Механизм и факторы иммунитета

Механизм и факторы иммунитета thumbnail

Механизмы и факторы иммунитета довольно многообразны. Большинство из них являются неспецифическими, т. е. они одинаково эффективны в отношении любого патогенного микроба. В противоположность этому специфические факторы и механизмы, проявляющиеся в процессе формирования иммунитета, направлены только против строго определенного вида или серотипа микроба.

Неспецифические защитные реакции, с которыми сталкивается в организме животного любой патогенный микроб, довольно универсальны и немедленны по характеру своего действия. Антитела и другие специфические защитные факторы, обладающие более сильными свойствами и авидностью (жадностью) к конкретному возбудителю, появляются лишь после первого контакта животного организма с данным микробом. В продолжение этого латентного периода, который может длиться несколько дней, единственными факторами, сдерживающими приживление, размножение и распространение микроба в организме, являются неспецифические факторы защиты, т. е. факторы естественной резистентности.

Факторы иммунитета можно подразделить по времени появления – на постоянные и проявляющиеся после проникновения патогенного микроба; по характеру и диапазону действия – на неспецифические и специфические.

К факторам постоянного действия относятся неспецифические: 1) защитные свойства кожи и слизистых оболочек; 2) защитные функции нормальной микрофлоры; 3) фагоцитоз и барьерные функции лимфоидной системы; 4) гуморальные факторы (лизоцим, комплемент). Нормальные антитела и др.); 5) физиологические факторы (температура и метаболизм обменных процессов); 6) генотипическая и фенотигическая реактивность клеток и тканей.

К факторам, появляющимся после проникновения патогенного возбудителя, относятся неспецифические: 1) воспаление; 2) С-реактивный белок; 3) интерферон и специфические: 1) специфические макрофаги; 2) клетки плазмоцитарного ряда; 3) клетки лимфоидного ряда; 4) иммунтела.

Защитные функции кожи и Слизистых оболочек. Для большинства патогенных микроорганизмов нормальная неповрежденная кожа является прочным барьером, препятствующим проникновению микробов внутрь организма. Кожа, кроме механического барьера, обладает бактерицидными свойствами (90 % чудесной палочки погибает на ней в течение 10 мин), что обеспечивается воздействием молочной и жирной кислот, выделяемых потовыми и сальными железами. Более выраженными бактерицидными свойствами обладают слизистые оболочки, что обусловлено наличием в их секрете особого фермента – лизоцима; он действует на все микробы и простейшие, кроме вирусов.

Защитные свойства нормальной микрофлоры. Некоторые полости организма постоянно заселены определенными микробами, последние имеются также на слизистых оболочках и коже. Стабильность микрофлоры, свойственная пищеварительным и респираторным органам, мочеполовым путям, определяется эволюционно закрепленными симбиотическими взаимоотношениями между микро — и макроорганизмами. Нормальная микрофлора является мощным фактором естественной защиты организма животных, и ей следует уделять постоянное внимание.

Защитная функция нормальной микрофлоры в основном проявляется ее антагонистическими взаимоотношениями с патогенными микроорганизмами (молочнокислые бактерии подавляют гнилостную микрофлору, эшерихии – стрептококков). Механизм этого антагонистического действия самый разнообразный (истощение питательной среды изменение рН, продукция антибиотиков и т. д.).

Физиологические факторы иммунитета.

Одним из основных физиологических факторов является температура тела животного организма, которая благоприятна только для ограниченного числа микроорганизмов. Исключение составляют лишь те микроорганизмы, которые адаптировались к размножению при нормальной температуре тела животного. Повышение температуры при патологических состояниях, как правило, отрицательно влияет на размножение патогенных микроорганизмов. Действие температуры и способность организма элиминировать (удалять) возбудителей через неповрежденные почки – общеизвестный механизм противовирусного иммунитета.

Метаболизм в живом организме также может играть защитную роль. Например, появление в беременной матке коров сахара – эритритола обостряет течение бруцеллеза и приводит к аборту. Споры анаэробных бактерий, часто присутствующие в тканях здорового организма, не могут прорастать из-за хорошего снабжения тканей кислородом; любое повреждение (ушиб) может привести к активизации этих бактерий.

Источник

Как устроен иммунитет: Объясняем по пунктам

Наш организм непрерывно меняется, но при этом очень «любит» постоянство и может нормально работать только при определенных параметрах своей внутренней среды. Например, нормальная температура тела колеблется между 36 и 37 градусами по Цельсию. Вспомните последнюю простуду и то, как плохо вы себя чувствовали, стоило температуре подняться всего на полградуса. Такая же ситуация и с другими показателями: артериальным давлением, рН крови, уровнем кислорода и глюкозы в крови и другими. Постоянство значений этих параметров называется гомеостазом, а поддержкой его стабильного уровня занимаются практически все органы и системы организма: сердце и сосуды поддерживают постоянное артериальное давление, легкие — уровень кислорода в крови, печень — уровень глюкозы и так далее.

Иммунная же система отвечает за генетический гомеостаз. Она помогает поддерживать постоянство генетического состава организма. То есть ее задача — уничтожать не только все чужеродные организмы и продукты их жизнедеятельности, проникающие извне (бактерии, вирусы, грибки, токсины и прочее), но также и клетки собственного организма, если «что-то пошло не так» и, например, они превратились в злокачественную опухоль, то есть стали генетически чужеродными.

Читайте также:  Какими медикаментами можно поднять иммунитет

Как клетки иммунной системы уничтожают «врагов»?

Чтобы разобраться с этим, сначала нужно понять, как иммунная система устроена и какие бывают виды иммунитета.

Иммунитет бывает врожденным (он же неспецифический) и приобретенным (он же адаптивный, или специфический). Врожденный иммунитет одинаков у всех людей и идентичным образом реагирует на любых «врагов». Реакция начинается немедленно после проникновения микроба в организм и не формирует иммунологическую память. То есть, если такой же микроб проникнет в организм снова, система неспецифического иммунитета его «не узнает» и будет реагировать «как обычно». Неспецифический иммунитет очень важен — он первым сигнализирует об опасности и немедленно начинает давать отпор проникшим микробам.

Однако эти реакции не могут защитить организм от серьезных инфекций, поэтому после неспецифического иммунитета в дело вступает приобретенный иммунитет. Здесь уже реакция организма индивидуальна для каждого «врага», поэтому «арсенал» специфического иммунитета у разных людей различается и зависит от того, с какими инфекциями человек сталкивался в жизни и какие прививки делал.

Специфическому иммунитету нужно время, чтобы изучить проникшую в организм инфекцию, поэтому реакции при первом контакте с инфекцией развиваются медленнее, зато работают гораздо эффективнее. Но самое главное, что, один раз уничтожив микроба, иммунная система «запоминает» его и в следующий раз при столкновении с таким же реагирует гораздо быстрее, часто уничтожая его еще до появления первых симптомов заболевания. Именно так работают прививки: когда в организм вводят ослабленных или убитых микробов, которые уже не могут вызвать заболевание, у иммунной системы есть время изучить их и запомнить, сформировать иммунологическую память. Поэтому, когда человек после вакцинации сталкивается с реальной инфекцией, иммунная система уже полностью готова дать отпор, и заболевание не начинается вообще или протекает гораздо легче.

Кто отвечает за работу различных видов иммунитета?

  • Костный мозг. Это центральный орган иммуногенеза. В костном мозге образуются все клетки, участвующие в иммунных реакциях.
  • Тимус (вилочковая железа). В тимусе происходит дозревание некоторых иммунных клеток (Т-лимфоцитов) после того, как они образовались в костном мозге.
  • Селезенка. В селезенке также дозревают иммунные клетки (B-лимфоциты), кроме того, в ней активно происходит процесс фагоцитоза — когда специальные клетки иммунной системы ловят и переваривают проникших в организм микробов, фрагменты собственных погибших клеток и так далее.
  • Лимфатические узлы. По своему строению они напоминают губку, через которую постоянно фильтруется лимфа. В порах этой губки есть очень много иммунных клеток, которые также ловят и переваривают микробов, проникших в организм. Кроме того, в лимфатических узлах находятся клетки памяти — это специальные клетки иммунной системы, которые хранят информацию о микробах, уже проникавших в организм ранее.

Таким образом, органы иммунной системы обеспечивают образование, созревание и место для жизни иммунных клеток. В нашем организме есть много их видов, вот основные из них.

  • Т-лимфоциты. Названы так, потому что после образования в костном мозге дозревают в вилочковой железе — тимусе. Разные подвиды Т-лимфоцитов отвечают за разные функции. Например, Т-киллеры могут убивать зараженные вирусами клетки, чтобы остановить развитие инфекции, Т-хелперы помогают иммунной системе распознавать конкретные виды микробов, а Т-супрессоры регулируют силу и продолжительность иммунной реакции.
  • B-лимфоциты. Название их происходит от Bursa fabricii (сумка Фабрициуса) — особого органа у птиц, в котором впервые обнаружили эти клетки. В-лимфоциты умеют синтезировать антитела (иммуноглобулины). Это специальные белки, которые «прилипают» к микробам и вызывают их гибель. Также антитела могут нейтрализовывать некоторые токсины.
  • Натуральные киллеры. Эти клетки находят и убивают раковые клетки и клетки, пораженные вирусами.
  • Нейтрофилы и макрофаги умеют ловить и переваривать микробов — осуществлять фагоцитоз. Кроме того, макрофаги выполняют важнейшую роль в процессе презентации антигена, когда макрофаг знакомит другие клетки иммунной системы с кусочками переваренного микроба, что позволяет организму лучше бороться с инфекцией.
  • Эозинофилы защищают наш организм от паразитов — обеспечивают антигельминтный иммунитет.
  • Базофилы — выполняют главным образом сигнальную функцию, выделяя большое количество сигнальных веществ (цитокинов) и привлекая этим другие иммунные клетки в очаг воспаления.

Как клетки иммунной системы отличают «своих» от «чужих» и понимают, с кем нужно бороться?

В этом им помогает главный комплекс гистосовместимости первого типа (MHC-I). Это группа белков, которая располагается на поверхности каждой клетки нашего организма и уникальна для каждого человека. Это своего рода «паспорт» клетки, который позволяет иммунной системе понимать, что перед ней «свои». Если с клеткой организма происходит что-то нехорошее, например, она поражается вирусом или перерождается в опухолевую клетку, то конфигурация MHC-I меняется или же он исчезает вовсе. Натуральные киллеры и Т-киллеры умеют распознавать MHC-I рецептор, и как только они находят клетку с измененным или отсутствующим MHC-I, они ее убивают. Так работает клеточный иммунитет.

Читайте также:  Формирование специфического гуморального иммунитета

Но у нас есть еще один вид иммунитета — гуморальный. Основными защитниками в этом случае являются антитела — специальные белки, синтезируемые B-лимфоцитами, которые связываются с чужеродными объектами (антигенами), будь то бактерия, вирусная частица или токсин, и нейтрализуют их. Для каждого вида антигена наш организм умеет синтезировать специальные, подходящие именно для этого антигена антитела. Молекулу каждого антитела, также их называют иммуноглобулинами, можно условно разделить на две части: Fc-участок, который одинаков у всех иммуноглобулинов, и Fab-участок, который уникален для каждого вида антител. Именно с помощью Fab-участка антитело «прилипает» к антигену, поэтому строение этого участка молекулы зависит от строения антигена.

Как наша иммунная система понимает устройство антигена и подбирает подходящее для него антитело?

Рассмотрим этот процесс на примере развития бактериальной инфекции. Например, вы поцарапали палец. При повреждении кожи в рану чаще всего попадают бактерии. При повреждении любой ткани организма сразу же запускается воспалительная реакция.  Поврежденные клетки выделяют большое количество разных веществ — цитокинов, к которым очень чувствительны нейтрофилы и макрофаги. Реагируя на цитокины, они проникают через стенки капилляров, «приплывают» к месту повреждения и начинают поглощать и переваривать попавших в рану бактерий — так запускается неспецифический иммунитет, но до синтеза антител дело пока еще не дошло.

Расправляясь с бактериями, макрофаги выводят на свою поверхность разные их кусочки, чтобы познакомить Т-хелперов и B-лимфоцитов со строением этих бактерий. Этот процесс называется презентацией антигена. Т-хелпер и B-лимфоцит изучают кусочки переваренной бактерии и подбирают соответствующую структуру антитела так, чтобы потом оно хорошо «прилипало» к таким же бактериям. Так запускается специфический гуморальный иммунитет. Это довольно длительный процесс, поэтому при первом контакте с инфекцией организму может понадобиться до двух недель, чтобы подобрать структуру и начать синтезировать нужные антитела.

После этого успешно справившийся с задачей B-лимфоцит превращается в плазматическую клетку и начинает в большом количестве синтезировать антитела. Они поступают в кровь, разносятся по всему организму и связываются со всеми проникшими бактериями, вызывая их гибель. Кроме того, бактерии с прилипшими антителами гораздо быстрее поглощаются макрофагами, что также способствует уничтожению инфекции.

Есть ли еще какие-то механизмы?

Специфический иммунитет не был бы столь эффективен, если бы каждый раз при встрече с инфекцией организм в течение двух недель синтезировал необходимое антитело. Но здесь нас выручает другой механизм: часть активированных Т-хелпером В-лимфоцитов превращается в так называемые клетки памяти. Эти клетки не синтезируют антитела, но несут в себе информацию о структуре проникшей в организм бактерии. Клетки памяти мигрируют в лимфатические узлы и могут сохраняться там десятилетиями. При повторной встрече с этим же видом бактерий благодаря клеткам памяти организм намного быстрее начинает синтезировать нужные антитела и иммунный ответ запускается раньше.

Таким образом, наша иммунная система имеет целый арсенал различных клеток, органов и механизмов, чтобы отличать клетки собственного организма от генетически чужеродных объектов, уничтожая последние и выполняя свою главную функцию — поддержание генетического гомеостаза.

Источник

Студопедия

КАТЕГОРИИ:

Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Неспецифические факторы одинаково эффективны в отношении любого патогенного микроба. Они довольно универсальны и немедленны по характеру своего свойства.

Специфические механизмы и факторы направлены только против строго определенного вида микроба. Они проявляются в процессе формирования иммунитета, обладают более сильными свойствами к конкретному возбудителю и проявляются лишь после первого контакта животного организма с возбудителем. В продолжение этого латентного периода, пока проявятся специфические механизмы, единственными факторами, сдерживающими приживание, размножение и распространение микроба в организме, являются неспецифические факторы.

Факторы иммунитета подразделяют по времени проявления на постоянные и проявляющиеся после проникновения патогенного микроба; по характеру и диапазону действия – на специфические и неспецифические.

Читайте также:  Конвенция об иммунитете государства и их собственности 2004 г

К факторам постоянного действия относятся неспецифические факторы иммунитета:

1) защитные свойства кожи и слизистых оболочек;

2) защитные реакции нормальной микрофлоры;

3) воспаление и фагоцитоз, барьерные функции лимфоидной системы;

4) гуморальные факторы (лизоцим, нормальные антитела и т. д.);

5) физиологические реакции (температура, метаболизм обменных процессов);

6) генотипическая и фенотипическая реактивность клеток и тканей.

К факторам, проявляющимся после проникновения патогенного возбудителя, относятся:

1) неспецифические (воспаление, выработка интерферона и т. д.);

2) специфические (макрофоги, плазмоциты, лимфоциты, иммуноглобулины).

Защитные функции кожи и слизистых оболочек.Неповрежденная кожа и слизистые оболочки являются, во-первых, прочным механическим барьером, препятствующим проникновению микробов вовнутрь организма, и, во-вторых, обладают хорошими бактерицидными свойствами. Молочная кислота, выделяемая потовыми железами, лизоцим в секрете слизистых оболочек действуют губительно на все микробы, простейшие, кроме вирусов.

Защитные свойства нормальной микрофлоры проявляются антагонистическими взаимоотношениями с патогенными микробами, так молочно-кислые бактерии подавляют гнилостную микрофлору в кишечном тракте животных, кишечная палочка выделяет особые вещества, действующие губительно на представителей семейства энтеробактерий, стрептококки.

Нормальная микрофлора заселяет в каждом здоровом организме животных органы респираторного тракта, мочеполовые пути и является мощным фактором защиты организма животных.

Воспаление– защитно-приспособительная реакция, возникающая в месте внедрения микроба. Основным механизмом защиты воспаления является фагоцитоз, т. е. процесс поглощения клетками организма попадающих в него патогенных живых или убитых микробов с последующим их перевариванием ферментами. Воспаление фиксирует, а фагоцитоз уничтожает возбудителя в месте их проникновения в организм (завершенный фагоцитоз). Но иногда не все микробы погибают в фагоците (незавершенный фагоцитоз).

Увеличение количества микробов в фагоците может привести к его гибели.

Доказано, что фагоциты (макрофаги) могут приобретать специфическую иммунологическую компетентность, то есть при повторной встрече того же возбудителя эффективнее фагоцитируют его. Фагоцитоз может угнетаться при авитаминозах, повышенном содержании ацетилхолина, кортикостероидов. Наибольшее значение фагоцитоз имеет при бактериальных инфекциях, чем при вирусных.

Барьерные функции лимфоидной системы.Лимфоидная ткань способна задерживать проникновение микробов, фагоцитировать их, развивать реакцию гиперчувствительности, продуцировать антитела. На основании этого органы и ткани лимфосистемы (лимфоузлы, селезенка, костный мозг, тимус, пейеровы бляшки и т. д.) относят к иммунной системе организма, ответственной за состояние иммунитета. Основные клетки, осуществляющие иммунную функцию в организме, – это микро- и макрофаги, лимфоциты и плазмоциты. И для формирования полноценного иммунного ответа необходимо их взаимное кооперирование.

Гуморальные факторы(т. е. вещества, образующиеся в организме и оказывающие свое физиологическое действие через жидкости организма – кровь, лимфу, в случае иммунитета – бактерицидное действие на возбудителя). Такими постоянными гуморальными факторами неспецифической защиты макроорганизма являются лизоцим (в слюне), комплемент и нормальные антитела (в сыворотке крови).

Физиологические факторы.Температура тела животного, даже нормальная, благоприятна только для ограниченного числа микроорганизмов (только для адаптированных к размножению в организме животных). Повышение температуры при патологических состояниях отрицательно влияет на размножение патогенных микробов, особенно вирусов.

Неповрежденные ткани животного организма не позволяют развиваться, прорастать спорам анаэробных бактерий, часто присутствующих в организме – здоровые клетки хорошо снабжаются кислородом. А ушиб, гематома может привести к активизации этих бактерий.

После проникновения патогенного микроба либо после вакцинации появляются защитные специфические антитела (иммуноглобулины). Они обнаруживаются не сразу, а только на 5 – 7 день, затем их количество быстро нарастает к 10 – 12 дню и максимально – к 20 – 22 дню. Затем число специфических антител убывает и через несколько месяцев не обнаруживается совсем или обнаруживается в низких титрах.

Но иммунная память сохраняется, ее носителями являются малые Т- и В-лимфоциты, специфически перестроенные при первичном ответе. Если в этот период возбудитель проникает вторично, то антитела появляются гораздо быстрее – уже через 1 – 2 дня, и в большем количестве, чем при первичном ответе. Такой вторичный иммунный ответ называют анамнестической реакцией.

Феномен иммунной памяти и вторичный иммунный ответ имеют большое значение при выборе интервалов между двумя прививками или выборе сроков ревакцинации.

Для анализа степени напряжённости иммунитета важен не титр антител в сыворотке, а способность организма к анамнестическому ответу после повторной встречи с возбудителем, иными словами – степень иммунологической перестройки иммунной системы.

Дата добавления: 2014-01-03; Просмотров: 2587; Нарушение авторских прав?

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Рекомендуемые страницы:

Читайте также:

Источник