Как в мрт получают срезы

Как в мрт получают срезы thumbnail

Рекомендации и характеристики для позиционирования срезов на МРТ

МРТ головного мозга

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_brain_axial

Рис.9 Клик по картинке для увеличения. Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

mri_slice_position_brain_sagittal

Рис.10 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_brain_coronal

Рис.11 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

МРТ головного мозга при эпилепсии

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_brain_epilepsy

Рис.46 Выставление срезов для получения изображений в корональной плоскости (корональных срезов), при этом плоскость срезов перпендикулярна направлению височного рога бокового желудочка и гиппокапму.

МРТ мостомозжечковых углов

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

cerebello-pontine_angle

Рис. 53 Для диагностики патологии мостомозжечковых углов используются импульсные последовательности с матрицей высокого разрешения и тонкие срезы. Позиционирование осуществляется перпендикулярно стволу мозга с наклоном вдоль моста, что бы VII и VIII нервы были в одной плоскости.

МРА артерий головного мозга

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_brain_artery_tof

Рис. 48 Позиционирование срезов для получения ангиографии артерий головного мозга осуществляется с захватом экстракраниальных сегментов внутренних сонных артерий и позвоночных артерий, а так же с захватом Виллизиева круга и некоторой протяженности дистальных сегментов мозговых артерий (А3 и М3), а при необходимости область сканирования расширяют до теменных областей.

МРА вен и дуральных синусов

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_brain_vein_tof

Рис.49 При постановки срезов для получения ангиографии вен и дуральных синусов осуществляется захват части ярёмных вен, чуть ниже луковиц с обязательным наличием области преднасыщения, расположенной непосредственно под срезами (данная сатурация позволяет подавить МР-сигнал от тока крови по артериям и сделать изображение вен чище, без артерий) с захватом всех остальных частей головы.

МРТ орбит

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_orbits_cor

Рис.54 При выставлении срезов на орбиты – следует располагать плоскость симметрично по основным анатомическим ориентирам – костям черепа, не принимая во внимание расположение глазных яблок (могут быть асимметричны из-за экзофтальма или объёмных образований), а так же продольной щели мозга (перпендикулярно ей).

mri_slice_position_orbits_axial

Рис. 55 При расположении срезов в аксиальной плоскости на орбиты так же следует соблюдать симметрию, ориентируясь по зрительным нервам, стенкам орбит и продольной щели мозга.

МРТ гипофиза

Схема позиционирования срезов

Рис.29 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_pituitary_coronal

Рис.30 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

МРТ шейного отдела позвоночника

mri_slice_position_c-spine_sagittal

Рис.32 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_c-spine_coronal

Рис.31 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

mri_slice_position_c-spine_axial

Рис.33 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

МРТ грудного отдела позвоночника

Схема позиционирования срезов

mri_slice_position_th-spine_sagittal

Рис.35 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_th-spine_coronal

Рис.34 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

mri_slice_position_th-spine_axial

Рис.36 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

МРТ пояснично-крестцового отдела позвоночника

Схема позиционирования срезов

mri_slice_position_l-spine_sagittal

Рис.18 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_l-spine_sagittal_2

Рис.19 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_l-spine_axial

Рис.20 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

МРТ крестцово-подвздошных сочленений

Схема позиционирования срезов

mri_slice_position_sacro-iliac_joins_coronal

Рис.22 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

МРТ плечевого сустава

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_shoulder_coronal

Рис.56 Выставление срезов для получения изображений плечевого сустава в корональной плоскости (корональных срезов).

mri_slice_position_shoulder_sagittal

Рис.57 Выставление срезов для получения изображений плечевого сустава в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_shoulder_sagittal_2

Рис.58 Выставление срезов для получения изображений плечевого сустава в сагиттальной плоскости (сагиттальных срезов).

Seq. FOV Matrix Slice TR TE TI Flip ETL BW
Axial FSE PD FatSat12-14512×2564/0.52000-300020-40816
Cor Oblique FSTIR16-18256×1924/0.5>150020-403.T:180, 1,5T:150816
Cor Oblique T1 SE Non FatSat16-18256×2564/0.5400-800minimum16
Sag Oblique T2 FSE Non FatSat14-16256×1924/1>200090-110816

by msk.mri

Табл.1 Shoulder Routine {: #someid }

by msk.mri

МРТ локтевого сустава

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_elbow_sagittal

Рис.45 Выставление срезов для получения изображений локтевого сустава в сагиттальной плоскости (сагиттальных срезов).

Seq. FOV Matrix Slice TR TE TI Flip ETL BW
Axial T112-14256×2564/1400-800minimum16
Axial FSTIR14-16256×1924/1>200020-403.0T:180, 1,5T:150816
Coronal T114-16256×2564/0.5400-800minimum16
Cor PD FSE FatSat14-16256×2563/0.5>150020-40816
Sag PD FSE FatSat12-14256×2563/0.51500-300020-40816

by msk.mri

Табл.2 Elbow Routine

МРТ лучезапястного сустава

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_wrist_coronal

Рис.59 Выставление срезов для получения изображений лучезапястного сустава в корональной плоскости (корональных срезов).

mri_slice_position_wrist_coronal

Рис.61 Выставление срезов для получения изображений лучезапястного сустава в корональной плоскости (корональных срезов).

mri_slice_position_wrist_sagittal

Рис.59 Выставление срезов для получения изображений лучезапястного сустава в сагиттальной плоскости (сагиттальных срезов).

Seq. FOV Matrix Slice TR TE TI Flip ETL BW
Coronal T18-12256×2563/0.5400-800minimum16
Cor PD FSE FatSat8-12256×2563/0.5>150035-50816
Coronal 2D or 3D GRE FatSat10-12256×1921/060minimum20-4016
Axial PD FSE FatSat8-12256×2563/12000-300030-50816
Sag FSTIR12-14256×1923/1>150020-403.T:180, 1,5T:150816

by msk.mri

Табл.3 Wrist Routine

МРТ коленного сустава

Схема позиционирования срезов

mri_slice_position_knee_axial

Рис.25 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

mri_slice_position_knee_sagittal

Рис.28 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_knee_coronal

Рис.26 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

Seq. FOV Matrix Slice TR TE TI Flip ETL BW
Sag PD FSE Non FatSat14-16512×2564/0.5300015-20816
Sag T2 FSE FatSat14-16256×2564/0.5>200070-80816
Cor T1 SE Non FatSat16-18256×1923/0.5400-800minimum16
Cor T2 FSE FatSat16-18256×2563/0.5>200070-80816
Ax T2 FSE FatSat14-16256×2563/0.5>200070-80816
Читайте также:  Мрт вредно ли для организма человека

by msk.mri

Табл.4 Knee Routine

МРТ тазобедренных суставов

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_hip_coronal

Рис.12 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

mri_slice_position_hip_axial

Рис.13 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

Рекомендуемые параметры:

Seq. FOV Matrix Slice TR TE TI Flip ETL BW
Coronal (Pelvis) T1 SE Non FatSat36-40256×2564/1400-800minimum16
Coronal (Pelvis) FSE-STIR36-40256×1924/1>200020-403.0T:180, 1,5T:150816
Axial (Pelvis) T2 FSE FatSat36-40256×2564/1>2000minimum20-40816
Ax Oblique (HIP) PD FSE FatSat14-20384×2564/0.5400-800minimum16
Cor Oblique (HIP) PD FSE FatSat14-20384×2564/0.5>400-800 minimum16
Sag Oblique (HIP) PD FSE FatSat14-16384×2564/0.5>400-800 minimum16

by msk.mri

Табл.5 Hip Routine

МРТ голеностопного сустава

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_ankle_coronal

Рис.1 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

mri_slice_position_ankle_axial

Рис.2 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

mri_slice_position_ankle_sagittal

Рис.3 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

Рекомендуемые параметры:

Seq. FOV Matrix Slice TR TE TI Flip ETL BW
Sag T1 SE Non FatSat16-18256×2563/1400-800minimal16
Sag STIR16-18256×1923/1>15004012090816
Ax PD FSE Non FatSat14-16384×2564/130004016
Ax T2 FSE FatSat14-16256×2564/1>200070-80816
Cor T2 FSE FatSat14256×2563/1>200040-55816

by msk.mri

Табл.6 Ankle Routine

МРТ кисти

Схема позиционирования срезов

mri_slice_position_fingers_coronal

Рис.42 Выставление срезов для получения изображений в корональной плоскости (корональной срезов).

mri_slice_position_fingers_axial

Рис.41 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

mri_slice_position_fingers_sagittal_full

Рис.43 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттал на всю кисть).

mri_slice_position_fingers_sagittal_local

Рис.44 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттал на отдельные пальцы).

МРТ забрюшинного пространства

Схема позиционирования срезов

mri_slice_position_retroperitoneal_axial

Рис.14 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

mri_slice_position_retroperitoneal_sagittal

Рис.15 Выставление срезов для получения изображений в сагиттальной плоскости (сагиттальных срезов).

mri_slice_position_retroperitoneal_coronal

Рис.17 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

МРТ мягких тканей шеи

Скачать исследование в DICOM с данными параметрами >>

Схема позиционирования срезов

mri_slice_position_neck_coronal

Рис.47 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

mri_slice_position_neck_coronal

Рис.48 Выставление срезов для получения изображений в корональной плоскости (корональных срезов).

mri_slice_position_neck_axial

Рис.49 Выставление срезов для получения изображений в аксиальной плоскости (аксиальных срезов).

katrin.v07@list.ru

Срезы подготовила и настроила программы Екатерина Ногай — оператор МРТ.

Полная или частичная перепечатка данной статьи, разрешается при установке активной гиперссылки на первоисточник

Автор: врач-рентгенолог, к.м.н. Власов Евгений Александрович

Похожие статьи

Компьютерная томография

Компьютерная томография — это метод лучевой диагностики, позволяющий не инвазивно исследовать послойную структуру определенного органа или анатомической области. Метод использует компьютерную обработку информации об ослаблении рентгеновского излучения при прохождении через ткани с разной плотностью.

Обработка данных КТ

Обработка данных КТ включает множество моментов работы с «сырыми данными» после сканирования — реконструкция среза с выбором кернеля, выбором толщины среза, выбора окна плотности единиц Хаунсфилда, а так же реконструкции: SDD, MIP, MinIP, VRT и многое другое

Магнитно-резонансная томография (МРТ)

Магнитно-резонансная томография (МРТ) — это современная не инвазивная методика, позволяющая визуализировать внутренние структуры организма. Метод основан на эффекте ядерного магнитного резонанса, дает возможность получить трехмерное изображение любых тканей человеческого тела, широко применяется в различных сферах медицины: гастроэнтерологии, пульмонологии, кардиологии, неврологии, отоларингологии, маммологии, гинекологии и т. д.

Описание МРТ

В данном разделе Вы можете найти и скачать необходимый шаблон протокола для описания МРТ. Протоколы составлены с учётом основных требований врачей — клиницистов и могут быть удобно модифицированы.

Протоколы МРТ

Позиционирование и выставление срезов на МРТ разных областей тела и систем органов

Позитронно-эмиссионная томография (ПЭТ)

В отличие от стандартной МРТ или КТ, прежде всего обеспечивающей анатомическое изображение органа, при ПЭТ оценивают функциональные изменения на уровне клеточного метаболизма, которые можно распознавать уже в ранних, доклинических стадиях заболевания, когда структурные методы нейровизуализации не выявляют каких-либо патологических изменений.

Клиническая рентгенография

Рентгенография — метод диагностической визуализации, использующий проходящее рентгеновское излучение и плёнку или экран для регистрации проекционных изображений. Рентгенография простой и удобный способ исследования, использующийся в разных областях медицины.

Источник

Эффективные диагностические процедуры делают жизнь лучше — как медикам, так и пациентам. Первые получают больше информации, и потому поставить диагноз могут точнее, на процесс тратится меньше времени. Вторая сторона также выигрывает — как минимум сокращается путь, который человек преодолевает, посещая кабинеты врачей. Хотя над этим превалирует желание вовсе не посещать докторов, оставаясь всегда здоровым. Впрочем, это возможно лишь в идеальном мире, а мы живем в несовершенном.

Как-то мы разузнали, как работает капсульная эндоскопия, предназначенная для безболезненных диагностических процедур и исследований труднодоступных участков желудочно-кишечного тракта. На этот раз попробуем разобраться в том, как работает магнитно-резонансная томография — еще один безболезненный способ получения данных о состоянии внутренних органов и тканей человека.

Обращаем ваше внимание, что материал публикуется исключительно в познавательных целях и не является инструкцией, рекомендацией, а также официальным, научным или медицинским документом.

Содержание

  • Простая теория
  • Что делать нельзя
  • Испытано на себе
  • Как долго может длиться сканирование
  • Есть ли откровенно сложные для томографа задачи?
  • Почему нельзя двигаться?
  • Зубы надо сжимать, чтобы пломбы не вылетели?
  • ПО, катушки
  • Красивая картинка

Простая теория

Вначале немного простой теории. МРТ (MRI в английском языке) представляет собой способ получения послойного изображения внутренней структуры того или иного объекта. Грубо говоря, МРТ помогает добыть виртуальные срезы тканей и органов живого человека без вторжения в его тело — это так называемый неинвазивный метод.

Читайте также:  Мрт сосудов головного мозга от мрт головного мозга детям

В основе лежит явление, которое именуют ядерным магнитным резонансом (ЯМР), и в прошлом к аббревиатуре МРТ в начале добавляли букву «Я» (в английском вместо MRI говорили NMR). Но от слова «ядерный» решили избавиться по простой причине — чтобы не нервировать народ, хотя с бомбами или радиоактивными элементами периодической таблицы Менделеева ничего общего здесь нет.

Если это как-то поможет понять лежащие в основе явления процессы, речь в данном случае идет об измерении электромагнитного отклика атомных ядер, возбуждаемых электромагнитными волнами разных сочетаний (поэтому, кстати, и слышен ритмичный звук разной тональности) в постоянном магнитном поле высокой напряженности, указанной в теслах.

Напряженность поля влияет на качество получаемой картинки. Чем мощность меньше, тем более узкий спектр применимости томографов, которые, в свою очередь, подразделяются на несколько основных типов — от низкопольных до сверхвысокопольных (от слова «поле», а не «пол»).

Утверждать, что чем мощнее, тем лучше, не станем. Скажем так: чем мощнее, тем более универсальна и точна система. Но чем более она универсальна, тем выше ее цена, которая может исчисляться сотнями тысяч долларов и даже переваливать за миллион.

У низкопольных напряженность поля составляет до 0,5 Т. Считается, что такие томографы без контрастирования позволяют получить базовую информацию. Затем следуют среднепольные (1 Т), высокопольные (1,5 Т) и сверхвысокопольные (3 Т). Есть и более мощные, но обычным медучреждениям они не нужны.

«Многие спрашивают, какая разница между 3 Т и 1,5 Т? Принципиальное отличие — в детализации и четкости картинки», — пояснила заведующая кабинетом МРТ центра «Томография» Веста Короленок. В качестве примера она рассказала о пациенте с небольшой опухолью: аппарат с 1,5 Т ее не заметил, а на 3 Т патологию увидели, отправив человека в один из РНПЦ.

Есть также томографы закрытого и открытого типа. Одна из особенностей первых, которые более распространены, заключается в ограничениях по габаритам пациента — очень полный человек попросту не поместится в «трубу». Кроме того, страдающие от клаустрофобии могут чувствовать себя неуютно в замкнутом пространстве, где к тому же нельзя двигаться. Открытые томографы позволяют проводить исследования отдельных суставов, позвоночника и даже головы. Слабая сторона томографов открытого типа — более низкая разрешающая способность: все они являются низкопольными и имеют напряженность магнитного поля не более 0,35 Т.

Что делать нельзя

Попасть внутрь томографа можно, но не всем. Прежде всего туда нельзя обладателям имплантов разных типов: от кардиостимуляторов до слуховых аппаратов. Причин несколько: во-первых, магнитное поле может повредить и/или нарушить работу импланта, во-вторых, есть шанс нанести температурную или иную травму пациенту, в-третьих, наличие импланта негативно скажется на результатах сканирования.

То же касается металла в теле — «спиц» и штифтов, дроби и осколков, хирургических зажимов и подобных элементов (титановые — исключение).

В некоторых случаях при сканировании применяются контрастирующие препараты, которые дополнительно увеличивают четкость изображения. Их компоненты могут вызывать аллергию, они обычно противопоказаны беременным женщинам, а также в период лактации.

Испытано на себе

В «Томографии» установлен сверхвысокопольный Siemens Magnetom Spectra 3 T. Легким агрегат назвать нельзя: его вес в снаряженном состоянии составляет около 7,3 тонны при длине туннеля в 173 см. Система позволяет применять до 120 элементов катушек для покрытия всей анатомической зоны (например, всей центральной нервной системы). Используется фирменное программное обеспечение Siemens, которое в первую очередь влияет на качество сканирования и итогового изображения со срезами толщиной 0,5—1 мм.

Обследуемого облачают в одноразовый безразмерный костюм, в котором отправляют в жерло томографа. Человека укладывают на стол (именно так называется конструкция, которая затем скрывается в туннеле). Чтобы как-то уберечь уши от громкого звука, на голову надевают наушники, из которых звучит легкая музыка. При желании можно вооружиться собственным трек-листом или аудиокнигой.

Это удивило: какие наушники, если металлов быть не должно? Все просто — звук в наушники-воронки передается не по проводам, а по трубкам из эластичного пластика, поэтому композиции звучат как из колодца. Стоит отметить, что заглушить «напевы» томографа аксессуар способен не полностью.

Выпрыгнуть из аппарата нельзя, поэтому на всякий случай в руку пациенту вкладывают грушу (правильно — сигнальное устройство). При приступах паники или по каким-либо другим причинам достаточно сжать ее, и у рентгенолаборанта, контролирующего процесс в помещении рядом (в так называемой пультовой), сработает чрезвычайно громкая сигнализация.

«Казалось бы, все хорошо, пациента уложили, но только успели закрыть дверь, как грушу уже нажали», — рассказывает нам Веста. По ее словам, бывают люди, которые устают в процессе, а он может длиться до двух часов. Поэтому иногда делается перерыв, чтобы пациент мог передохнуть. Это в первую очередь касается такого исследования, как МРТ всего тела.

Достаточно часто встречаются и люди с клаустрофобией, паническими расстройствами. В этом случае рекомендуют узнать у специалиста обо всех этапах исследования и посмотреть сам аппарат.

Сканирование может занимать определенное время, в нашем случае оно длилось около 20 минут. Вторые 10 (или все 19) тянулись бесконечно долго — ведь шевелиться нельзя, а очень хочется. «Хьюстон, у нас проблемы», — засело в голове в момент, когда по нарастающей начал чесаться нос (а это случилось, когда я подумал: «Главное, чтобы не зачесался нос»). Но легкий ветерок из вентилятора где-то над головой помог продержаться неподвижно до конца процедуры.

Делать в туннеле ровным счетом нечего — смотреть некуда, так как почти перед носом находится катушка (?), похожая на удерживающее устройство. Остается прикрыть глаза и слушать «магнитно-резонансную музыку»: система, собирая данные, гудит и «поет» в разной тональности, но всегда ритмично (на самом деле это сверхбыстрые вибрации). Иногда она замолкает, и ты думаешь: «Все, закончилось». Но пауза, которая требуется на донастройку системы, проходит, и ритм стартует заново. Говорят, некоторые умудряются заснуть в процессе — таким можно только позавидовать.

К слову, звучание томографа зависит от задействованных типов катушек и текущей программы.

«Выехав» из туннеля, хочется вскочить и идти — из-за неподвижного положения и громкого звука возникает короткое чувство дезориентации. Главное, не торопиться (да вам и не позволят).

Читайте также:  Воспаление сосцевидного отростка на мрт

После всего пережитого появилось желание сделать как в кино — подойти к томографу с пистолетом (в боевиках такое показывают регулярно). Но оружия под рукой не оказалось, поэтому эксперимент остался мечтой — проверить, примагнитится ли пистолет, не получилось.

Как долго может длиться сканирование?

— В центре «Томография» — до двух часов. Это МРТ всего тела с контрастированием. Как уже говорилось выше, в таких случаях мы разбиваем исследование на части.

Меньше всего времени тратится на исследование обычных суставов, например коленных. В стандартной ситуации [без патологий] оно длится не больше 15 минут для одного сустава. Но это время непосредственного нахождения пациента в томографе без учета анализа данных.

Компания Siemens постоянно разрабатывает новое ПО. Оно позволяет сократить время для некоторых видов диагностики. Например, можно ускорить сканирование суставов — до 8 минут, а головного мозга — до 6—10. Однако новые опции в ПО требуют тщательного изучения, проработки и оптимизации существующих протоколов исследования перед внедрением.

Есть ли откровенно сложные для томографа задачи?

— При исследовании брюшной полости, например, и если мы работаем в автоматическом режиме, аппарат подстраивается под движение диафрагмы, считывая данные при определенном ее положении. Это заметно увеличивает время исследования. Процесс можно ускорить, однако пациенту придется задерживать дыхание на 20 секунд много раз. Физически это непросто.

Какие-то ограничения для аппарата при его полной укомплектованности катушками отсутствуют. Мы, к примеру, пока не смотрим сердце и не проводим исследования молочных желез. Но в этом году будут закуплены необходимые компоненты.

Почему нельзя двигаться?

— Когда человек двигается, картинка получается размытой. В некоторых случаях, чтобы получить качественное изображение, необходимо подстраивать программу работы томографа. Нам необходимо четко видеть стенки тех же позвонков, структуру — это позволяет определить наличие патологии. Когда человек двигается, теряются даже контуры, диагностика серьезно затрудняется.

При некоторых типах сканирования мелкие и редкие движения не станут проблемой, однако в определенных случаях — когда размытые сканы попали на место с грыжей или иными изменениями — мы вынуждены повторять ту или иную серию для получения четких снимков.

Зубы надо сжимать, чтобы пломбы не вылетели?

— Что касается стоматологических вопросов, то никаких противопоказаний нет. Скорее возникают технические нюансы. Если это исследование головного мозга, артефакт [пломба, штифт] может попасть в зону исследования. Мы тогда выстраиваем программу так, чтобы обойти такие места и получить изображение нужной области.

У пациентов с татуировками, сделанными около 20 лет назад, когда в чернилах было высокое содержание металлов, возможен едва заметный нагрев. Встречаются крайне чувствительные пациенты, они обычно и рассказывают о подобных вещах.

Опасения, как правило, возникают у тех, кто проходит подобную процедуру в первый раз, а также у возрастных пациентов.

ПО, катушки

По словам Весты, МРТ позволяет увидеть то, что остается за кадром рентгеновских снимков. На экране рабочей станции врача при этом выведена картинка с переломами позвонка и крестца. «Эта травма на рентгене, сделанном в поликлинике, не видна», — поясняет наша собеседница.

Помимо технической части, непосредственное влияние на процесс диагностики оказывает набор программ для исследований и анализа данных.

Аппарат снимает картинку в трех плоскостях: корональной (вдоль тела спереди назад), сагиттальной (справа налево) и аксиальной (сверху вниз). При необходимости изображение можно визуализировать в 3D-режиме.

Вначале в дело вступает набор программ (или комплекс последовательностей), обеспечивающий получение информации, — собственно, сканирование. Выбор происходит исходя из того, какая область будет изучаться: для головного мозга — свой набор, для суставов — свой и так далее. Кроме того, алгоритмы отличаются и в зависимости от возраста пациента.

В автоматическом режиме после получения данных информация передается на рабочую станцию врача. Он, «вооруженный» своим софтом, просматривает результаты, при необходимости корректирует их и работает с изображением, позволяющим увидеть всю картину в целом или ее детали, то есть перед специалистом находится точная виртуальная модель (или карта) исследуемой области, органа.

Существуют узкоспециализированные наборы программ, к которым относится, например, алгоритм перфузии. Чаще он используется при возникновении опухолей, в частности, головного мозга, предоставляя информацию, которая позволяет определить степень злокачественности.

Конечно, не весь софт будет одинаково востребован. «Например, такие исследования, как трактография (выстраивание связей нейронов в головном мозге вплоть до мельчайших клеток — получается красивая цветная объемная картинка) или функциональная МРТ, которая подсвечивает зоны мозга, задействованные при определенных движениях, интересны, но используются в основном для диагностики сложных и редких заболеваний ЦНС», — поясняет Веста.

Считается, что МРТ может заменить некоторые болезненные или вредные процедуры диагностических исследований. Конкретный пример — маммография, к которой приходится прибегать, когда УЗИ сделать нельзя по ряду факторов, в том числе из-за возрастного. Метод высокоинформативный, но крайне дискомфортный, так как требует серьезной компрессии молочной железы, а при наличии патологии это может быть очень болезненно. «Альтернативой может стать МРТ. В настоящее время в Европе МР-сканирование молочных желез вытесняет из обихода врачей-маммологов маммографию. У этого метода огромные преимущества и большие перспективы», — отмечает собеседница.

«Раньше преимущественно использовалась компьютерная томография с контрастом — это колоссальная доза облучения. А если необходимо сделать такое обследование несколько раз в течение года… Тем более все рентгеновские контрастные вещества достаточно аллергенные», — говорит Веста.

Красивая картинка

Красивая картинка, подчеркивают в центре «Томография», без квалифицированных сотрудников картинкой и остается. В Беларуси проводят обучение МРТ, но в очень ограниченных объемах: на такие курсы не попасть, врачи съезжаются со всей республики. Длятся они месяц, чего, по словам специалистов, недостаточно для такой широкой области медицины. Поэтому заинтересованные в повышении своей квалификации врачи используют все возможные источники получения информации: от специализированных научно-медицинских сайтов и сообществ до отраслевых выставок и конференций.

«Врачи, направляя пациентов на МРТ, зачастую не обозначают цель исследования, которую они должны поставить перед другим доктором — врачом-диагностом МРТ. Пишут „МРТ головного мозга“… А для чего? Что они хотят увидеть?» — говорит Эмилия Мезина, главврач центра «Томография». По ее словам, обучение медиков должно позитивно повлиять на ситуацию, сделав исследование ценным для пациента с точки зрения получения информации, ведь эта процедура не из дешевых.

Благодарим медицинский центр «Томография» за помощь в подготовке материала.

Читайте также:

  • Лек