости вокруг мозговых сосудов, заполненные жидкостью, через которые осуществляется трофика тканей и иммунорегулирующие процессы (гематоэнцефалический барьер). Появление гиперинтенсивного МР-сигнала указывает на расширение периваскулярных пространств, поскольку в норме они не видны.

Иногда при МРТ мозга обнаруживаются множественные очаги в лобной доле или в глубоких отделах полушарий, что может указывать на поражение церебральных сосудов. Ситуацию часто проясняет МР-сканирование в ангиорежиме.

Очаги ишемии на МРТОчаги ишемии на МРТ

Очаги ишемии

Нарушения мозгового кровообращения приводят к кислородному голоданию тканей, что может спровоцировать их некроз (инфаркт). Ишемические очаги при Т2 взвешенных последовательностях выглядят как зоны с умеренно гиперинтенсивным сигналом неправильной формы. На более поздних сроках при проведении в Т2 ВИ или FLAIR режиме МРТ единичный очаг приобретает вид светлого пятна, что указывает на усугубление деструктивных процессов.

Что означают белые и черные пятна на снимках МРТ?

Зоны измененного МР-сигнала могут означать:

  • ишемию тканей;
  • отек;
  • некроз;
  • гнойное расплавление;
  • опухолевую трансформацию;
  • метастатическое поражение;
  • глиоз;
  • демиелинизацию;
  • дегенерацию и др.
Читайте также:  Должно ли быть мрт бесплатным

Врач-рентгенолог описывает интенсивность сигнала, размеры и локализацию очага. С учетом полученных сведений, жалоб пациента и данных предыдущих обследований специалист может предположить природу патологических изменений.

Острый рассеянный энцефаломиелит на МРТОстрый рассеянный энцефаломиелит на МРТ

Причины возникновения очагов на МРТ головного мозга

Если при МРТ головного мозга выявлены очаги, их расценивают как симптомы патологии органа. Зоны гипер- или гипоинтенсивного МР-сигнала свидетельствуют о нарушении структуры определенного участка церебрального вещества. Очаговые изменения могут быть единичными или множественными, крупными, мелкими, диффузными и т.п.. Подобное наблюдается при:

  • атеросклерозе;
  • ангиопатии;
  • инсультах;
  • хронической недостаточности мозгового кровообращения;
  • рассеянном склерозе или иных демиелинизирующих заболеваниях;
  • болезни Альцгеймера, Пика, Паркинсона и т.п.;
  • энцефаломиелите и других заболеваниях.

Очаговые изменения могут быть результатом некроза, гнойных процессов, ишемии, воспаления тканей, разрушения нервных волокон и т.п. Фокальная патология на МР-сканах почти всегда свидетельствует о развитии серьезного заболевания, а в некоторых случаях указывает на опасность для жизни больного.

Источник

Если мне нужно сделать фотографию, я достаю из кармана мобильник, выбираю фотоприложение, навожу объектив на понравившийся объект и… щёлк! В 99% случаев я получаю снимок, который сносно отображает необходимый фрагмент реальности.

А ведь ещё несколько десятилетий назад фотографы вручную выставляли выдержку и диафрагму, выбирали фотоплёнку, устраивали проявочную лабораторию в ванной комнате. А снимки получались… ну, такие себе.

Магнитно резонансная томография — потрясающая методика. Для врача, который осознанно управляет параметрами сканирования, она предоставляет огромные возможности в визуализации тканей человеческого организма и патологических процессов.

В зависимости от настроек, одни и те же ткани могут совершенно по разному выглядеть на МР томограммах. Для относительной простоты интерпретации существует несколько более-менее стандартных «режимов» сканирования. Это сделано для того, чтобы МРТ, из категории методик, которыми владеют только одиночки-энтузиасты, пришла в широкую медицинскую практику. Как методика фотографии, которая упростилась настолько, что не только стала доступна каждому, но и порядком успела многим надоесть 😉

Здесь я расскажу о нескольких наиболее часто использующихся режимах сканирования. Поехали!

Т1 ВИ (читается «тэ один вэ и») — режим сканирования, который используется всегда и везде. Свободная безбелковая жидкость (например ликвор в желудочках мозга) на таких изображениях выглядит тёмной, мягкие ткани имеют различные по яркости оттенки серого, а вот жир ярок настолько, что кажется белым. Также на Т1 ВИ очень яркими выглядят парамагнитные контрастные вещества, что и позволяет использовать их для визуализации различных патологических процессов.

Слева — Т1 ВИ, а справа — Т1 ВИ после введения контраста. Опухоль накопила парамагнитный контраст. Просто и красиво!

А ещё на Т1 яркой будет выглядеть гематома на определённых стадиях деградации гемаглобина.

В МРТ «яркий» обозначается термином «гиперинтенсивный»,а «тёмный» — термином «гипоинтенсивный».

Т2 ВИ (читается «тэ два вэ и») — также используется повсеместно. Этот режим наиболее чувствителен к регистрации патологических процессов. Это значит, что большинство патологических очагов, например в головном мозге, будут гиперинтенсивными на Т2 ВИ. А вот определение какой именно патологический процесс мы видим требует применения других режимов сканирования. Помимо патологических процессов и тканей, яркой на Т2 будет свободная жидкость (тот же ликвор в желудочках).

Т2 ВИ — классика в визуализации головного мозга. И вообще, любимая картинка всех МРТшников.

Аббревиатура «ВИ» расшифровывается как «взвешенные изображения». Но боюсь, мне не удастся объяснить смысл этого заклинания без углубления в физику метода.

Pd ВИ (читается «пэ дэ вэ и») — изображения взвешенные по протонной плотности. Что-то среднее между Т1 и Т2 ВИ. Применяется достаточно редко, в связи с появлением более прогрессивных режимов сканирования. Контрастность между разными тканями и жидкостями на таких изображениях довольно низкая. Однако, при исследовании суставов этот режим продолжает пользоваться популярностью, особенно в комплексе с жироподавлением, о котором разговор отдельный.

Слева — Pd ВИ, справа — Т2 ВИ. Одному мне понятно, почему Pd теперь редко используют ?

Словосочетание «режим сканирования» конечно можно использовать, но правильнее использовать словосочетание «импульсная последовательность». Речь про набор радиочастотных и градиентных импульсов, которые используются во время сканирования.

FLAIR (произносится как «флаир» или «флэир») — это Т2 ВИ с ослаблением сигнала от свободной жидкости, например, спинномозговой жидкости. Очень полезная импульсная последовательность, применяется в основном при сканировании головного мозга. На таких изображениях многие патологические очаги видны лучше чем на Т2 ВИ, особенно если они прилежат к пространствам, которые содержат ликвор.

Здесь FLAIR — крайняя картинка справа. Именно на ней лучше всего видны патологические очаги, которые прилежат к желудочкам мозга и субарахноидальному пространству.

Это режимы сканирования или импульсные последовательности, которые наиболее часто используются в ежедневной практике. Но есть ещё много других, которые применяются реже и дают более специфическую информацию.

P.S. Если вам интересно узнать, что такое жиродав и каим он бывает — обязательно поставьте лайк статье, подпишитесь на мой канал в ЯндексДзен или в telegram — так я буду знать, что вы требуете продолжения 😉

Источник

Впервые об МРТ заговорили в конце XX века, правда, называлась сначала методика ЯМР – ядерно-магнитный резонанс. Впоследствии, по мере совершенствования технологии, название сменили на МРТ – магнитно-резонансная томография.

В XXI веке, диагностика патологии головного мозга без МРТ немыслима. Наиболее продвинутый вариант – фМРТ или функциональная МРТ. Он позволяет оценить не только органические, анатомические изменения в нервной ткани, но и предоставляет сведения о функции интересующих отделов мозга.

Историческая справка

Явление ядерного магнитного резонанса было продемонстрировано американским ученым Isidor Isaac Rabi в 1937 году, когда он работал в команде, разрабатывающей атомную бомбу.

К практической медицине, открытый Раби, «метод магнитного резонансного детектирования», адаптировали только в 1971 году. В Бруклинском медицинском центре, США. Физик Raymond Damadian, экспериментируя на крысах, обнаружил различия между нормальными и опухолевыми тканями при магнитном резонансе.

Физическое обоснование метода

В обычном состоянии, магнитное поле атома равно нулю: положительный заряд протонов уравновешивается отрицательным зарядом электронов.

Но когда атомы попадают в сильное магнитное поле и облучаются радиочастотным импульсом, заряд протонов меняется. У части из них, энергии становится больше, чем в покое. После того, как радиочастотный импульс отключают, накопленная «излишняя» энергия высвобождается. И эти импульсы, переход ядер атомов с повышенного энергетического уровня на обычный, можно улавливать.

Читайте также:  Опасно ли делать год раз мрт

Чем молекула больше, тем медленнее она накапливает и высвобождает кинетическую энергию. Разница исчисляется микросекундами и их долями, однако специальная аппаратура способна зафиксировать эту разницу во времени. Главное – чтоб было с чем сравнивать, эталонный показатель.

Таким образцом выбрали воду. Она есть в человеческом теле везде. А ее молекулы в любой ткани дают одинаковое время т.н. продольной релаксации.

Степень содержания воды в тканях, а также молекулярный спектр входящих в их состав веществ и определяет, в упрощенном варианте, физическую основу метода ЯМР или МРТ.

Полученные данные суммируются, обрабатываются компьютером и отображаются на экране монитора. Изображение состоит из пикселов, которые являются единицей изображения. Яркость пиксела пропорциональна вокселу – степени магнетизации в данной единице объема. Комбинация пикселов на экране монитора образует изображение. Характеристики картинки зависят от того, сколько воды имеется в той или иной ткани.

Кроме того, применение специальных контрастов на основе парамагнитных ионов, повышает разрешающую способность методики, способствует лучшей визуализации и дифференцировке тканей.

Контрастирование

Преимуществом МР-томографии является то, что она предоставляет изображение интересующего отдела организма без необходимости в изменении положения тела.

Сейчас в качестве основы для контраста применяется редкоземельный металл – гадолиний. Чтоб сделать его нетоксичным для человека, синтезируют хелатный комплекс гадолиния с производными этилендиаминтетрауксусной кислоты (с диэтилентриаминпентауксусной кислотой).

Контраст вводится внутривенно. Стандартная дозировка составляет 0,1 ммоль/кг. Оптимальное контрастирование наблюдается на Т1-взвешенных снимках.

Диагностические возможности

Изначально, МРТ показывало статичную анатомическую картинку. По аналогии с КТ, но с лучшей дифференцировкой мягких тканей.

С 80-х годов в медицинскую практику внедрена диффузно-взвешенная МРТ, позволяющая оценивать процессы диффузии воды в тканях. Эта методика нашла применение как в плане обнаружения ишемии, так и касательно любых функциональных аномалий.

В основе методики лежит разница магнитных свойств окси и дезоксигемоглобина, а также – изменение магнитных свойств ткани вследствие разного кровенаполнения. Неврологам, фМРТ позволяет оценивать функциональное состояние ткани головного мозга.

Конкурентом, функциональной МРТ сичтается ПЭТ. Для этой методики требуется использовать токсичиные и дорогие радиоизотопные фармпрепараты.

Магнитно-резонансная тотмография является неинвазивной, обладает минимальным списком противопоказаний. Функциональную МРТ можно повторять неоднократно, что делает ее отличным инструментом для мониторинга больного.

Ишемический инсульт

Прямыми признаками гипоксии мозга считаются изменение коэффициента диффузии интенсивности сигнала в отдельных (пораженных), участках и признаки отека. К косвенным относят изменение просвета сосудов.

К снижению коэффициента наблюдаемой диффузии приводит расстройство метаболизма тканей в условиях кислородного голодания. Второй фактор – снижение температуры в этой области.

Ранние признаки

Первые признаки острой ишемии, на МРТ, появляются через 6 – 8 часов. Фактически у всех пациентов, к концу суток, повышается интенсивность сигнала в области поражения при в режиме Т2.

Вначале очаг имеет гетерогенную структуру и нечеткие границы. На 2–3 сутки сигнал остается гетерогенным, но приобретает гомогенную структуру. Здесь уже затрудняется дифференцировка зоны отека и, собственно, очага поражения. В режиме Т1, по прошествии 24 часов, интенсивность сигнала снижается.

Косвенные признаки ишемии выявляются с первых минут ее развития.

К этим признакам относятся:

  • появление внутриартериального изоинтенсивного или гиперинтенсивного сигнала от поперечного сечения сосуда;
  • сочетание изоинтенсивного сигнала в просвете сосуда и гиперинтенсивного сигнала по периферии очага;
  • отсутствие эффекта потери сигнала, так как подобное явление в норме характерно для кровотока.

В первые часы, с помощью МРТ с достаточной степенью вероятности, можно судить об обратимости очага ишемии. Для этого оценивают диффузионно-взвешенные снимки и изображения в режиме Т2.

Если коэффициент наблюдаемой диффузии (КНД) низкий и отсутствует изменение сигнала в режиме Т2, то в первые часы инсульта можно рассчитывать на обратимость патологии.

Если наряду с низким КНД в режиме Т2, очаг интенсивен, следует говорить о необратимости очага поражения.

Дальнейшая эволюция МР-сигнала: с уменьшением зоны отека и началом фазы резорбции со второй недели, очаг снова становится гетерогенным. С начала 4 недели снова повышается время релаксации, с соответствующим усилением интенсивности сигнала в Т2 режиме. К моменту формирования кистозной полости, к 7-8 неделе, МР-сигнал соответствует таковому для ликвора.

При контрастировании в острейший период инсульта, до 6-8 часов, в пораженной зоне контраст не скапливается. Что, вероятно, связано с сохранностью гематоэнцефалического барьера. Накопление контрастного вещества отмечают в более позднем периоде инсульта, и до образования кистозной полости. После этого, контраст снова перестает скапливаться в очаге.

Геморрагический инсульт

Изображение очага поражения при геморрагическом инсульте на МРТ зависит от соотношения оксигемоглобина и дезоксигемоглобина, которые имеют разные магнитные свойства. Динамику этого процесса можно наблюдать, оценивая изображения в Т1 и Т2 режимах.

В острейшей стадии, из-за высокого содержания оксигемоглобина, гематома визуализируется в виде изоинтенсивного и гипоинтенсивного очага.

С наступлением острого периода, оксигемоглобин преобразуется в дезоксигемоглобин. В Т2 режиме, это проявляется образованием очага низкой плотности.

В подостром периоде, дезоксигемоглобин переходит в метгемоглобин. Эти изменения можно оценивать в режиме Т1, отмечается увеличение интенсивности сигнала.

В поздней стадии, продолжается нарастание уровня и происходит лизис эритроцитов. Также в образовавшейся полости увеличивается количество воды. Такие процессы обуславливают формирование гиперинтенсивного очага как в Т1, так и в Т2 режимах.

В хронической стадии, гемосидерин и ферритин откладываются в макрофагах, которые располагаются в капсуле очага. На МРТ это проявляется в виде темного кольца вокруг гематомы в режиме Т2.

Поражение белого вещества головного мозга

Разница между биохимическими явлениями в белом и сером веществе головного мозга есть. И она обусловливает возможность дифференцировке одного от другого.

Серое вещество содержит больше воды, а в белом – больше липидов. Это позволяет их уверенно различать при проведении МРТ.

Однако нет специфических признаков, которые позволяли бы четко сформулировать диагноз после обследования. Поэтому наличествующую картину на мониторе необходимо соотносить с клиническими проявлениями патологии нервной системы.

Рассмотрим типичные проявления поражения белого вещества при заболеваниях нервной системы.

Рассеянный склероз

В отношении этой патологии, МРТ весьма информативна. Процедура выявляет очаги множественные очаги повышенной плотности, расположенные асимметрично, в глубине белого вещества. Типична локализация таких очагов по периферии желудочков мозга (перивентрикулярно), в мозолистом теле и стволовых структурах, мозжечке.

Читайте также:  Что такое мрт надпочечников и как это делается

При поражении спинного мозга, обнаруживаются подобные очаги в режиме Т2. В случае ретробульбарного неврита при рассеянном склерозе, МРТ показывает усиление сигнала от зрительных нервов.

Используя контрастирование, можно установить давность процесса. Свежие очаги охотно накапливают контраст, в отличие от индифферентных старых.

Чтоб с высокой вероятностью установить диагноз рассеянного склероза на основании МРТ, требуется найти два признака. Во-первых, – очаги типичной локализации (субтенториальной, перивентрикулярной, и корковой), причем хотя бы один из них должен накапливать контраст. Во-вторых, – должны быть найдены очаги, диаметром более 5 мм.

Острый рассеянный энцефаломиелит

Такая патология на МРТ проявляется в виде крупных очагов повышенного сигнала. Расположены они, как правило, в глубоких, подкорковых отделах белого вещества и склонны к слиянию между собой.

Нейросаркоидоз

На МРТ обнаруживаются диффузные очаги, с типичной локализацией:

  • хиазма (место скрещения зрительных нервов);
  • гипофиз;
  • дно третьего желудочка.

Также, нейросаркоидоз часто поражает мозговые оболочки.

Подострый склерозирующий панэнцефалит

Данная патологии проявляется очагами повышенной плотности в Т2 режиме. Располагаются они, преимущественно, в базальных ганглиях и по периферии желудочков мозга.

Черты очага, определяемого на МРТ, зависят от соотношения внеклеточной и внутриклеточной жидкости в образовании. Поэтому размеры образования, полученные на МРТ, не всегда соответствуют реальным масштабам распространения опухолевых клеток.

Разработан ряд диагностических критериев, позволяющих судить о природе опухоли по ее проявлениям на МРТ.

Опухоли из жировой ткани являются относительно редкими. Чаще встречаются новообразования, которые дают изоинтенсивные сигналы (например, менингеомы) или гиперинтенсивные очаги (например, глиомы).

Второй очередью оценивают характер полученного изображения. Здесь возможны два варианта:

  1. Структура изображения может быть гомогенной, монолитной. Типична для доброкачественных опухолей.
  2. И гетерогенной, неоднородной. Характерна для злокачественных новообразований, отражает процессы кальцинации, некроза, кровоизлияния в ткани опухоли.

Кальцинаты проявляются очагами низкой интенсивности. Острые кровоизлияния визуализируются в виде участка, пониженного в режиме Т2, сигнала. В подостром и хроническом периоде, кровоизлияния дают в режиме Т2 сигнал повышенной интенсивности.

О степени злокачественности объемного образования можно судить еще и по его границам.

Так, ровные и четкие края у очага больше свидетельствуют в пользу доброкачественности образования.

Злокачественным опухолям присущи нерезкие очертания, отражающие инфильтрирующий характер роста.

Методика позволяет установить наличие объемного образования в мозгу, даже когда его не видно при рутинном обследовании. К косвенным признакам опухоли относятся:

  • деформация извилин головного мозга;
  • аномалии желудочковой системы;
  • внутренняя гидроцефалия;
  • смещение мозговых структур с их анатомического расположения.

Для уточняющей и дифференциальной диагностики, применяют введение контраста.

Дифференцировка опухолей

Благодаря МРТ, появляется возможность заранее спрогнозировать, какой отдел стал источником опухолевых клеток. Это помогает отличить первичный узел от метастатического поражения.

Менингиомы

Как правило, проявляются изоинтенсивным сигналом в режиме Т1. Незначительное повышение сигнала в режиме Т2 характерно для ангиобластических менингиом. Фибробластические менингиомы проявляют себя скорее изоинтенсивным или гипоинтенсивным сигналом.

В таких условиях большое значение приобретают описанные немного выше косвенные признаки. А также – контрастирование. Контраст охотно накапливается менингиомой, и при проведении МРТ она выглядит гомогенным образованием с четкими границами.

Опухоли из мозговых оболочек и костей черепа

Характеризуются наличием ликворных щелей между тканью опухоли и деформированным участком головного мозга. Основание опухоли более широкое в месте прикрепления к костям черепа. Также в этой области вероятно развитие гиперостоза.

Опухоли из ткани головного мозга (глиального ряда)

Доброкачественные астроцитомы проявляются гомогенным сигналом с повышенной плотностью в режиме Т2, изоинтенсивным или гипоинтенсивным сигналом в режиме Т1.

Невриномы

Главным проявлением невриномы на МРТ является наличие объемного образования изоинтенсивного или гипоинтенсивного характера. При малых размерах опухоли – гомогенного, при большом образовании – гетерогенного типа. Контраст невринома накапливает неравномерно.

Метастатические поражения

Основным проявлением метастаза является наличие на магнитно-резонансной томограмме очага повышенной интенсивности в режиме Т2. При контрастировании, контраст накапливается по периферии опухоли с образованием кольцеобразных структур (корона-эффект).

Менингиты

Структура получаемого изображения зависит от характера патологического процесса, т. е. от нозологической формы менингита.

При серозном менингите на МРТ появляются признаки расширения желудочковой системы и субарахноидальных пространств.

При гнойном менингите также отмечают расширение желудочков головного мозга и субарахноидальных пространств. Дополнительно, возможно появление очагов повышенной интенсивности в паренхиме головного мозга в режиме Т2.

При введении контраста, он накапливается преимущественно в мозговых оболочках.

Особенностью туберкулезного менингита является появление на МРТ очага пониженной интенсивности, окруженного сигналом высокой интенсивности. Такие признаки являются патогномоничными для туберкулемы. Обычно, такие очаги локализуются на основании мозга.

Абсцесс головного мозга

До формирования капсулы, абсцесс на МР-томограмме в режиме Т2 визуализируется как очаг повышенной плотности с неоднородной структурой. Капсула в режиме Т2 выглядит в виде ободка пониженной плотности. Введенный контраст накапливается в «ткани» абсцесса и его капсуле.

Энцефалиты. Характерным проявлением является появление очага повышенной интенсивности в режиме Т2 в веществе головного мозга, наряду с выше описанными признаками менингита.

Абсцесс головного мозга. До формирования капсулы абсцесс на томограмме выглядит как очаг повышенной плотности в режиме Т2 с неоднородной структурой. Капсула выглядит в режиме Т2 в виде ободка пониженной плотности. Контраст накапливается в «ткани» абсцесса и его капсуле.

Наследственные заболевания нервной системы

Болезнь Паркинсона проявляется признаками атрофии подкорковых структур: хвостатого ядра, бледного шара, черной субстанции, ядра Льюиса и т.д.

При синдроме паркинсонизма (типично развивается на фоне сосудистой патологии), МРТ показывает множественные участки ишемических инсультов (инфарктов) и лейкоареоз. Располагаются такие очаги, преимущественно, в области подкорковых структур.

Для хореи Геттингтона характерны атрофические изменения со стороны хвостатого ядра и бледного шара.

В случае оливопонтоцеребеллярной дегенерации, на МРТ отмечаются очаги атрофии в белом веществе мозжечка, продолговатом мозге, мосту.

При наследственной мозжечковой атаксии, отмечают признаки атрофии мозжечка (его корковых отделов и червя).

Также высока диагностическая роль МРТ в отношении пациентов с разнообразной неврологической патологией:

  • аутизмом;
  • эпилепсией;
  • внутричерепной гипертензией;
  • синдромом гиперактивности с дефицитом внимания (СГДВ);
  • задержками психомоторного и речевого развития;
  • минимальными мозговыми дисфункциями (ММД)
  • мигренозными головными болями.

Была ли эта статья полезна?

Вы можете подписаться на нашу рассылку и узнать много интересного о лечение заболевания, научных достижений и инновационных решений:

Приносим извинения!

Как можно улучшить эту статью?

Гимранов Ринат Фазылжанович

Записаться к специалисту

×

Источник