Может ли быть иммунитет к радиации

Может ли быть иммунитет к радиации thumbnail

Никто тью

Гуру

(3711)

5 лет назад

Иммунная система человека уникальна так же, как и сам человек, и конечно же сложна. Про нее можно рассказывать очень долго.
В лимфоидных тканях (вилочковая железа, лимфатические железы, селезенка) производятся лимфоциты — клетки, способные синтезировать огромное разнообразие защитных белков-антител. Такие антитела носят название иммуноглобулинов. Иммуноглобулины состоят из четырех белковых цепей. Они имеют участок, узнающий «пришельца, и участок, обеспечивающий «расправу» с ним. Антитела узнают чужеродные белки и иные биополимеры (полисахариды, полинуклеотиды) и их комплексы, в свободном виде растворенные в жидких средах организма или в составе бактерий и вирусов.
Узнаваемые антителами чужеродные биополимеры называют антигенами. Антигены вызывают в лимфоцитах синтез антител-иммуноглобулинов определенного типа, способных узнавать антиген и взаимодействовать с ним. Поскольку антигенами являются и сами бактерии или вирусы, так и производимые бактериями токсины, то лимфоциты реагируют на них синтезом защитных антител. Присоединяясь к целям клеткам болезнетворных бактерий, антитела привлекают особые ферментные белки, которые разрушают оболочки бактерий, что ведет к их гибели.
Как видите, в организме идет целая цепочка химических реакций. А антитела имеют белковую структуру, а радиация, о которой вы говорите, имеет свойство электромагнитных волн, а именно гамма-лучи. Они не вредные микроорганизмы или биополимеры, с которыми справляются ферменты, а это лучи которые меняют структуру белка, при этом происходит денатурация белка, и она разрушается.
Вот так вот, учите биологию, ну и физику, конечно!

Red Dead ☭

Искусственный Интеллект

(249691)

5 лет назад

Нет, конечно. Радиация — это не хер собачачий, это излучение. С другой стороны, с течением поколений вырабатывается определённая устойчивость к повышенному естественному фону. Тут вопрос довольно широкий, есть разница между кратковременным, но сильным и долговременным, но слабым облучением. Для здоровья не полезно ни одно из них

Рашид Габбасов

Оракул

(68345)

5 лет назад

Мой отец и мать работали на заводе обогащения изотопного урана. Где работают не знали, но вот красное вино стояло на полках столовок рядом с компотом. Спирт гасит свободные радикалы. В сложных случаях дают меркаптаны (тоже спирт только кислород заменён серой) . Можно и у подводников уточнить. У тех кто на ядрёных плавал. Ну а про хорошее питание и спорт только ленивый не напишет.
А уж про иммунитет надо у тараканов спрашивать. Те в сотню раз больше выдержат по сравнению с человеком.

Xthn_13(666)

Оракул

(80506)

5 лет назад

Представь, что на тебя будут сыпаться 2-х тонные булыжники. . .
можно ли выработать иммунитет от них?
вот и с радиацией так-же. . .

радиация выбивает атомы из клеток.. .
получается много-много-мнооооооого дырок.. .
от этого все в организме начинает плохо работать.. .
и твой иммунитет тоже будет «дырявый»…

dgf dfgdfg

Ученик

(173)

3 года назад

в Семее был ядерный полигон. Там при взрывах жили и живут люди, а ведь радиации было хоть и немного, но даже такие дозы могут убить. Вот и делайте вывод.

Источник

иммунитет к радиации

  1. Механизм влияния ионизирующей радиации на иммунитет
  2. Влияние малых доз
  3. Воздействие высоких доз
  4. Отдаленные последствия влияния радиации на иммунитет
  5. Существует ли иммунитет к радиации?
  6. Видео по теме

Радиоактивное излучение оказывает комплексное воздействие на любой живой организм. Степень негативного воздействия зависит от полученной дозы и ряда других факторов. Существует три основных вида излучения (альфа, бета и гамма). Наиболее опасна гамма-радиация, так как обладает наибольшей проникающей способностью и мощным разрушающим воздействием на клеточные структуры. Иммунная система – одна из наиболее подверженных радиоактивному облучению, именно расстройства иммунитета во многом становятся причиной летальных исходов и развития серьезных заболеваний. 

Механизм влияния ионизирующей радиации на иммунитет 

При поглощении живыми тканями ионизирующего излучения в них происходит ряд серьезных изменений. Проходя сквозь клетку высокоэнергетические частицы и лучи могут: 

  • Разрушать отдельные участки ДНК; 
  • Повреждать важные белки; 
  • Нарушать целостность мембраны; 
  • При поглощении излучения внутриклеточной водой образуется перекись и другие свободные радикалы. 

Все эти повреждающие воздействия приводят к гибели либо мутациям клеток, степень повреждения сильно зависит от дозы облучения и формы, в которой оно попало в организм. Особенно сильно страдают активно делящиеся клетки, например, костный мозг и эпителий кишечника. Именно с этим воздействием связано снижение показателей клеточного иммунитета у большинства облученных. 

Влияние радиационного излучения на иммунную систему также проявляется через нейрогуморальные нарушения. Зачастую радиационные поражения щитовидной железы, тимуса и других желез приводят к иммунодефициту, а также аутоиммунным заболеваниями (тиреоидит). Степень проявления таких нарушений во многом зависит от полученной дозы облучения. 

таблица радиация и иммунитет

Влияние малых доз радиации 

Небольшие количества радиоактивных изотопов постоянно содержаться в окружающей среде. Также излучение поступает из космоса (от солнца и других источников). Совокупно эти факторы формируют природный радиационный фон, характерный для определенной местности. Он не оказывает серьезного отрицательного воздействия на организм. 

Получение небольшой дозы радиоактивного излучения может оказывать стимулирующее влияние на иммунитет и весь организм в целом. Существует много санаториев, находящихся у мест выхода природных водных источников богатых радиоактивным газом – радоном. Строго дозированные купания в такой воде позволяют получить стимулирующую дозу ионизирующего излучения. 

Позитивный эффект от небольших доз облучения обусловлен активизацией иммунной системы. В ответ на небольшие повреждения, причиненные радиацией, активизируются клеточные и гуморальные компоненты иммунитета. 

Читайте также:  Биология иммунитет 8 класс биология

Важно понимать, что не существует понятия «безопасная доза радиации». Хотя все живые организмы, в том числе и человек выработали в процессе эволюции механизмы компенсации повреждений от радиации, они все равно остаются опасными. 

Особенно опасно для иммунной системы длительное воздействие повышенных доз облучения. В результате значительно увеличивается риск развития раковых заболеваний, иммунодефицитов, ряда аутоиммунных заболеваний. 

Это связано с накопительным эффектом, возникающим в результате постепенного исчерпания ресурсов организма уходящих на устранение повреждений. Особенно он выражен при накоплении радионуклидов, таких как стронций и йод. 

дозиметр

Воздействие высоких доз радиации 

Влияние облучения на иммунную систему при высоких дозах отличается мощным разрушительным эффектом. При исследовании людей, пострадавших в результате проведения ядерных испытаний и ликвидации аварии на Чернобыле показывают: 

  • Часть лимфоцитов крови гибнет уже на 2-3 сутки после облучения; 
  • Наблюдается гипоплазия (уменьшение) лимоузлов; 
  • Снижается уровень цитокинов. 

В результате гибели клеток костного мозга практически перестают обновляться иммунные клетки. В результате этого быстро развивается иммунодефицитное состояние. Организм становится практически беззащитен к инфекциям. Эти процессы усугубляют повреждения эпителиальных тканей, которые играют большую роль в защитной системе. 

Снижение барьерной функции эпителия вместе с нарушением работы иммунитета приводит к быстрому развитию генерализованных форм инфекций и гибели подвергшегося высокому облучению человека.  

воздействие радиации

Отдаленные последствия влияния малых доз радиации на иммунную систему человека 

До сих пор нет однозначного ответа на вопрос о пользе либо вреде длительного воздействия небольших доз ионизирующего излучения. Но большинство исследований показывает, что эффект скорее негативный. 

При длительном получении малых дозировок наблюдаются: 

  • Повышенный уровень апоптоза среди клеток лимфоидных органов; 
  • Снижение числа лейкоцитов; 
  • Уменьшение активности нейтрофилов; 
  • Снижение количества Т-клеток, особенно CD3 и CD4; 
  • Уменьшение уровня иммуноглобулинов. 

Именно эти эффекты, в совокупности с мутагенным воздействием радиации приводят к увеличению числа раковых заболеваний при таких воздействиях. При этом чаще всего развивается «рак крови» – лейкозы, миелолейкозы и другие раковые опухоли кроветворной либо иммунной системы. 

Небольшие дозы излучения могут оказывать и положительные эффект, способствуя адаптации организма к повышенным дозам облучения. Например, жители регионов с повышенным природным фоном в большинстве случаев более устойчивы к воздействию высоких доз облучения. Но такие адаптации развиваются достаточно медленно и требуют смены многих поколений. 

Стоит учитывать, что человечество открыло явление радиоактивности относительно недавно, а негативное влияние радиации на организм начали детально исследовать только 50-60 лет назад. Поэтому данных о действительно долгосрочном воздействии повышенных дозировок радиации у нас нет. 

осторожно радиация

Существует ли иммунитет к радиации? 

Настоящего иммунитета к радиации у человека нет, как нет и средств для его выработки. Устойчивость к воздействию радиоактивности зависит от генетических факторов и регенеративных возможностей организма. 

При действии небольших доз облучения организм способен в небольшой степени адаптироваться к ним, но эффект сохраняется недолго, мощной защиты не создает. Поэтому выработать радиорезистентность невозможно. 

Важным параметром является радиочувствительность так как при лечении онкологических и других заболеваний часто используют радиотерапию. Чтобы точно рассчитать дозировку локального облучения необходимо выяснить этот параметр организма пациента. Согласно статистике высокой чувствительностью к радиации обладают 10-20% популяции. Примерно такое же количество людей отличается повышенной устойчивостью к ионизирующему излучению. 

Важно помнить, что последствия радиационного облучения для иммунитета в большинстве случаев будут резко отрицательными. Даже воздействие малых «терапевтических» доз при приеме радоновой ванны может оказать вредное воздействие. Хотя непосредственно после процедуры будет наблюдаться активизация иммунной системы, отдаленные последствия таких процедур будут скорее негативными. 

Даже воздействие природного фона во многом оказывает негативный эффект, поэтому следует максимально избегать получения дополнительных доз облучения. 

Видео по теме: 

Источник

Слово «радиация» у большинства из нас вызывает панику. Мы опасаемся бывать в местах с повышенным радиоактивным фоном и есть продукты, «отравленные» радиацией. А между тем, как полагают ученые, человечество не так уж много знает о свойствах радиоактивного излучения…

К радиации можно приспособиться?

Ежегодно в примыкающих к Чернобылю районах Украины и Белоруссии на свет рождается не менее 2500 детей с аномалиями костей и внутренних органов, без головного мозга. У многих из них наблюдаются признаки раннего старения, многие появились на свет умственно отсталыми…

Естественный уровень мутаций повысился в 10 раз, хромосомные нарушения стали передаваться последующим поколениям. Растительность тоже мутировала. В Гомельской области частота мутаций хвойных пород увеличилась в 2-3 раза, в Полесском радиоэкологическом заповеднике — почти в 12 раз.

Однако год спустя после аварии люди начали возвращаться в зону радиационного заражения. Переселенцы занялись сельским хозяйством, принялись разводить скот… Они не верили, что родные места опасны для жизни. Вместо выжженной равнины их встретили пышные, в человеческий рост, травы. Оставшиеся в «мертвой» зоне животные выглядели вполне здоровыми и бодрыми.

Геннадий Поликарпов и Виктория Цицугина из института биологии южных морей в Севастополе сравнили поведение трех видов червей, обитающих в водоемах возле Чернобыля, а также в 20 км от него. В обоих озерах вода имела одинаковую температуру и схожий химический состав. Однако в первом, подвергшемся сильному облучению, два вида червей перешли от бесполого размножения к половому. Третий же вид, не приспособленный к половым контактам, удвоил скорость бесполого размножения. По мнению ученых, таким способом обитатели водоема попытались «вырастить» у себя гены, дающие защиту от радиации.

Читайте также:  Снижение иммунитета при перетренированности

А не так давно ученые из Медицинского колледжа имени Альберта Эйнштейна при Йешивском университете (США) обнаружили на стенах разрушенного реактора странные грибы черного цвета. Анализы показали, что в качестве источника жизнедеятельности им необходимо исключительно… радиоактивное излучение! Это заинтересовало руководителя исследовательской группы Артура Касадевалла. Он полагает, что в недалеком будущем такие грибы-мутанты можно было бы использовать в качестве питания для астронавтов, совершающих межзвездные полеты. Ведь на космических кораблях имеются источники ионизирующего излучения. Правда, пока неизвестно, пригодны ли чернобыльские грибы для употребления в пищу.

Впрочем, люди, живущие в зоне отчуждения (где радиационный фон превышает 40 кюри!), преспокойно пьют тамошнюю воду и питаются овощами и фруктами, выращенными на «облученной» почве (кстати, очень сочными и вкусными). Они заготавливают и вывозят в соседние районы древесину и скот. И «соседи» покупают, хотя точно знают: товар доставлен из радиоактивной зоны.

Все дело в том, что воздействие радиации на человека еще мало изучено. Да, во многих случаях люди заболевают, дети рождаются уродами. Но не во всех. На некоторых индивидов излучение вроде бы не оказывает никакого влияния. А порой последствия проявляются самым фантастическим образом. Так, у женщин в 70 лет появляется лактация – из груди выделяется молоко. При обследовании нескольких сот девочек-подростков в Гомеле выяснилось, что женские половые клетки у них замещаются мужскими!

Зафиксированы и положительные «сдвиги». Как утверждает в своих работах доктор медицинских наук, профессор Брянского государственного университета Владимир Михалев, дети из загрязненных радиацией районов Брянской области опережают своих сверстников из «чистых» районов в росте, у них более крепкая иммунная система. Профессор считает, что под воздействием радиации меняются гормональный фон, состав ферментов. Может быть, в наших организмах заложен потенциал, позволяющий приспосабливаться к резкому изменению внешних условий, в том числе и к радиации?

Источник

Влияние радиации на иммунную систему и их последствия

Ионизирующие излучение в любых дозах вызывает функциональные и морфологические изменения в клеточных структурах и изменяет деятельность почти во всех системах организма. В результате этого повышается или угнетается иммунологическая реактивность животных. Иммунная система является высокоспециализированной, ее составляют лимфоидные органы, их клетки, макрофаги, клетки крови (нейтрофильные, эозинофильные и базофильные, гранулоциты), система комплемента, интерферон, лизоцим, пропердин и другие факторы. Главным иммунокомпетентными клетками являются Т – и В-лимфоциты, ответственные за клеточный и гуморальный иммунитет.

Направленность и степень изменений иммунологической реактивности животных при действии радиации определяется главным образом поглощенной дозой и мощностью облучений. Малые дозы излучения повышают специфическую и неспецифическую, клеточную и гуморальную, общую и иммунобиологическую реактивность организма, способствуют благоприятному течению патологического процесса, повышают продуктивность скота и птиц.

Ионизирующие излучение в сублетальных и летальных дозах приводит к ослаблению животных или угнетению иммунологической реактивности животных. Нарушение показателей иммунологической реактивности отмечается значительно раньше, чем проявляются клинические признаки лучевой болезни. С развитием острой лучевой болезни иммунологические свойства организма все более ослабляются.

Понижается резистентность облеченного организма к возбудителям инфекции может по следующим причинам: нарушение проницаемости мембран тканевых барьеров, снижение бактерицидных свойств крови, лимфы и тканей, подавление кроветворения, лейкопения, анемия и тромбоцитопения, ослабление фагоцитарного механизма клеточной защиты, воспаления, угнетения продукции антител и другие патологические изменения в тканях и органах.

При воздействии ионизирующего излучения в небольших дозах изменяется проницаемость тканей, а при сублетальной дозе и более резко увеличивается проницаемость сосудистой стенки, особенно капилляров. После облучения среднелетальными дозами у животных развивается повышенная проницаемость кишечного барьера, что является одной из причин расселения кишечной микрофлоры по органам. Как при внешнем, так и при внутреннем облучении отмечается увеличения аутофлоры кожи, которое проявляется рано, уже в латентный период лучевого поражения. Этот феномен прослеживается у млекопитающих, птиц и человека. Усиленное размножение и расселение микроорганизмов на коже, слизистых оболочках и в органах обуславливается снижением бактерицидных свойств жидкостей и тканей.

Определение числа кишечных палочек и особенно гемолитических форм микробов на поверхности кожи и слизистых оболочках является одним из тестов, позволяющих рано установить степень нарушения иммунобиологической реактивности. Обычно повышение аутофлоры происходит синхронно с развитием лейкопении.

Закономерность изменений аутофлоры кожи и слизистых оболочек при внешнем облучении и инкорпорации различных радиоактивных изотопов сохраняется. При общем облучении внешними источниками радиации наблюдается зональность нарушения бактерицидных кожных покровов. Последнее, по-видимому, связано с анатомофизиологическими особенностями различных участков кожи. В целом бактерицидная функция кожи находится в прямой зависимости от поглощенной дозы излучения; при летальных дозах она резко снижается. У крупного рогатого скота и овец, облеченных гамма-лучами (цезий-137) в дозе ЛД80-90/30, изменения аутофлоры кожи и слизистых оболочек начинается с первых суток, а к исходному состоянию у выживших животных приходят на 45–60-му дню.

Внутреннее облучение, как и внешнее, вызывает значительное понижение бактерицидности кожи и слизистых оболочек при однократном введении йода-131 курам в дозах 3 и 25 мКи на 1 кг их массы количество бактерий на коже начинает уже с первых суток увеличиваться, достигая максимума на пятый день. Дробное веление указанного количество изотопа в течении 10 дней приводит к значительно большому бактериальному обсеменению кожи и слизистой оболочки ротовой полости с максимумом на 10-й день, причем в основном возрастает число микробов с повышенной биохимической активностью. В следующее время прослеживается прямая связь численного увеличения бактерий с клиническим проявлением лучевого поражения.

Читайте также:  Выявление антитоксического иммунитета при дифтерии

Одним из факторов, обеспечивающих естественную антимикробную устойчивость тканей, является лизоцим. При лучевом поражении содержание лизоцима в тканях и крови уменьшается, что свидетельствует об уменьшении его продукции. Этот тест может быть использован для определения ранних изменений резистентности облеченных животных.

Большую роль в невосприимчивости животных к инфекциям играет фагоцитоз. При внутреннем и внешнем облучениях в принципе изменения фагоцитарной реакции имеют аналогичную картину. Степень нарушения реакции зависит от величины дозы воздействия; при малых дозах (до 10–25 рад) отмечается кратковременная активация фагоцитарной способности фагоцитов, при полулетальных – фаза активации фагоцитов сокращается до 1–2 дней, в дальнейшем активность фагоцитоза понижается и в летальных случаях доходит до нуля. У выздоравливающих животных происходит медленная активация реакции фагоцитоза.

Значительные изменения в облученном организме претерпевают фагоцитарные способности клеток ретикулоэндотелиальной системы и макрофагов. Эти клетки довольно радиорезистентны. Однако фагоцитирующая способность макрофагов при облучении нарушается рано. Угнетение фагоцитарной реакции проявляется незавершенностью фагоцитоза. По-видимому, облучение нарушает связь между процессами захвата частиц макрофагами и ферментативными процессами. Подавление функции фагоцитоза в этих случаях может быть связано с угнетением выработки соответствующих опсонинов лимфойдной системой, ибо известно, что при лучевой болезни отмечается уменьшение в крови комплемента, пропердина, опсонинов и других биологических веществ.

В иммунологических механизмах самозащиты организма большую роль играют аутоантитела. При радиационных поражениях происходит повышение образования и накопления аутоантител. После облучения в организме можно обнаружить иммунокомпетентные клетки с хромосомными транслокациями. В генетическом отношении они отличаются от нормальных клеток организма, т.е. являются мутантами. Организмы, в которых существуют генетически различные клетки и ткани, обозначаются как химеры. Образовавшиеся под действием облучения аномальные клетки, ответственные за иммунологические реакции, приобретают способность вырабатывать антитела против нормальных антигенов организма. Иммунологическая реакция аномальных клеток против собственного организма может вызвать спленомегалию с атрофией лимфоидного аппарата, анемию, отставание в росте и массе животного и ряд других нарушений. При достаточно большом количестве таких клеток может произойти гибель животного.

Согласно иммуногенетической концепции, выдвинутой иммунологом Р.В. Петровым, наблюдается следующая последовательность процессов лучевого поражения: мутагенное действие радиации→относительное увеличение аномальных клеток, обладающих способностью к агрессии против нормальных антигенов→накопление таких клеток в организме→аутогенная агрессия аномальных клеток против нормальных тканей. По мнению некоторых исследователей, рано проявляющиеся в облученном организме аутоантитела участвуют в повышении его радиорезистентности при однократных воздействиях сублетальных доз и при хроническом облучении малыми дозами.

О нарушении резистентности у животных при облучении свидетельствуют лейкопения и анемия, подавление деятельности костного мозга и элементов лимфоидной ткани. Поражение клеток крови и других тканей и изменение их деятельности сказываются на состоянии гуморальных систем иммунитета – плазме, фракционном составе сывороточных белков, лимфе и других жидкостях. В свою очередь, эти субстанции, подвергаясь воздействию излучения, оказывают влияние на клетки и ткани и сами по себе обуславливают и дополняют другие факторы снижения естественной резистентности.

Угнетение не специфического иммунитета у облученных животных приводит к усилению развития эндогенной инфекции – увеличивается количество микробов аутофлоры кишечника, кожи и других областей, изменяется ее видовой состав, т.е. развивается дисбактериоз. В крови и внутренних органах животных начинают обнаруживаться микробы – обитатели кишечного тракта.

Бактериемия имеет исключительно важное значение в патогенезе лучевой болезни. Между началом возникновения бактериемии и сроком гибели животных наблюдается прямая зависимость.

При радиационных поражениях организма изменяется его естественная устойчивость к экзогенным инфекциям: туберкулезным и дизентерийным микробам, пневмококкам, стрептококкам, возбудителям паратифозных инфекций, лептоспироза, туляремии, трихофитии, кандидамикоза, вирусам инфлюэнцы, гриппа, бешенства, полиомиелита, ньюкаслской болезни (высококонтагиозная вирусная болезнь птиц из отряда куриных, характеризующаяся поражением органов дыхания, пищеварения и центральной нервной системы), простейшими (кокцидиями), бактериальным токсинам. Однако видовая невосприимчивость животных к инфекционным болезням сохраняется.

Лучевое воздействие в сублетальных и летальных дозах отягощает течение инфекционной болезни, а инфекция, в свою очередь, утяжеляет течение лучевой болезни. При таких вариантах симптомы болезни зависят от дозового, вирулентного и временного сочетания действия факторов. При дозах облучения, вызывающих тяжелую и крайне тяжелую степень лучевой болезни, и при инфицировании животных первые три периода ее развития (период первичных реакций, латентный период и разгар болезни) в основном будут преобладать признаки острого лучевого заболевания. Заражение животных возбудителем остропротекающей инфекционной болезни незадолго или на фоне облучения сублетальными дозами приводят к утяжелению течения данной болезни с развитием относительно характерных для нее клинических признаков. Так, у поросят, облученных смертельными дозами (700 и 900 Р) и зараженных через 5 ч, 1,2,3,4, и 5 сут. после облучения вирусом чумы, при вскрытии находят в основном изменения, которые наблюдаются у облученных животных. Лейкоцитарная инфильтрация, клеточно-пролиферативная реакция, инфаркты селезенки, наблюдаемые при чистой форме чумы, в этих случаях отсутствуют. Повышенная чувствительность подсвинков к возбудителю рожи у переболевших лучевой болезнью средней степени тяжести сохраняется спустя 2 мес. после облучения рентгеновскими лучами в дозе 500 Р. При экспериментальном заражении возбудителем рожи болезнь у свиней проявляется более бурно, генерализация инфекционного процесса наступает на третьи сутки, тогда как у контрольных животных она обычно регистрируется только на четвертый день. Патоморфологические изменения у облученных животных при этом характеризуются выраженным геморрагическим диатезом.

Источник