Клеточный и гуморальный иммунитет патологическая физиология

Иммунный ответ (immunitas – освобождение от налогов) — это способ защиты организма от живых тел и веществ, несущих на себе признаки чужеродной генетической информации.

Задачей иммунной системы является сохранение антигенно — структурного гомеостаза организма.

Генетический контроль иммунного ответа опосредован генами иммунореактивности и главным комплексом гистосовместимости. Внутрисистемная регуляция основывается на эффектах лимфо- и монокинов и гуморальных факторов тимуса, интерферонов и простагландинов, на активности супрессоров и хелперов.

Изменение функционального состояния иммунной системы (ИС) при повреждении организма и развитие болезни изучает раздел иммунологии и патофизиологии — иммунопатология.

Классификация иммунопатологических процессов:

I. Защитно-приспособительные реакции ИС:

1) B-тип иммунного ответа(ИО),

2) T-тип иммунного ответа,

Внимание!

Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас. Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.

3) Иммунологическая толерантность (ИТ).

II. Патологические реакции ИС — феномены аллергии и аутоиммуноагрессии.

III. Иммунологическая недостаточность:

1) Первичные (наследственные) иммунодефициты (ИД),

2) Вторичные (приобретенные) иммунодефициты или иммунодепрессия.

Механизмы и формы ио B-типа (гуморальный ио).

Индуктивная фаза начинается с фагоцитоза антигена — процессинг: поглощение и переваривание антигена с разделением его на отдельные антигенные структуры. Большая часть поглощенного антигена разрушается. Около 10 % его в переработанной форме появляется на мембране макрофага в виде одинаково ориентированных в пространстве повторяющихся антигенных детерминант — «антигенная обойма». С этой обоймой взаимодействует антиген-распознающий рецептор T-хелперов, причем происходит кеппинг
T-рецепторов (образование «шапочки» из рецепторов на мембране лимфоцитов при контакте с антигенной обоймой на мембране макрофагов). Это взаимодействие является специфическим активирующим сигналом. Помимо этого макрофаги начинают секретировать ИЛ-1 (интерлейкин-1). Под влиянием этих двух сигналов T-хелперы активируются, пролиферируют и дифференцируются в продуценты ИЛ-2. ИЛ-2 служит неспецифическим активирующим сигналом для T-B—хелперов, специфический сигнал тот же самый. T-B-хелперы необходимы как источники ИЛ-4, ИЛ-5 и антиген-специфических хелперных факторов.

Следующая фаза — продуктивная — активация и пролиферация покоящихся B-лимфоцитов с рецепторами к данному антигену. Активация вызывается кэппингом мембранных иммуноглобулинов и поддерживается ИЛ-1, ИЛ-2 и ИЛ-4. Образуются предшественник плазматических клеток — продуцентов IgM, а в части этих клеток происходит переключение синтеза с IgM на IgG. Одновременно образуются B-клетки памяти. Под действием ИЛ-2, ИЛ-5 и ИЛ-6 промежуточные формы B-лимфоцитов превращаются (пролиферируют и дифференцируются) в плазматические клетки, секретирующие IgM или IgG.

Эффекторная фаза гуморального иммунного ответа заключается в накоплении достаточного количества IgM, IgG, IgA или IgE, их транспортировке к месту локализации антигена. При встрече антигена и антитела происходит специфическое взаимодействие активного центра иммуноглобулиновой молекулы и антигенной детерминанты, в результате которой всегда образуется иммунный комплекс. Последствия образования иммунного комплекса могут быть различны, поэтому различают следующие эффекторные функции антител:

1) нейтрализация (токсинов, вирусов),

2) агглютинация и преципитация (бактерий, растворимых антигенов),

3) опсонизация,

4) комплемент-зависимый лизис клеток-мишеней.

5) антителозависимая клеточная цитотоксичность,

6) дегрануляция вспомогательных клеток-эффекторов,

7) регуляция по типу обратной связи силы и продолжительности ИО: IgM через Fc IgM усиливают клональную экспансию T-B-хелперов. IgG через Fc IgG усиливают клональную экспансию T-супрессоров.

Виды
гуморального иммунного ответа: он может быть первичным и вторичным. Для первичного характерна более продолжительная индуктивная фаза (3-5 дней), первоначальное накопление IgM, со сменой на IgG, а затем IgA, ограниченная продолжительность пиковой продукции Ig. При вторичном иммунном ответе индуктивная фаза укорочена благодаря наличию долгоживущих клеток памяти, сразу преобладает накопление IgG, пик продукции антител выше, затухание иммунного ответа происходит значительно позднее.

Формы
гуморального иммунного ответа:

1) продукция IgM и IgG,

2) продукция IgE,

3) продукция IgA.

Значение
гуморального иммунного ответа в том, что создается:

1) иммунитет при острых бактериальных инфекциях,

2) иммунитет против растворимых и свободно перемещающихся корпускулярных антигенов.

В меньшей степени:

3) противовирусный иммунитет,

4) противоопухолевый и трансплантационный иммунитет.

Механизмы и формы ио T-типа (клеточно-опосредованный ио (КОИО)).

Существуют 2 основные формы клеточно-опосредованного иммунного ответа:

1. Индуцированная T-клеточная цитотоксичность (ИКЦ) — опосредуется цитотоксическими T-лимфоцитами — (T-киллерами) — ЦТЛ ,

2. Реакция гиперчувствительности замедленного типа (РГЗТ) — опосредуется T-эффекторами ГЗТ.

Механизмы
индуцированной клеточной цитотоксичности. В индуктивную фазу первоначально происходит клональная экспансия T-индукторов ЦТЛ данной специфичности. Макрофаги презентуют им антиген и выделяют ИЛ-1. T-индукторы необходимы, как источник ИЛ-2 и ИЛ-6. Под влиянием этих интерлейкинов, а также специфического взаимодействия с антигеном на поверхности макрофага, генетически измененной собственной или генетически чужеродной клетки предшественники ЦТЛ активируются, пролиферируют и превращаются в клетки памяти или дифференцируются в эффекторы ЦТЛ. В продуктивную фазу ИО наблюдается концентрация ЦТЛ, их перемещение в зону локализации антигена.

Значение клеточно-опосредованного иммунного ответа:

1) противовирусный иммунитет,

2) противогрибковый,

3) при хронических бактериальных инфекциях,

4) противоопухолевый,

5) трансплантационный.

Феномены трансплантационного иммунитета:

1) РХПТ (реакция хозяин против трансплантата или реакция отторжения трансплантата),

2) РТПХ (реакция трансплантат против хозяина).

Развитие этих реакций связано с различиями в специфичности клеточных трансплантационных антигенов сильных и слабых) между донором и реципиентом.

Механизм РХПТ: Антигены клеток трансплантата (алло-, ксено-) вызывают выработку антител в регионарных лимфоузлах и в инфильтрате, кроме того происходит мобилизация T-эффекторов ГЗТ и ЦТЛ. Вокруг пересаженной ткани формируется инфильтрат из Т-лимфоцитов, макрофагов и плазматических клеток. Некроз трансплантата наступает вследствие прямого цитотоксического эффекта ЦТЛ, макрофагов, антител и местного расстройства кровообращения.

Механизм РТПХ : При аллотрансплантации суспензии клеток селезенки, костного мозга, лимфоузлов реципиенту с неполноценной иммунной системой лимфоциты, прежде всего ЦТЛ, иммунокомпетентного донора повреждают клетки органов и тканей хозяина (т.е. имеет место T-тип ИО). У молодых или новорожденных животных в результате агрессии чужих лимфоцитов развивается болезнь малорослости (синонимы — «гомологическая болезнь», болезнь-РАНТ).

Иммунологическая толерантность (ИТ) (tolerantia — терпимость) — отсутствие ИО на определенный антиген, т.е. специфическая ареактивность ИС, не связанная с ее повреждением (иммунодепрессией), при сохранении способности развивать ИО на другие антигены. Благодаря феномену иммунологической толерантности не происходит специфическая элиминация антигена.

Виды
иммунологической толерантности:

I. Врожденная или естественная ИТ — развивается при контакте с антигеном в эмбриональном или неонатальном периоде развития особи.

II. Приобретенная ИТ:

а) иммунологическая толерантность «низкой дозы«,

б) иммунологическая толерантность «высокой дозы«.

Механизмы
иммунологической толерантности:

1. Естественная иммунологическая толерантность обусловлена селекцией клонов, активацией в период внутриутробного развития T-супрессоров аутореактивных клонов лимфоцитов.

а) приобретенная иммунологическая толерантность «низкой дозы» опосредована активацией антиген-специфических T-супрессоров, блокирующих ИО,

б) иммунологическая толерантность «высокой дозы» отчасти опосредована активацией T-супрессоров, реагирующих на супраоптимальные дозы антигена, кроме того действует механизм «иммунологического паралича».

Формы и механизмы первичных иммунодефицитов: — первично повреждение локализовано в иммунной системе и обусловлено аномальным генотипом (унаследованным). Ранними симптомами при первичных ИД являются поражения кожных и слизистых оболочек в виде пятен цвета «кофе с молоком», депигментации, экземы, нейродерматита, ангионевротического отека.

I. Комбинированная иммунологическая наследственная недостаточность:

а) ретикулярная дисгенезия представляет собой дефект системы костномозгового кроветворения, в результате которого не образуются клетки-предшественницы миело- и лимфопоэза,

б) агаммаглобулинемия швейцарского типа.

II. T-клеточный иммунодефицит :

а) синдром Ди Джорджи, характеризуется гипоплазией тимуса, в результате чего нарушается дальнейшая дифференцировка претимических T-предшественников,

б) синдром Незелоф характеризуется гипоплазией тимуса, очевидно из-за нарушения процесса миграции T-предшественников в тимус,

в) наследственная недостаточность фермента пурин-нуклеозид-фосфорилазы, из-за чего страдают процессы дифференцировки T-клеток в тимусе,

г) синдром Луи-Бар (атаксия-телеангиоэктазия) нарушена посттимическая дифференцировка T-клеток, что сочетается с недостаточностью IgE и IgA.

III. B-клеточный иммунодефицит:

а) агаммаглобулинемия Брутона обусловлена нарушением дифференцировки клеток-предшественниц лимфопоэза в клетки предшественницы B-лимфопоэза.

б) гипоиммуноглобулинемия с макроглобулинемией нет IgG и IgA.

в) селективный дефицит IgA.

IV. Дефицит клеток миелоидного ряда:

а) хронический гранулематоз, наследственный дефект ферментов гексозомонофосфатного цикла ведет к снижению микробоцидного потенциала нейтрофилов и они фагоцитируют, но не убивают микроорганизмы,

б) синдром Вискотта-Олдрича. Нарушена способность макрофагов презентировать антиген,

в) синдром Чедиака-Хигаси — нарушена структура и функциональная активность лизосом,

г) наследственная недостаточность миелопероксидазы,

д) синдром «ленивых лейкоцитов» — нарушена реакция нейтрофилов на хемотаксические стимулы.

V. Дефицит системы комплемента:

а) дефицит ингибиторов и инактиваторов, стабилизирующих систему, что приводит к перерасходу компонентов комплемента,

б) дефицит начальных факторов отменяет активацию комплемента в целом,

в) дефицит терминальных компонентов C5-C9 нарушает образование МАК (мембранно-атакующего комплекса).

Основные механизмы вторичных иммунодефицитов.

Повреждение системы имеет первичный или вторичный характер и может быть обусловлено инфекциями иммунной системы, лимфопролиферативными заболеваниями, истощением ИС вследствие ее патологических реакций и многими другими факторами:

1) химическая, в том числе лекарственная и токсическая иммунодепрессия,

2) лучевая иммунодепрессия,

3) иммунодепрессия гормонами и биологически активными веществами,

4) метаболическая иммунодепрессия,

5) иммунодепрессия в процессе старения,

6) истощение звеньев ИС вследствие иммунопатологических реакций,

7) истинная блокада РЭС,

8) лимфопролиферативные заболевания,

9) инфекционная иммунодепрессия,

10) иммунологическая иммунодепрессия,

11) хирургическая иммунодепрессия.

Основные проявления ИД:

1) рецидивирующие инфекции, вызванные различными инфекционными агентами в зависимости от вида ИД. При нарушении В-звена — рецидивирующие бактериальные инфекции (сепсис, пневмония), при недостаточности Т-звена — вирусные и грибковые инфекции,

2) опухолевый рост, лимфопролиферативные заболевания,

3) склонность к аутоиммуноагрессии и аллергии,

4) нарушение гемопоэза,

5) патология желудочно-кишечного тракта — расстройства переваривания,

6) при первичных ИД часто встречаются врожденные уродства, патология опорно-двигательного аппарата и нервной системы.

При вторичных ИД нередко также страдает пролиферация и дифференцировка клеток, может сокращаться численность клеток-эффекторов или возникать их функциональная неполноценность, избыток одних гуморальных факторов регуляции и недостаток других факторов, патологическая активация Т-супрессоров и избирательное подавление хелперного потенциала.

Принципы патогенетической терапии ид:

1. Заместительная терапия — восполнение дефектного звена.

2. Предупреждение инфекционных осложнений (антибиотики, безмикробная среда).

3. Коррекция нарушений обмена веществ (белки, витамины, микроэлементы).

4. Иммуностимуляторы: Т-активин, В-активин, нуклеинат Na, левамизол, тафтсин, диуцифон и др.

Получить выполненную работу или консультацию специалиста по вашему
учебному проекту

Узнать стоимость

Источник

Наиболее мощным фактором гуморального иммунитета являются антитела, значимость которых для иммунопатологии тем более велика, что при определенных условиях они из защитников организма могут превращаться в патогенетический фактор, обуславливающий развитие аутоиммунных процессов. По своей химической структуре антитела представляют собой глобулины, причем большая их часть связана с γ-глобулиновой фракцией крови.

На рисунке представлена схема молекулы антитела.*****37

Антитело (IgG) включает в себя 12 расположенных попарно доменов, которые образуют 2 легкие (L) и 2 тяжелые (H) цепи, которые «сшиты» через цистеиновые остатки дисульфидными связями. По своей конфигурации молекула антитела напоминает латинскую букву Y. В типичной молекуле IgG имеются два антигенсвязывающих центра, в каждом из которых имеются гипервариабельный (V) и константный (С) участки. В гипервариабельном участке наблюдается максимум вариаций аминокислотных последовательностей. В константной области варьируют участки взаимодействия с комплементом или клеточными рецепторами. Сочетания V и С участков молекул антител могут контактировать с любыми антигенами. Поясняя схему молекулы антитела, представленную на рисунке, следует заметить, что эта молекула имеет трехмерную конфигурацию.

Функциональные различия между константными областями определяют 5 основных классов тяжелых цепей (и, соответственно, 5 основных классов антител).

IgM. Данные антитела первыми синтезируются в ответ на антигенное раздражение. Они эффективны в процессах связывания и агглютинации микробов.

IgG. Антитела этого класса появляются вслед за антителами класса IgM. Они, в частности, связываются с рецепторами фагоцитов. IgG имеют несколько подклассов.

IgA. Эти антитела содержатся в слюне, поте, моче, в легких и кишечнике. Они защищают ткани от проникновения антигенов с внешних поверхностей.

IgE. Эти антитела связываются с тучными клетками и вызывают их дегрануляцию.

IgD. Они связываются с B-лимфоцитами и регулируют их функцию.

Антитела синтезируются в малых лимфоцитах.

Первым теорию антителообразования предложил великий немецкий ученый, основоположник химиотерапии, Пауль Эрлих. Он высказал гипотезу, которая получила название теории боковых цепей. Согласно взглядам Эрлиха протоплазма клеток состоит из химически устойчивого ядра и определенных атомарных групп, расположенных на их поверхности и способных вступать в различные химические реакции. Эти атомарные группы (или боковые цепи) Эрлих назвал рецепторами. По его мнению, в клетках имеются рецепторы, соответствующие любому существующему в природе антигену. Когда последний попадает в организм, он немедленно связывается с родственным ему рецептором и блокирует его, то есть выключает его из обмена веществ клетки. Чтобы восстановить нарушенное равновесие, клетка синтезирует этот заблокированный рецептор вновь. Однако утраченные элементы репродуцируются с избытком, и клетка в ответ на блокаду рецепторов начинает воспроизводить их в таком количестве, что они не помещаются в ней (или на ее поверхности), отрываются от клетки и начинают циркулировать в крови в виде антител, специфичных для того антигена, под влиянием которого произошло их «перепроизводство». Таким образом, по Эрлиху, антитела представляют собой отторгнутые от клетки атомарные группы, входившие в состав протоплазмы и принимавшие участие в клеточном обмене. Поскольку эти группы как раз являются теми, к которым имеет сродство антиген, они с ним реагируют.

Отторгнутые от клетки рецепторы, циркулируя в крови и соединяясь с соответствующим антигеном, тем самым препятствуют его контакту с клетками и предохраняют их от повреждающего воздействия антигена. Так, согласно теории Эрлиха, осуществляется защитная функция антител.

К сожалению, история науки богата примерами, когда открытие или теория, значительно опередившие свое время, отвергаются современниками. Так получилось и с теорией боковых цепей. Она не была принята иммунологами того времени, так как соответствующий ему уровень развития науки не позволял однозначно положительно ответить на главный вопрос: могут ли в клетках организма быть рецепторы, то есть заранее готовые клеточные антитела для любого из существующих в природе антигенов. Иммунологи считали, что не может быть того, чтобы рецепторы-антитела, совершенно не нужные виду (например, антитела в организме птиц к белку из тканей глубоководных рыб. то есть к тем антигенам, с которыми организм в процессе эволюции не сталкивался), сохранялись бы на протяжении тысячелетий в полной неприкосновенности как в качественном, так и в количественном отношении. Когда же были получены антитела к синтетическим антигенам, на указанный вопрос однозначно стали отвечать отрицательно. Теория Эрлиха была сформулирована в начале двадцатого столетия, когда и генетика, и теория вероятности делали только первые шаги. Одним словом, гипотеза боковых цепей была довольно скоро отвергнута, хотя дальнейшее развитие иммунологии показало принципиальную правильность основной идеи этой теории.

Почти двадцать лет спустя, Лайнуш Поулинг выдвинул матричную теорию биосинтеза антител, которая просуществовала довольно долго, хотя в сути своей принципиально была неверна. Поулинг полагал, что, проникая в организм, антиген попадает в места белкового синтеза, и концы полипептидных цепей белковой молекулы начинают конфигурироваться в соответствии с химической структурой антигена. Другими словами, антиген как бы является «матрицей», «шаблоном», с которых «печатается» молекула вновь синтезируемого белка, превращаясь таким образом в молекулу антитела. Но в начале пятидесятых годов двадцатого столетия та же самая генетика, которая «не сумела» защитить гипотезу Эрлиха, нанесла теории Поулинга смертельный удар. Когда была установлена структура ДНК и ее роль в биосинтезе белков, стало ясно, что указанная концепция противоречит законам генетики. Синтез белков программируется ДНК, и никакая «матрица» не может изменить конфигурацию белковой молекулы, код которой «записан» на том или ином участке двойной спирали дезоксирибонуклеиновой кислоты.

Надо заметить, что теория Поулинга. кроме того, не объясняла двух явлений, имеющих принципиальный характер. Во-первых, наличия иммунологической памяти. Известно, что иммунные процессы весьма специфичны — в ответ на введение антигена образуются антитела только к нему. Если иммунологическое воздействие в дальнейшем не подкрепляется, то постепенно антитела к данному антигену из крови исчезают, достигая уровня так называемого остаточного титра. Однако, если через некоторое время ввести в организм совершенно другой антиген, то не только начнут образовываться антитела к нему, но и вновь в достаточно высоком титре появятся антитела к тому антигену, который вводился ранее. Если же повторно ввести один и тот же антиген, то во второй раз антитела начнут вырабатываться гораздо быстрее и в гораздо большем количестве, чем в первый раз Значит, иммунокомпетентные клетки обладают памятью как на конкретный антиген, так и на антигенное раздражение вообще. Во-вторых, теория Поулинга не давала ответа и на вопрос почему антитела образуются в организме только по отношению к чужеродным антигенам и не образуются к собственным.

Таким образом, теория Поулинга была отвергнута, однако, в науке ничто (даже неправильные гипотезы) не проходит даром. Поулинг высказал мысль о том, что образование антител связано с синтезом белка вообще. И это утверждение, несмотря на противоречие конкретных постулатов концепции Поулинга принципиальным положениям генетики, явилось очередной ступенькой к созданию обоснованной теории синтеза антител, которая в шестидесятых годах двадцатого столетия была выдвинута австралийским ученым Макфарланом Барнетом.

Эта теория носит название селекционно-клональной. Ее основные положения сводятся к следующему:

1. Антитела вырабатываются в малых лимфоцитах.

2. Каждый лимфоцит несет антитело только к одному антигену.

3. В организме имеются антитела ко всем или почти ко всем встречающимся в природе или даже не встречающимся в ней (синтетическим) антигенам.

4. Антиген, попадая в организм, реагирует только с тем лимфоцитом, который несет соответствующее ему антитело.

5. При контакте антигена с лимфоцитом, несущим антитело, соответствующее данному антигену, лимфоцит начинает делиться.

6. Поскольку химический состав лимфоцита определен генетически, при делении он производит точно такие же лимфоциты (а значит, и содержащие те же самые антитела). Таким образом, количество антител к данному антигену в организме возрастает.

Поскольку согласно теории Барнета антиген, проникший в организм, селектирует (выбирает) необходимый ему лимфоцит, а в результате этого контакта возникает новый клеточный клон, эта теория и получила название селекционно-клональной.

Барнетовская теория биосинтеза антител отвечает на те вопросы, перед которыми гипотеза Поулинга оказалась бессильной. Действительно, если наличие антител в лимфоците запрограммировано генетически, то становится понятным, почему антитела не вырабатываются к собственным белкам организма. Ведь если в процессе эмбрионального развития организм, в силу дурной генетической шутки, начнет программировать синтез антител к собственным тканям, он погибнет раньше, чем успеет появиться на свет.

С точки зрения этой теории хорошо объясним и феномен иммунологической памяти. Первично контактируя с лимфоцитом, антиген «снимает тормоза» с механизмов синтеза и воспроизводства. Все последующие поколения этого лимфоцита являются иммунологически расторможенными. и на повторное антигенное раздражение они начнут реагировать гораздо быстрее, чем в первый раз. Кроме того, если при попадании в организм иного антигена, который будет селектировать другой лимфоцит, на пути его поиска будут затронуты лимфоциты, уже «имеющие опыт» в процессах биосинтеза антител, то эти лимфоциты могут среагировать на «посторонний» иммунологический стимул усилением белковосинтетических процессов (по принципу, который в физиологии получил название доминанты).

В селекционно-клональной теории есть один важный пункт, требующий особого объяснения. Между гипотезами Эрлиха и Барнета есть сходство в одном положении, из-за которого эрлиховская теория боковых цепей была в свое время отвергнута. Барнет, как и Эрлих, полагает, что в организме исходно существуют антитела к любому антигену. Однако, учитывая положения современной генетики и теории вероятности, это утверждение можно обосновать. Генетический код отличается весьма большим разнообразием и учитывает весь накопленный в процессе эволюции опыт. Поэтому можно предположить, что в ДНК закодирован синтез антител на все антигены, с которыми данный вид сталкивался в процессе эволюции. А как же быть с антигенами, с которыми организм не сталкивался в процессе эволюционного развития? Здесь на помощь приходит теория вероятности. Чисто случайная комбинация нуклеотидов может быть такова, а число этих случайных комбинаций так велико, что определенное количество лимфоцитов будет нести в себе антитела с совершенно случайным набором детерминантных групп, которые также чисто случайно (по теории вероятности) окажутся комплементарными (т.е. соответственными) детерминантным группам совершенно нового для организма антигена. Возможен и еще один вариант. Антиген при контакте с лимфоцитом дает его ядру определенную информацию, в связи с которой перестраиваются процессы кодирования ДНК в данной клетке. Они изменяются так, что происходит замена некоторых детерминантных групп данного антитела в соответствии с антигеном, который контактировал с лимфоцитом и послал в его ядро порцию информации. Этот путь вполне возможен в связи с явлением соматического кроссинговера, когда в процессе митоза (а не только — мейоза) происходит обмен отдельными участками соседних хромосом. При этом меняется структура ДНК клеток из-за «встраивания» в ее молекулу в одной хромосоме «кусочка» ДНК из другой, а следовательно, происходит изменение генетического кода с учетом особенностей детерминантных групп антигена. Кроме того, в генах B-лимфоцита могут происходить случайные соматические мутации, которые вызывают те или иные изменения активного центра молекулы антитела.

Таким образом, в появлении в лимфоцитах антител, специфичных для любых антигенов, играют роль следующие факторы: генетическое программирование с учетом эволюционного опыта, случайная комбинация нуклеотидов, приводящая к синтезу антител к тем антигенам, с которыми организм в процессе эволюции не встречался, и получение ядром лимфоцита информации от самого антигена.

Резюмируя все сказанное, необходимо подчеркнуть, что селекционно-клональная теория биосинтеза антител Макфарлана Барнета является развитием теории боковых цепей Пауля Эрлиха, но на новом, более глубоком научном уровне.

Кроме антител, к гуморальным факторам иммунной защиты относится целый ряд веществ, которые синтезируются в организме. Это — лизоцим, содержащийся в слезах и слюне и обладающий бактерицидным действием, пропердин и система комплемента — гуморальные факторы, участвующие в иммунологических реакциях и облегчающие взаимодействие антител с антигенами, а также стимулирующие процессы фагоцитоза. Но самым главным, самым мощным гуморальным фактором иммунитета являются антитела.

Источник