Иммунитет за счет сыворотки

Иммунитет за счет сыворотки thumbnail

Иммунитет – это невосприимчивость организма к инфекционным агентам и чужеродным веществам. Такими агентами чаще всего бывают микробы и яды, которые они выделяют, токсины. Иммунитет к инфекционным болезням проявляется в нескольких формах. Различают естественный и искусственный иммунитет.

Естественный иммунитет возникает натуральным путем без сознательного вмешательства человека. Он может быть врожденным и приобретенным.

Врожденный видовой иммунитет обусловливается врожденными свойствами человека или данного вида животных, которые передаются по наследству. Так, известно, что человек не болеет чумой рогатого скота и холерой кур, а они не болеют брюшным или сыпным тифом.

Приобретенный иммунитет возникает в случае перенесения инфекционной болезни. После одних болезней он сохраняется долго, иногда всю жизнь (натуральная оспа, брюшной тиф и др.), а после других – кратковременно (грипп).

Искусственный иммунитет создается путем введения в организм вакцины или сыворотки для предупреждения инфекционных болезней. Он всегда бывает приобретенным.

Иммунитет может быть активным и пассивным.

Активный иммунитет вырабатывается в организме активным путем в результате перенесения инфекционной болезни или после введения вакцины.

Пассивный иммунитет возникает после введения в организм сыворотки, содержащей специфические антитела, или путем передачи антител от матери к плоду через плаценту. Известно, что дети в первые месяцы жизни имеют пассивный иммунитет к кори, скарлатине, дифтерии в том случае, если мать имеет иммунитет к этим болезням.

Продолжительность активного иммунитета может быть от полугода до 5 лет, а после некоторых болезней (натуральная оспа, брюшной тиф) иммунитет может сохраняться всю жизнь. Пассивный иммунитет сохраняется 2-3 недели после введения сыворотки, а при получении антител через плаценту – до нескольких месяцев.

Иммунитет обеспечивается защитными механизмами, которые препятствуют проникновению в организм патогенных агентов, а если они проникли, то вызывают их гибель. К таким механизмам относятся защитные свойства кожи, слизистых оболочек, бактерицидное действие слюны, слез, желудочного и кишечного соков, лимфоидная система организма.

Вакцины (от лат. Vaccinus – коровий) – это препараты получаемые из микробов, вирусов и продуктов их жизнедеятельности и применяемые для активной иммунизации людей и животных с профилактической и лечебной целью.

Начало иммунизации положил английский врач Э. Дженнер, который в 1796г. привил ребенку коровью оспу, после чего у него возник иммунитет к натуральной оспе.

Большой вклад в развитие вакцинации внес французский ученый Луи Пастер, разработавший методы ослабления вирулентности микробов и создавший вакцины против бешенства и сибирской язвы. Русский ученый Н.Ф. Гамалея установил возможность создания химических вакцин, а также вакцин из убитых микробов.

Современная медицина имеет вакцины против многих опасных инфекционных заболеваний (чумы, холеры, туберкулеза, дифтерии, сибирской язвы, туляремии, столбняка, натуральной оспы, полиомиелита, гриппа, энцефалитов, эпидемического паротита и др.)

Вакцины подразделяются на живые, убитые, анатоксины и химические. Для приготовления живых вакцин используют штаммы патогенных микробов с ослабленной вирулентностью, т.е. лишенных возможности вызвать заболевание, но сохранивших свойства размножаться в организме вакцинированных и вызывать доброкачественный вакцинальный процесс (БЦЖ – вакцина против туберкулеза, противобруцеллезная вакцина, против вирусного гепатита А и др.). Живые вакцины дают стойкий иммунитет.

Убитые вакцины получают путем нагревания бактерий и вирусов, другими физическими воздействиями (ультрафиолетовым или ионизирующим излучением), путем обработки химическими веществами (фенолом, спиртовыми растворами, формалином). Убитые вакцины чаще всего вводятся подкожно или внутримышечно (против кишечных инфекций, коклюша, лечебная вакцина против бруцеллеза).

Химические вакцины готовятся путем извлечения из микробных тел основных антигенов, обладающих иммуногенными свойствами (поливакцина)

Вакцины можно вводить разными путями: внутримышечно (корь), подкожно (брюшной тиф, паратифы, дизентерия, холера, чума и др.), накожно (натуральная оспа, туляремия, туберкулез, сибирская язва), в нос (грипп) или через рот (полиомиелит).

Плановая вакцинация проводится в определенной последовательности. Так, новорожденные получают вакцину против туберкулеза (БЦЖ), далее детей вакцинируют против дифтерии, столбняка и коклюша, позже – против кори и полиомиелита. Плановая вакцинация населения позволила ликвидировать такие инфекционные болезни, как натуральная оспа, чума, туляремия. Заболеваемость другими инфекционными болезнями снижена в десятки и сотни раз.

Иммунные сыворотки – препараты крови животных или человека, которые содержат антитела. Используются для диагностики, лечения и профилактики различных заболеваний. После введения иммунной сыворотки возникает пассивный иммунитет, который сохраняется до 3-4 недель. Введение иммунной сыворотки проводят по методу А.М. Безредко, который позволяет десенсибилизировать организм: сначала подкожно вводят 0,1 мл, через 30 мин – 0,2 мл, а через 1-2 – внутримышечно всю остальную дозу сыворотки.

Источник

Иммунитет за счет сыворотки

ТОП 10:

Для экстренной профилактики и лечения больных инфекционными заболеваниями применяют иммунные сыворотки и извлеченные из них специфические активные фракции иммуноглобулины, которые содержат готовые антитела и поэтому способны создать специфическую резистентность сразу после введения препарата, а также немедленно воздействовать на токсины микробов и нейтрализовать их. Метод создания иммунитета с применением «готовых» антител получил название пассивной иммунизации.

Иммунные лечебные и профилактические сыворотки получают путем гипе­риммунизации (т. е. многократной иммунизации) животных (чаще всего ло­шади, ослы, иногда кролики) специфическим антигеном (анатоксином, бактериальными или вирусными культурами и их антигенами) с пос­ледующим, в период максимального антителообразования, кровопусканием и выделением из крови иммунной сыворотки. Иммунные сы­воротки, полученные от животных, называют гетерогенными, так как они содержат чужерод­ные для человека сывороточные белки. Для получения гомологичных нечужерод­ных иммунных сывороток используют сы­воротки переболевших людей (коревая, паротитная сыворотки) или специ­ально иммунизированных людей-доноров (противостолбнячная, противоботулиническая сыворотки) либо сыворотки из плацентарной, а также абортной крови, содержащие антитела к ряду возбудителей инфекционных болезней вследствие вакци­нации или перенесенного заболевания.

Однако сыворотки, полученные путем иммунизации лошадей, гетерогенны, то есть, чужеродны для человека, поэтому они имеют, как минимум, два недостатка.

Первый — это кратковременность обусловливаемого ими пассивного иммунитета. Его продолжительность около двух недель. Разрушение антител происходит за счет естественного процесса распада белков введенной сыворотки и за счет образования антител к белкам сыворотки животного, которая для организма является антигеном.

Второй, и главный недостаток, заключается в том, что при введении сывороточных препаратов возможны осложнения аллергического характера от крапивницы до анафилактического шока.

Читайте также:  Влияние ат на видовой иммунитет

Поэтому перед введением любых гетерогенных сывороток необходимо определять индивидуальную чувствительность организма к белкам данной сыворотки путем постановки внутрикожной пробы (по Безредко). Для этого нормальную лошадиную сыворотку разводят 1:100 стерильным физиологическим раствором. 0,1 мл разведенной сыворотки вводят внутрикожно в сгибательную поверхность предплечья и наблюдают за реакцией в течение 20 мин. Пробу считают отрицательной, если диаметр образующегося на месте инъекции инфильтрата (папулы) не превышает 0,9 см и краснота вокруг него ограничена. При получении отрицательного результата внутрикожной пробы, введение лечебно-профилактических сывороток начинают с подкожной инъекции 0,1 мл и, только в случае отсутствия каких-либо реакций в течение 30 мин. вводят остальную сыворотку.

Иммунные сыворотки относятся к числу основных иммунных факторов, участвующих во многих им­мунологических реакциях, определяющих со­стояние иммунитета организма. Они разнооб­разны по своей структуре и функциям. В зависимости от природы и свойств анти­генов, к которым они образуются, антитела могут быть антибактериальными, противови­русными, антитоксическими, противоопухо­левыми, антилимфоцитарными, трансплан­тационными, цитотоксическими, рецепторными и т. д. В связи с этим на основе антител создано множество иммунобиологических препаратов, применяемых для профилакти­ки, терапии и диагностики как инфекцион­ных (бактериальных, вирусных, токсинемических), так и неинфекционных болезней, а также для исследовательских целей в иммуно­логии и других науках. Иммунные сыворотки применяют с лечебной и профилактической целью. Особенно эффективно применение сывороточных препаратов для лечения токсинемических инфекций (столбняк, ботулизм, дифтерия, газовая гангрена), а также для ле­чения бактериальных и вирусных инфекций (корь, краснуха, чума, сибирская язва и др.) в комплексе с другими способами лечения. С лечебной целью сывороточные препараты вводят как можно раньше внутримышечно (иногда внутривенно) в больших дозах.

Антитоксические сыворотки, действующим началом которых являются антитоксины, приобрели наибольшее распространение, так как дают быстрый терапевтический эффект благодаря нейтрализации микробного токсина в организме больного. Их получают путем гипериммунизации лошадей анатоксином.

Примерами антитоксических сывороток являются:

— противостолбнячная,

— противоботулиническая,

— противодифтерийная,

— противогангренозная и другие,

— а также сыворотки против ядов змей.

Лечебную силу антитоксических сывороток определяют в антитоксических (международных единицах). Единица антитоксина является условной величиной. Например, 1 ME дифтерийного антитоксина — это наименьшее количество сыворотки, способное нейтрализовать 100 Dlm дифтерийного токсина для морской свинки весом в 250 граммов.

Иммуноглобулины. Поскольку нативные иммунные сыворот­ки содержат в своем составе ненужные балластные белки, например альбумин, из этих сывороток выделяют и подвергают очистке и концентрированию специфические белки — иммуноглобулины. Для очистки и концентрирования иммуног­лобулинов используют различные физико-химические методы: осаждение спиртом или ацетоном на холоде, обработка ферментами, аффинная хроматография, ультрафильтрация.

Иммуноглобулины, полученные из крови человека, выгодно отличаются от сывороточных препаратов животного происхождения. Они не реактогенны и обеспечивают более длительный иммунитет (до 4-5 недель).

В настоящее время готовят два вида иммуноглобулинов:

— нормальный или противокоревой;

— иммуноглобулины направленного действия.

Нормальный (противокоревой) иммуноглобулин получают из смеси большого числа сывороток взрослых людей (не менее 100), плацентарной или абортной крови. Он содержит антитела против вируса кори, поскольку большинство людей болеют этой инфекцией, а также антитела против гриппа, коклюша, дифтерии, полиомиелита и других бактериальных и вирусных инфекций.

Иммуноглобулины направленного действия готовят из крови людей, специально иммунизированных против той или иной инфекции. К иммуноглобулинам направленного действия относят.

— гипериммунную стафилококковую плазму. Ее получают при иммунизации людей стафилококковым анатоксином. Применяют для лечения больных стафилококковыми инфекциями;

— противостолбнячный иммуноглобулин, который получают из сывороток людей, гипериммунизированных столбнячным анатоксином;

— антирабический иммуноглобулин. Получают из сыворотки крови людей, иммунизированных против бешенства;



Источник

Принципиальным отличием SARS-CoV-2 от других вирусов, с которыми человечество сталкивалось в последние годы

Фото: REUTERS

На многие волнующие нас вопросы дал ответ Евгений Шилов, старший научный сотрудник кафедры иммунологии Биологического факультета МГУ во время научной конференции «Правда и мифы о коронавирусе». «КП» приводит выдержки из выступления.

1. Правда ли, что новый коронавирус особо заразный, раз распространился так быстро по всему миру?

Принципиальным отличием SARS-CoV-2 от других вирусов, с которыми человечество сталкивалось в последние годы, это его относительная эволюционная новизна и непохожесть.

Другие вирусы, вызывающие респираторные заболевания, присутствуют в человеческой популяции уже давно, и в принципе давно не возникала ситуация, когда человечество все разом сталкивается в первый раз с каким-то патогенном, да еще в таком масштабе. Такого не было сто лет со времен «испанки»!

Поскольку этот новый коронавирус не имеет достаточно похожих белков с сезонными коронавирусами, а похож, и то относительно умеренно, только на исходный коронавирус, вызывающий SARS, то ни у кого из людей на планете, встречающихся с этим вирусом, нет предсформированного иммунитета. Каждый раз иммунный ответ начинается с чистого листа.

Возможно, что у каких-то людей, которые 15 лет назад перенесли атипичную пневмонию, потенциально сохранился некоторый иммунный ответ, потому что некоторые антигены у SARS и у SARS-CoV-2 очень похожи. Но при этом нельзя сказать однозначно, будут ли эффективны против SARS-CoV-2 вакцины, разрабатывавшиеся против атипичной пневмонии.

2. Тяжело коронавирусом болеют только те, у кого слабый иммунитет?

По-видимому, на данный момент тяжесть заболевания скорее всего связана с вирусной нагрузкой (сколько вируса попало в организм, — прим.ред.), с состоянием иммунной системы и защитных систем, которые работают до иммунной систему у конкретного пациента и, возможно, с путем проникновения вируса в организм.

От ред.: есть данные, что легче COVID протекает у тех зараженных, которые получили вирус через слизистые носа. А если вирус внедряется через слизистые ротоглотки, заболевание протекает тяжелее. Но информации еще недостаточно, чтобы делать окончательные выводы.

3. Правда ли, что генетический анализ поможет предсказать, заболеет ли коронавирусом человек?

Делать какой-то генетический скрининг, который позволил бы заранее сказать человеку, насколько он защищен от инфекции, пока нельзя. Но можно проводить скрининг и выявлять людей уже переболевших, у которых к данному циркулирующему варианту штамма есть иммунитет.

Делать какой-то генетический скрининг, который позволил бы заранее сказать человеку, насколько он защищен от инфекции, пока нельзя

Читайте также:  Вид иммунитета при грудном вскармливании

Фото: Валерий ЗВОНАРЕВ

4. Иммунитет к коронавирусу не вечный и можно повторно заразиться?

В реальности антитела выводятся из кровотока максимум за 4 недели. Но остаются клетки памяти и в случае повторного заражения иммунная система может очень быстро нарастить антитела за счет того, что теперь иммунный ответ будет развиваться не с нуля, а с резерва клеток памяти, которые будут готовы к активации в любой момент по сигналу. Тот путь, который мы в первый раз шли за две недели, мы сможем пройти за несколько дней.

Этот иммунитет может исчезнуть через несколько лет, он может оказаться неадекватным, если через несколько лет пойдет волна со штаммом, который будет сильно отличаться по антигенным характеристикам, но в целом, пока люди, которые выздоравливают, они действительно выздоравливают, а случаи повторного заражения скорее объясняются недостаточной диагностикой и желанием быстрее поставить плюсик в графу «число вылечившихся». В реальности, если подождать еще, то можно добиться полноценного излечения и функционального иммунитета против SARS-CoV-2.

5. Введение сыворотки с антителами пациентам с COVID-19 — это новаторский метод лечения?

Метод серотерапии, то есть применения сыворотки из крови людей, переболевших каким-то инфекционным заболеванием, в качестве лекарственной субстанции, не нов, ему более 100 лет. Более 100 лет назад за этот подход была вручена Нобелевская премия. Так что, это старый добрый метод и действительно эффективный, при условии, что сыворотка хорошо очищается с фракцией нейтрализующих антител. Это должно работать. Единственный вопрос в том, что при серотерапии должно быть хотя бы сопоставимо число доноров сыворотки и число реципиентов. Имея тысячу выздоровевших добровольцев вряд ли удастся вылечить сотни тысяч пациентов. Просто титр (предельное разведение пробы сыворотки крови, при котором обнаруживается активность антител, — прим.ред.) будет не достаточен.

При идеальном пробоотборе практически все существующие тест-системы работают достаточно хорошо

Фото: Владимир ВЕЛЕНГУРИН

6. Тесты на коронавирус врут, потому что недостаточно чувствительны?

Я бы сказал, что большинство тестов достаточно чувствительны и проблема скорее не в том, что на молекулярном уровне что-то работает неправильно, а проблема в том, что ПЦР-тесты оперируют конкретными тканями, клетками, и в них уже может просто на момент тестирования не идти репликация (размножение – прим. Ред.) вируса. Тут, как бы ты ни улучшал диагностическую систему, ты берешь материал у человека, у которого в доступном органе репликация может уже не идти, или пока еще не идет, и тест будет отрицательным. Я бы сказал, что надо работать над культурой пробоотбора и сохранением проб. Это важно. При идеальном пробоотборе практически все существующие тест-системы работают достаточно хорошо.

ЧИТАЙТЕ ТАКЖЕ

Коронавирус: изучайте факты и помните о простой профилактике

Мы каждый день получаем огромное количество новостей про новый вирус. И здесь важно спокойно разобраться в ситуации (подробности)

Источник

Как устроен иммунитет: Объясняем по пунктам

Наш организм непрерывно меняется, но при этом очень «любит» постоянство и может нормально работать только при определенных параметрах своей внутренней среды. Например, нормальная температура тела колеблется между 36 и 37 градусами по Цельсию. Вспомните последнюю простуду и то, как плохо вы себя чувствовали, стоило температуре подняться всего на полградуса. Такая же ситуация и с другими показателями: артериальным давлением, рН крови, уровнем кислорода и глюкозы в крови и другими. Постоянство значений этих параметров называется гомеостазом, а поддержкой его стабильного уровня занимаются практически все органы и системы организма: сердце и сосуды поддерживают постоянное артериальное давление, легкие — уровень кислорода в крови, печень — уровень глюкозы и так далее.

Иммунная же система отвечает за генетический гомеостаз. Она помогает поддерживать постоянство генетического состава организма. То есть ее задача — уничтожать не только все чужеродные организмы и продукты их жизнедеятельности, проникающие извне (бактерии, вирусы, грибки, токсины и прочее), но также и клетки собственного организма, если «что-то пошло не так» и, например, они превратились в злокачественную опухоль, то есть стали генетически чужеродными.

Как клетки иммунной системы уничтожают «врагов»?

Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.

Иммунитет бывает врожденным (он же неспецифический) и приобретенным (он же адаптивный, или специфический). Врожденный иммунитет одинаков у всех людей и идентичным образом реагирует на любых «врагов». Реакция начинается немедленно после проникновения микроба в организм и не формирует иммунологическую память. То есть, если такой же микроб проникнет в организм снова, система неспецифического иммунитета его «не узнает» и будет реагировать «как обычно». Неспецифический иммунитет очень важен — он первым сигнализирует об опасности и немедленно начинает давать отпор проникшим микробам.

Однако эти реакции не могут защитить организм от серьезных инфекций, поэтому после неспецифического иммунитета в дело вступает приобретенный иммунитет. Здесь уже реакция организма индивидуальна для каждого «врага», поэтому «арсенал» специфического иммунитета у разных людей различается и зависит от того, с какими инфекциями человек сталкивался в жизни и какие прививки делал.

Специфическому иммунитету нужно время, чтобы изучить проникшую в организм инфекцию, поэтому реакции при первом контакте с инфекцией развиваются медленнее, зато работают гораздо эффективнее. Но самое главное, что, один раз уничтожив микроба, иммунная система «запоминает» его и в следующий раз при столкновении с таким же реагирует гораздо быстрее, часто уничтожая его еще до появления первых симптомов заболевания. Именно так работают прививки: когда в организм вводят ослабленных или убитых микробов, которые уже не могут вызвать заболевание, у иммунной системы есть время изучить их и запомнить, сформировать иммунологическую память. Поэтому, когда человек после вакцинации сталкивается с реальной инфекцией, иммунная система уже полностью готова дать отпор, и заболевание не начинается вообще или протекает гораздо легче.

Кто отвечает за работу различных видов иммунитета?

  • Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
  • Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
  • Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
  • Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.
Читайте также:  Что надо кушать чтобы поднять иммунитет ребенку

Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.

  • Т-лимфоциты. Названы так, потому что после образования в костном мозге дозревают в вилочковой железе — тимусе. Разные подвиды Т-лимфоцитов отвечают за разные функции. Например, Т-киллеры могут убивать зараженные вирусами клетки, чтобы остановить развитие инфекции, Т-хелперы помогают иммунной системе распознавать конкретные виды микробов, а Т-супрессоры регулируют силу и продолжительность иммунной реакции.
  • B-лимфоциты. Название их происходит от Bursa fabricii (сумка Фабрициуса) — особого органа у птиц, в котором впервые обнаружили эти клетки. В-лимфоциты умеют синтезировать антитела (иммуноглобулины). Это специальные белки, которые «прилипают» к микробам и вызывают их гибель. Также антитела могут нейтрализовывать некоторые токсины.
  • Натуральные киллеры. Эти клетки находят и убивают раковые клетки и клетки, пораженные вирусами.
  • Нейтрофилы и макрофаги умеют ловить и переваривать микробов — осуществлять фагоцитоз. Кроме того, макрофаги выполняют важнейшую роль в процессе презентации антигена, когда макрофаг знакомит другие клетки иммунной системы с кусочками переваренного микроба, что позволяет организму лучше бороться с инфекцией.
  • Эозинофилы защищают наш организм от паразитов — обеспечивают антигельминтный иммунитет.
  • Базофилы — выполняют главным образом сигнальную функцию, выделяя большое количество сигнальных веществ (цитокинов) и привлекая этим другие иммунные клетки в очаг воспаления.

Как клетки иммунной системы отличают «своих» от «чужих» и понимают, с кем нужно бороться?

В этом им помогает главный комплекс гистосовместимости первого типа (MHC-I). Это группа белков, которая располагается на поверхности каждой клетки нашего организма и уникальна для каждого человека. Это своего рода «паспорт» клетки, который позволяет иммунной системе понимать, что перед ней «свои». Если с клеткой организма происходит что-то нехорошее, например, она поражается вирусом или перерождается в опухолевую клетку, то конфигурация MHC-I меняется или же он исчезает вовсе. Натуральные киллеры и Т-киллеры умеют распознавать MHC-I рецептор, и как только они находят клетку с измененным или отсутствующим MHC-I, они ее убивают. Так работает клеточный иммунитет.

Но у нас есть еще один вид иммунитета — гуморальный. Основными защитниками в этом случае являются антитела — специальные белки, синтезируемые B-лимфоцитами, которые связываются с чужеродными объектами (антигенами), будь то бактерия, вирусная частица или токсин, и нейтрализуют их. Для каждого вида антигена наш организм умеет синтезировать специальные, подходящие именно для этого антигена антитела. Молекулу каждого антитела, также их называют иммуноглобулинами, можно условно разделить на две части: Fc-участок, который одинаков у всех иммуноглобулинов, и Fab-участок, который уникален для каждого вида антител. Именно с помощью Fab-участка антитело «прилипает» к антигену, поэтому строение этого участка молекулы зависит от строения антигена.

Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?

Рассмотрим этот процесс на примере развития бактериальной инфекции. Например, вы поцарапали палец. При повреждении кожи в рану чаще всего попадают бактерии. При повреждении любой ткани организма сразу же запускается воспалительная реакция.  Поврежденные клетки выделяют большое количество разных веществ — цитокинов, к которым очень чувствительны нейтрофилы и макрофаги. Реагируя на цитокины, они проникают через стенки капилляров, «приплывают» к месту повреждения и начинают поглощать и переваривать попавших в рану бактерий — так запускается неспецифический иммунитет, но до синтеза антител дело пока еще не дошло.

Расправляясь с бактериями, макрофаги выводят на свою поверхность разные их кусочки, чтобы познакомить Т-хелперов и B-лимфоцитов со строением этих бактерий. Этот процесс называется презентацией антигена. Т-хелпер и B-лимфоцит изучают кусочки переваренной бактерии и подбирают соответствующую структуру антитела так, чтобы потом оно хорошо «прилипало» к таким же бактериям. Так запускается специфический гуморальный иммунитет. Это довольно длительный процесс, поэтому при первом контакте с инфекцией организму может понадобиться до двух недель, чтобы подобрать структуру и начать синтезировать нужные антитела.

После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.

Есть ли еще какие-то механизмы?

Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.

Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.

Источник