Иммунитет убивает здоровые клетки

Иммунитет может быть опасен для здоровья, превратить молодого человека в инвалида, лишить потомства или даже убить. Сегодня я расскажу о том, как иммунитет учится отличать свое от чужого и почему он, словно бешеный пес, иногда бросается на хозяина — свой собственный организм, вызывая рассеянный склероз, ревматоидный артрит, псориаз и другие неизлечимые аутоиммунные заболевания.

Задайтесь вопросом: как иммунитет отличает свои клетки и ткани от чужеродных инфекций? В компьютерных антивирусах этот вопрос решается ежедневным скачиванием обновленных баз данных с кодами всех известных вирусов. Но у иммунитета нет интернет-доступа к базам данных ВОЗ, а в наш геном не поместится информация обо всех возможных инфекциях. Кроме того вирусы и бактерии быстро мутируют и буквально в течении болезни способны уйти из-под надзора атакующих антител.

Природа решила эту проблему принципиально иначе, нежели разработчики антивирусных программ. Представьте себе, что мастер изготовил миллиард разных ключей — каждый хотя бы чуть-чуть, но отличается от другого. Имея такую связку, можно открыть практически любой замок в мире.

Природа поступила точно так. Еще внутриутробно иммунная система создала миллиарды лимфоцитов, каждый из которых был снабжен уникальным рецептором. Представьте себе миллиарды лимфоцитов и у каждого есть свой уникальный рецептор — своего рода «ключ», который подходит только в один предназначенный для него «замок». Замком в данной аналогии будет являться практически любая белковая молекула, которую только может придумать природа создавая вирусы, бактерии или человека.

Однако такое миллирды уникальных рецепторов невозможно закодировать даже в бесконечно большом геноме. Природа, как всегда, сэкономила и поступила проще. Наш ключный мастер сначала изготовил миллиард ключей-копий по одному шаблону, а затем случайным образом нанес прорези и дырочки сделав каждый ключ уникальным. По этой аналогии гены рецепторов идентичны во всех лимфоцитах (как и весь геном в каждой клетке организма). Но в процессе созревания лимфоцита отдельные участки генов его рецептора разрезаются ферментами — отдельные части выбрасываются, другие меняются местами и сшиваются вновь образуя уникальный код. Затем с уже уникального гена синтезируется РНК, которая служит матрицей для синтеза неповторимого рецептора в каждом лимфоците. Схема только кажется сложной, но на самом деле все тупо и просто:

Таким образом еще до рождения мы имеем огромную связку из миллиардов ключей — каждый из которых отличается от всех остальных. Иммунологи называют это «репертуаром иммуноглобулинов». Вы наверняка слышали про иммуноглобулины свободно плавающие в крови (антитела) — это секретируемые лимфоцитами аналоги своих рецепторов с той же, что и рецепторы, специфичностью к одному и тому же антигену. Но сами антитела выйдут на поле боя только после рождения — в стерильной утробе они не нужны. А пока мы продолжим говорить об их аналогах — иммуноглобулиноподобных рецепторах встроенных в мембраны лимфоцитов.

Иммунитет на этом этапе еще совсем слеп. С инфекциями он еще не сталкивался, но собственные ткани организма содержат огромное разнообразие белков-«замков», к которым лимфоциты то и дело пытаются подобрать свои индивидуальные рецепторы-«ключики». А так как их репертуар очень разнообразен, то многим лимфоцитам (столько сколько различных белков в организме) удается связаться с белками собственного организма, которых иммунологи называют аутоантигенами (ауто — свой). Однако без гуморальной поддержки (как это бывает во взрослом организме) связавшиеся с аутоантигенами лимфоциты не активируются, а сразу гибнут.

Таким образом репертуар сокращается — погибают все лимфоциты способные своим рецептором распознать что-либо. А этим «что-либо» в стерильных условиях внутриутробной жизни могут быть только аутоантигены. Например, если ввести в эмбрион антигены вируса гепатита, то все связавшие его лимфоциты вымрут, и после рождения у такого человека не будет развиваться иммунный ответ против данной инфекции или на вакцину. Иммунологи назвали этот процесс «негативный отбор», благодаря которому вы родились без лимфоцитов способных нападать на белки собственного организма. Если продолжить аналогию с ключами, то те ключи, которые подошли к своим замкам, при проворачивании обламываются навсегда исключая возможность открыть дверь.

Однако почему аутоиммунные заболевания становятся возможными? Одна из причин нападения иммунитета на хозяина заключается в том, что некоторые белки организма впервые синтезируются уже после рождения, когда негативный отбор лимфоцитов уже закончен. Таким образом в нашем организме присутствуют лимфоциты способные связать аутоантигены и повреждать клетки и ткани вызывая тяжелые болезни.

Например, белок миелин, ускоряющий передачу сигнала в нервной системе, образуется в ЦНС после рождения, поэтому специфичные к нему лимфоциты благополучно переживают негативный отбор. В зрелом возрасте в результате нарушения гематоэнцефалического барьера эти лимфоциты и их антитела проникают в ЦНС и повреждают миелиновые оболочки волокон — развивается рассеянный склероз.

Мелкая моторика требует стабильной обратной связи, непрерывно передающей информацию о положении конечностей и мышц языка в пространстве. Обратная связь обеспечивает коррекцию всех нюансов движений. Чем медленнее обратная связь, тем реже происходит коррекция движений — пальцы дрожжат и совершают ошибки, а речь коверкается. Это одни из симптомов рассеянного склероза.

Другой пример таких белков — рецептор на поверхности сперматозоида, который позволяет ему проникнуть в яйцеклетку. Этот рецептор появляется с началом полового созревания. При нарушении гематотестикулярного барьера специфичные к спермиям лимфоциты и их антитела по ошибке принимают их за микробов. Спермии связанные антителами склеиваются своими головками и теряют способность к оплодотворению.

Есть и такие примеры патогенеза аутоиммунных заболеваний, когда мишенью для лимфоцитов становится святая-святых ДНК. Да, ДНК присутствует в организме с самого зачатия, но иммунная система эмбриона не имеет доступа к содержимому клеточного ядра, поэтому способные связывать ДНК лимфоциты благополучно переживают негативный отбор. Примером такого заболевания является псориаз, при котором ДНК из разрушенных клеток кожи становится доступной для распознавания лимфоцитами. Здесь необходимо пояснить, что лимфоциты связывают антигены не непосредственно, а через посредников — фагоцитов, которые сначала поглощает антиген, затем внутриклеточно связывают его молекулой HLA и выводит данный комплекс на свою поверхность. Только в комплексе с HLA антиген (в данном случае аутоантиген — ДНК) может быть распознан лимфоцитом.

Однако почему данный процесс не запускается при обычных травмах, когда из разрушенных клеток выделяется ДНК, но возможен при псориазе? Возможно, это связано с генетическими особенностями людей с псориазом. Больше половины из них являются носителями варианта гена, кодирующего структуру молекулы HLA, которая как раз «передает» антигены лимфоцитам для связывания. В тоже время у людей без псориаза данный вариант гена практически не встречается. Согласно гипотезе, молекулы HLA у здоровых людей не способны связывать ДНК и передавать их для распознавания лимфоцитам, а у вариант молекулы HLA у пациентов с псориазом «отлично» с этим справляется.

Еще один пример патогенеза аутоиммунного заболевания наблюдается при ревматоидном артрите, при котором иммунитет возбуждается на белки соединительных тканей суставов, которые, как и ДНК, присутствуют на самых ранних этапах эмбриогенеза. Более того, специфичные к ним лимфоциты благополучно погибают благодаря негативному отбору. Однако данные белки в процессе воспаления чуть-чуть денатурируют, и этого «чуть-чуть» достаточно для распознавания измененного белка другими лимфоцитами, у которых «чуть-чуть» другой рецептор в отличие от погибших в утробе коллег. При ревматоидном артрите в белках соединительной ткани сустава происходит превращение аминокислоты аргинин в аминокислоту цитруллин, которая вообще не входит в число 20 аминокислот организма.

Еще более хитрый вид патогенеза, когда вирус или бактерия имеет белки похожие на белки организма. Это называется антигенная мимикрия, которая позволяет микроорганизму снизить внимание со стороны иммунной системы. Например, стрептококк имеет на своей поверхности белок похожий на белок клеток сердечной мышцы. Однако небольших отличий структуры бактериального белка от таковых в белке организма иногда достаточно для активации лимфоцитов против него. Активированные лимфоциты в условиях воспаления могут неспецифически связывать другие схожие белки собственного организма — в данном случае белок клеток сердца. Данный примера патогенеза можно сравнить с теми редкими случаями, когда чужим, но очень похожим на свой, ключом можно открыть свою дверь.

Читайте также:  Ослабленный иммунитет и вши

Таким образом есть три основания для нападения иммунитета на собственный организм, но во всех случаях проблема не в бешенстве пса, а чаще всего в хозяине:
1) разобщение во времени негативного отбора и момента начала биосинтеза белка;
2) мутации генов HLA, которые дразнят иммунитет незнакомыми для него молекулами;
3) денатурация молекул белка, после чего они становятся «чужими» для иммунитета;
4) мимикрия вирусов и бактерий.

По этим причинам ЦНС, яички, суставы, глаза и ряд других органов иммунологи называют иммунопривилегированными — иммунные процессы в них подавляются организмом разными способами. Например, один из механизмов толерантности иммунной системы к данным органам заключается в их постоянной гипотермии, которая снижает силу связывания антител и рецепторов лимфоцитов с собственными белками. Я ранее подробно рассказывал как обеспечивается охлаждение головного мозга и яичек. Обязательно почитайте, если боитесь рассеянного склероза и бесплодия.

Я намеренно опустил множество деталей в пользу лучшего понимая столь сложной темы. Если что-то требует уточнений — спрашивайте, и я внесу ясность в тексте! Мне важно чтобы материал оказался понятен любому читателю, так как уже готовлю следующие серии «Бешеных псов», в которых расскажу о дальнейшем развитии и поведения иммунитета при аллергии, астме и инфекционных заболеваниях. Чтобы не пропустить, Подписывайтесь на самый читаемый блог о медицине! Если у вас нет аккаунта в ЖЖ, подписывайтесь на обновления в Фэйсбук, Вконтакте и Телеграм.

Поделитесь полезной информацией с друзьями:

Источник

Наша иммунная система призвана охранять организм от инфекций, но иногда в ней происходят нарушения, которые порой приводят к катастрофическим результатам.

Что такое иммунный ответ

В задачи имунной системы входит распознавание всего чужеродного, попавшего в организм и последующее уничтожение «непрошеных гостей».

Когда в организм попадает инфекция, иммунная система синтезирует особые белки — антитела. Само чужеродное вещество при этом называют антигеном. Антитела находят антиген и прикрепляются к нему. Таким образом иммунная система узнает, где находится «враг» и включает меры по его уничтожению. На языке специалистов все происходящее и есть иммунный ответ

Сбой в иммунитете

Иммунная система иногда не справляется со своей работой. Специалисты называют четыре причины, по которым может произойти сбой в иммунитете;

1 Инфекция может оказаться слишком сильной.

2 Сам иммунитет бывает ослабленным.

3 Иммунная система может ополчиться против совершенно безопасного вещества, посчитав его вредным. Такие обостренные иммунные реакции характерны для аллергий.

4 Иммунная система может счесть врагом собственные клетки и начать уничтожать их.

Иммунитет сошел с ума

В норме иммунная система отличает свои клетки от чужеродных. Для этого у человека в процессе эмбрионального развития формируется толерантность к белкам и клеткам собственных тканей. Когда возникают нарушения, иммунитет работает против своего хозяина – толератнтность к белкам и клеткам сменяется нападками, когда иммунитет начинает «стрелять» по тканям организма специальными клетками с губительными веществами. В результате возникают аутоиммунные заболевания, при которых в организме человека образуются антитела к собственным клеткам (аутоантитела).

Аутоиммунные заболевания довольно многочисленны: в настоящее время их известно около 80. Обычно эти болезни делят на две группы: органоспецифические и системные. К первой относятся заболевания, при которых иммунитет ополчается против одного органа. Ко второй — когда иммунитет работает «против всех», и поражаются разные органы или ткани.

Вот что может послужить толчком к развитию аутоимунных заболеваний:

1 Внешние факторы. К ним относятся вирусы и лекарственные препараты. Под их воздействием белки организма могут начать видоизменяться, и тогда иммунная система уже воспринимает их как чужеродные, подлежащие уничтожению.

2. Ошибка иммунной системы. Увы, точно неизвестно, почему вдруг иммунная система начинает вырабатывать антитела против собственных клеток. Ученые выяснили, что аутоиммунные заболевания сопровождаются мутациями на молекулярном уровне. Осталось узнать, чем вызываются, собственно, сами мутации.

Внимание, опасность!

Наблюдения показывают, что риск возникновения аутоиммунного заболевания повышается, если у человека в семье, среди родных уже были прецеденты. И чем ближе родство, тем больше риск. Кроме того, следует быть особенно осторожным людям, у которых диагностируется повышение уровня некоторых гормонов. Всем им специалисты рекомендуют по возможности избегать инфекционных заболеваний и не оставлять без внимания любые воспалительные процессы в организме – их необходимо обязательно лечить до полного выздоровления.

Источник

За последние десятилетия наука заметно продвинулась вперед в лечении рака, и хотя мы все еще довольно далеки от полной победы над этим страшным заболеванием – у врачей становится все больше инструментов, чтобы разрушать опухоли или ограничивать их рост. Главное – они дают онкологическим пациентам возможность жить все дольше.

Один из таких инструментов – это активизация собственного иммунитета человека для борьбы с раковыми клетками. Есть целое направление, посвященное этому – иммуноонкология. На ней сосредоточено очень много внимания, именно в этой области сегодня проводится больше всего исследований и разрабатываются самые многообещающие лекарства.

Мы в «Медицине 24/7» активно используем иммунотерапию – и видим, что она дает хорошие результаты. Правда, сталкиваемся с тем, что многие пациенты вообще не знают о таком методе лечения или считают его еще недостаточно изученным и не заслуживающим доверия.

В этой публикации мы постараемся прояснить вопросы: что такое иммунотерапия, как она работает и кому может помочь.

Джуди Перкинс. У неё был рак молочной железы в терминальной стадии, который полностью вылечили с помощью новейшего метода иммунотерапии

Скрытая угроза. Как возникает рак

Раковые клетки – это повстанцы-мутанты, сумевшие перехитрить систему.

В процессе жизни все клетки организма проходят строго определенные стадии развития, выполняют заданные функции, размножаются по строгим правилам, а со временем – стареют и умирают. Это естественный процесс. Запрограммированная смерть старых клеток, в которых накопилось много поломок, называется апоптоз.

Однако, под влиянием наследственности или неблагоприятных внешних факторов некоторые клетки накапливают генетические ошибки и «бунтуют»: отказываются жить по заданному природой алгоритму, начинают бесконтрольно размножаться или не умирают в срок. Это не редкость. Потенциально раковые клетки периодически могут появляться в каждом – это нормально. Практически всегда таких «выскочек» убивает служба внутренней безопасности организма – иммунитет.

Одну из основных ролей в этом процессе играют Т-лимфоциты, или, проще, Т-клетки. Они реагируют на антиген (чужеродное организму вещество), распознают и уничтожают потенциальных врагов: например, микробы или неподходящий донорский материал. В норме Т-лимфоциты убивают и клетки организма, начавшие мутировать и вести себя не по правилам. Поэтому рак возникает не у всех – у большинства иммунитет справляется с беспорядками до того, как они распространятся.

Но рак стремится выжить и клетки опухоли пытаются захватить как можно больше ресурсов, стать «успешнее». Они размножаются быстрее, выделяют фактор роста сосудов (чтобы привлечь в опухоль больше крови и питательных веществ), развивают устойчивость к лекарствам, вынуждают стволовые клетки усиливать рост опухолевых тканей (посылая обманные сигналы с запросом на регенерацию).

Особых успехов раковые клетки достигают в маскировке: некоторые из них убирают со своей поверхности особые белки-антигены, по которым их могут распознать Т-клетки. Другие выделяют особые молекулы, подавляющие иммунитет, а некоторые даже образуют гибриды с макрофагами (один из видов иммунных клеток) – и приобретают буквально суперспособности!
В этом им помогает, с одной стороны, родство с нормальными клетками организма – некая врожденная маскировка. С другой стороны, генетическая изменчивость раковых клеток дает им повышенную приспособляемость. Чем больше мутаций накопилось в ДНК клетки к моменту ее малигнизации (превращения в злокачественную), тем больше у нее шансов пережить иммунный ответ и выработать успешный план захвата.

Читайте также:  Что такое иммунитет презентация

Пробуждение силы. История Нобелевских открытий

Человеческий иммунитет – вообще-то настоящая армия безжалостных убийц, и после каждой «боевой операции» по обезвреживанию очередного противника их необходимо успокаивать и переводить из военного в мирное положение. Этот механизм снижает температуру до нормальных значений и прекращает воспаления, когда опасность миновала и заражение побеждено.

Нобелевская премия по физиологии и медицине в 2018 году была присуждена американцу Джеймсу Эллисону и японцу Тасуку Хондзё за их независимые открытия в одной и той же области: как именно происходит это переключение из агрессивного в спокойный режим.

Ни один из ученых поначалу не думал о лечении рака. Оба они хотели яснее понять работу иммунного ответа. К тому моменту было ясно, что и на поверхности Т-клеток, и на поверхности антиген-презентирующих клеток (APC) есть рецепторные молекулы, которые и действуют друг на друга, провоцируя или замедляя работу иммунитета. Был открыт TCR – T-клеточный рецептор, которым Т-клетки распознают «вражеские» белки, выставленные на APC. Нашли главный комплекс гистосовместимости MHC (major histocompatibility complex), с помощью которого АРС как раз и преподносят на опознание Т-клеткам кусочки чужеродных белков. Свою Нобелевку за открытие этого сценария получили в 1996 г. Питер Доэрти и Рольф Цинкернагель.

Ученые понимали, что рецепторы на поверхности Т-клеток работают совместно с ко-стимуляторами на поверхности APC. Белок CD28 с поверхности Т-клеток выделили еще в 1980 году, вскоре на поверхности APC нашли молекулу B7. В ходе экспериментов исследователи группы Эллисона перенесли ген B7 в раковые клетки, и те стали отторгаться здоровой тканью. Оказалось, B7 соединяется с CD28 на Т-клетке, и тем самым запускает ее работу: Т-клетка уничтожает клетку опухоли, на поверхности которой «торчит» белок B7.

В 1987 году Эллисон обнаружил цитотоксический T-лимфоцитарный антиген-4 CTLA-4 (cytotoxic T-lymphocyte-associated antigen-4) – и выяснил, что по структуре этот белок похож на давно известный CD28, и тоже способен связываться с B7 – однако при этом действует совершенно обратным образом: останавливает иммунную реакцию.

Действие CTLA-4

Сначала медики собирались использовать этот «тормоз», чтобы бороться с аутоиммунными заболеваниями (когда иммунитет начинает атаковать здоровые клетки организма). Но Эллисон придумал гениальную вещь: не давить на тормоз, а отключить его.

Он разработал антитело-ингибитор (выключатель), которое связывалось с CTLA-4 и не давало ему сомкнуться с B7, чтобы отключить иммунные реакции. Свободные молекулы B7 связывались с CD28, Т-клетка активировалась и снова была готова убивать. Когда он в 1995 году провел опыты на больных раком мышах, стало ясно, что от таких Т-лимфоцитов с отключенными тормозами не могут скрыться даже хитрые клетки раковой опухоли. В 2010 уже были проведены успешные исследования на безнадежных больных. У некоторых пациентов исчезла меланома вместе с метастазами – невероятный результат!

Действие ингибитора CTLA-4 — ипилимумаба

В то же время в Киото Тасуку Хондзё нашел на поверхности Т-клетки другую рецепторную молекулу: PD-1 (Рrogrammed cell Death protein-1, Белок Программируемой клеточной Смерти-1). В ходе экспериментов (снова на многострадальных мышках) японец выяснил, что отключение гена, кодирующего этот белок, провоцирует у мышей симптомы аутоимунного заболевания – то есть ингибирование PD-1 тоже отключало «тормоза» у Т-лимфоцитов и делало их агрессивными и активными.

Хондзё выяснил, что PD-1 переводит Т-клетку в «спящий режим», когда связывается с белком PD-L1/ PD-L2 на поверхности антиген-презентирующей клетки (APC). Ингибитор PD-1 размыкал эту связь и снова активировал Т-клетки. Действие этого «тормоза» было похоже на действие CTLA-4, но проходило другим маршрутом.

Действие ингибитора PD-L1 – ниволумаба

Обе открытые «тормозящие» молекулы, CTLA-4 и PD-1, назвали иммунными контрольными точками (checkpoints) – именно их количество и активность заставляют Т-клетки принимать решение: успокоиться или начать воевать.

Выяснилось, что блокаторы CTLA-4 активируют иммунитет в общем, все Т-клетки, а ингибитор PD-1 – более специфично действует именно на опухоли, т.к. многие раковые клетки несут на себе «второй кусочек паззла», молекулы PD-L1/ PD-L2. Из-за этого лечение ингибиторами PD-1 дает меньший риск осложнений.

Иммунитет наносит ответный удар. От чего помогают ингибиторы контрольных точек

Эллисон и Хондзё сделали не просто серьезный вклад в понимание физиологических процессов, но и запустили волну принципиально новых практических исследований именно в прикладной медицине.

Открытие ингибирования иммунных контрольных точек (ИИКТ) открывает принципиально новую область поиска решений. Существующие до этого способы борьбы с раком: хирургия, лучевая и химиотерапия – были направлены непосредственно на саму опухоль, на уничтожение раковых клеток. Теперь у медиков есть огромное поле для исследования в совершенно ином направлении: изменение взаимодействия раковых клеток с их окружением.

Кстати, именно это принципиальное отличие дало медикам настоящий прорыв. До сих пор на опухоль действовали в зависимости от ее локализации. Для рака молочной железы один препарат, для рака желудка – совсем другой. А ингибитор ИКТ пембролизумаб в 2017 году был впервые в истории онкологии зарегистрирован как препарат для терапии любого рака в любом органе – если только тесты подтвердят, что опухоль имеет особое свойство: микросателлитную нестабильность. То есть ее ДНК особенно склонна к мутациям. Ранее ни разу не получалось сделать лекарство от рака по какому-то общему признаку. Это большое достижение.

Революцией стали результаты применения новых препаратов против самых агрессивных видов рака: метастатическая меланома на IV стадии считалась неизлечимой. А пациенты с таким диагнозом, которые прошли курс препарата ипилимумаб (блокатор CTLA-4) в 2010 году – получили дополнительный год жизни – настолько приостановилось развитие опухоли. У 58% из них опухоль уменьшилась на треть.

При лечении немелкоклеточного рака легкого ниволумабом (ингибитор PD-1) риск смерти пациентов снизился на 40%.

Препарат пембролизумаб (также ингибитор PD-1) показывал снижение роста опухоли на 43% в группе лечившихся от меланомы. 74% пациентов жили без ухудшения в течение года, в течение 18 месяцев их было 71%. Важно, что эффект от назначения препарата перевешивал побочные эффекты на всех стадиях развития болезни.

Сегодня с помощью препаратов ингибиторов CTLA-4 и PD-1 лечат меланому (в том числе неоперабельную), немелкоклеточный рак легкого, плоскоклеточный рак головы и шеи, почечно-клеточный рак, некоторые виды лимфом, рак прямой кишки, мочевого пузыря, и опухоли с микросателлитной нестабильностью.

Особенное внимание привлекают исследования, которые показывают эффективность комбинированной терапии одновременно анти-PD-1 и анти-CTLA-4 препаратами.

Изменение объема опухоли – резкое снижение при комбинации анти-PD-1 и анти-CTLA-4 препаратов

Выживаемость без прогрессирования – комбинация анти-PD-1 и анти-CTLA-4 препаратов более эффективна

В «Медицине 24/7» мы успешно применяем пембролизумаб и ниволумаб с момента их регистрации в РФ. Мы следили за всеми зарубежными исследованиями и очень ждали пополнения арсенала.

Атака клонов. Генетически модифицированный иммунитет

Ингибиторы иммунных контрольных точек заслуженно находятся в центре внимания, но этот механизм пока небезупречен и не может вылечить любой рак. Хорошо, что в иммунотерапии активно развиваются смежные направления исследований. Одно из самых многообещающих – CAR-T терапия.

Буква Т в названии метода – все те же неизменные Т-клетки нашего иммунитета. CAR (Chimeric antigen receptor) – это химерный рецептор антигена. Почему рецептор называют химерным? Потому что он собран из нескольких частей, взятых от разных клеток – с помощью умений генных инженеров.

Читайте также:  Как повысить иммунитет при молочнице

У обычной Т-клетки есть особый рецептор TCR (T-cell receptor). Он «ощупывает» все клетки организма на своем пути и, если чувствует на поверхности клетки какую-то чужеродную молекулу, посылает Т-клетке активирующий сигнал. Та, в свою очередь, либо расправляется с нежелательным пришельцем сама, либо выделяет специальные активные вещества (цитокины) и призывает другие клетки иммунитета «разобраться». Убивают Т-клетки весьма эффективно.

Правда, не очень точно. Разновидностей TCR у нас куда меньше, чем существует антигенов. Поэтому Т-клетки умеют распознавать своим TCR много антигенов, но – только приблизительно. Раковые клетки часто пользуются этой слабостью нашей системы безопасности и притворяются «своими».

Эволюция решила проблему как умела: в организме человека есть еще один механизм выявления чужаков: антитела. Это особые белки, которые выделяются другим классом иммунных клеток: B-лимфоцитами. У В-клеток, в отличие от Т-клеток, к каждому «клиенту» индивидуальный подход.

Антитело представляет собой белковую структуру в виде буквы Y. На обоих концах этой «вилки» есть участки, связывающиеся с антигеном. Эти участки могут изменяться у каждого следующего поколения антител, чтобы плотнее прилегать к антигену – как подбор кусочков паззла. При обнаружении чужеродного антигена В-клетки выделяют миллиарды антител, среди которых идет отбор на самое точное соответствие антигену. В итоге получаются эталонные антитела, «натасканные» специально для очень точного распознавания конкретного «чужака» – антигена.

Антитело, приспособленное находить определенный антиген

Однако, распознать – не всегда означает обезвредить. С этим у антител сложности – самостоятельно уничтожить «врага» они могут далеко не во всех случаях.

Так вот, в 1989 году израильский химик и иммунолог Зелиг Эшхар придумал объединить убийственную мощь подслеповатых Т-клеток и снайперское прицеливание антител. Он выделил концевые участки белков-антител, которые способны плотно связываться с антигеном определенных раковых клеток, и «пересадил» их в Т-клетку – заменил ими часть TCR, отвечающие за распознавание антигенов.

Впоследствии он начал работать совместно с американским коллегой, Стивеном Розенбергом, у них получилось сделать химерный рецептор более эффективной конструкции, одновременно чувствительный и избирательный.

Разница между обычными Т-клетками и CAR-T-клетками

Исследования в пробирке показали хороший результат. Затем ученые снова лечили мышей, затем кропотливо переносили методику на человека.

Со временем терапию CAR-T привели к современному виду.

  • Сначала с помощью генно-молекулярного тестирования определяют специфические мутации в опухолевых клетках человека, на которые можно «настроить» антитела.
  • Затем у человека берут его собственные Т-клетки, изменяют с помощью биоинженерных методов, вместо TCR «пересаживая» CAR, настроенный на выявленные мутации.
  • Затем модифицированные CAR-T клетки размножаются в пробирке и вводятся обратно в организм человека, где они успешно распознают и убивают раковые клетки.

В клинических исследованиях, начатых в 2010 году, сразу получились обнадеживающие результаты: в лечении лимфомы 12 из 13 пациентов показали улучшение, а у 4-х наступила ремиссия. При лечении лейкемии ремиссия наступила у 17 человек из 33.

В 2018 в Nature Medicine появилась статья американских онкологов, где сообщалось, что уже два года они наблюдают пациентку, полностью здоровую после CAR-T терапии. Ее вылечили от метастатического рака молочной железы с метастазами. Это ее фотография в каяке приведена в начале статьи: после лечения она вернулась на работу и ходит в походы.

Новая надежда. Станет ли иммунотерапия панацеей?

Как и у других методов лечения рака, у иммунотерапии есть свои ограничения. Несмотря на то, что в ряде случаев пациенты дают очень хороший ответ на терапию ингибиторами иммунных контрольных точек, в 60% случаев либо развивается приобретенная, либо наблюдается первичная резистентность к анти-PD-1 или анти-CTLA-4 препаратам: опухоль просто не реагирует на лечение или быстро приспосабливается и учится его «обходить».

Кроме PD-1, PD-L1/2, CTLA-4, CD28 и B7 на поверхностях Т-клеток и опухолевых клеток есть масса других ко-рецепторов, действие которых пока не изучено так хорошо, как работа контрольных точек, но они также влияют на иммунный ответ. Одно из направлений работы – влияние на эти ко-рецепторы.

Кроме того, терапия ИИКТ дополняется введением вакцин, цитокинов, бета-блокаторов – и такой подход тоже хорошо работает в ряде случаев.

CAR-T терапия все еще является крайне дорогой и пока еще только переходит в стадию коммерческого использования: ведутся разработки в научных группах Эшхара и Розенберга, других исследователей – каждая из групп создают особые виды CAR-Т с направленным действием против определенного вида рака. Но пока это только исследования, проверки и испытания. Пройдет несколько лет, прежде чем это превратится в отработанный массовый способ лечения – но и тогда нельзя будет давать 100% гарантий.

Но пока ученые проводят исследования, врачи внедряют экспериментальные схемы лечения с использованием тех достижений, что уже есть. И самый заметный эффект дает сочетание иммунотерапии с классическими «тремя столпами» онкологии: лучевой и химиотерапией, хирургией. При комбинировании этих методов всегда получается синергия: вместе они работают эффективнее, чем по очереди.

Если стандартно до сих пор иммунотерапевтические препараты включали в третью, в пятую линию (то есть очередь) терапии, то сейчас врачи движутся к тому, чтобы назначать их сразу, вместе с химиотерапией и терапией таргетными моноклональными антителами: такие пациенты часто показывают более хорошую динамику и в итоге живут дольше.

В России уже зарегистрированы все основные иммунопрепараты. Проблема, правда, что для каждого из них Минздрав отдельно оговаривает показания. То есть в оригинальной инструкции к препарату может быть прописано, например, девять разных видов рака, при котором препарат можно назначать, а у нас в стране он зарегистрирован только для шести из них. И так с каждым препаратом. В итоге, пока около 50% опухолей еще не включены в этот список. Соответственно, в рамках лечения по ОМС врач может выписать эти препараты далеко не всем пациентам.

К тому же врачи бюджетных государственных клиник строго ограничены протоколами лечения. И если в протоколе ингибиторы контрольных точек прописаны только на 3 линии, на 3 месте после двух линий стандартной «химии», то выписать их в первую очередь врач просто не имеет права, даже если считает, что пациенту это поможет.

Ну и частая проблема – отсутствие квалификации. Метод, хоть и успел проявить себя, пока для многих врачей в стране еще новый. Препараты все западные, и доходят до нас с опозданием на 2-3 года. А, учитывая, что активно применяется иммунотерапия всего несколько лет, у многих еще нет опыта работы с ними. Кроме того, использование иммунотерапии требует специфических знаний.

В частной медицине мы не ограничены бюджетом. Если в «Медицину 24/7» обращается пациент с такой опухолью, для которой еще не зарегистрирован препарат иммунотерапии, мы предлагаем ему пройти молекулярно-генетическое исследование. По результатам становится понятно, отреагирует ли его опухоль на иммунопрепарат. Если да – врач имеет полное право ее назначить. Поэтому в нашем стационаре мы применяем иммунотерапию почти по всем видам рака – она дает очень хорошие результаты. Даже пациенты на III-IV стадии показывают улучшения. Иммунопрепараты дают нам возможность продлять людям жизнь, даже в случаях, которые считались безнадежными.

Общее и в частных, и в государственных клиниках – это сами пациенты. Они не всегда хорошо понимают, что это за метод, как он работает, отсюда недоверие. Мы надеемся, эта статья помогла разобраться и понять, что иммунотерапия сегодня совершенно заслуженно находится в фокусе пристального внимания онкологов. Судя по результатам, она уже готова встать на один уровень с классическими методами. Страшная болезнь отступит еще на шаг дальше.

Источник