Нобелевскую премию за гуморальную теорию иммунитета получил

Нобелевскую премию за гуморальную теорию иммунитета получил thumbnail

Древняя история до 20 века20-й векПервые шаги. Резус-фактор
• Цитокины, интерлейкины Законы трансплантации Превратности судьбы
• Иммунология в России Нобелевские лауреаты

Нобелевские лауреаты за работы по иммунологии.

В заключение исторического очерка приведем список лауреатов Нобелевской премии по биологии и медицине за работы по иммунологии. Напомним, что Нобелевская премия учреж­дена с 1901 г. и за исключением нескольких первых премий, как правило, ее не присуждают раньше чем через 15—20 лет после первой публикации авторов. Эти 15—20 лет отводят для проверки и перепроверки заявляемого открытия.

Эмиль Беринг (Emil A. von Behring, I854—1917, Германия) — Нобелевская премия 1901 г. за открытие антитоксинов, впоследствии антител, и серотерапию дифтерии. Это первая в истории Нобелевская премия,

Роберт Кох (Robert Koch, 1843—1910, Германия) — Нобелевская премия 1905 г. за исследования по туберкулезу.

Илья Ильич Мечников (1845—1916, Россия) — Нобелевская премия 1908 г. за открытие защитной роли фагоцитоза и клеточную теорию иммунитета.

Пауль Эрлих (Paul Ehrlich, 1854—1915, Германия) — Нобелевская премия 1908 г. (совместно с И.И.Мечниковым) за гуморальную теорию иммунитета.

Шарль Рише (Charles Richet, 1850—1935, Франция) — Нобелевская премия 1913 г. за работы по анафилаксии и открытие того, что иммунный ответ может не только защитить, но и повредить организм.

Жюль Борде (Jules Bordet, 1870—1961, Бельгия) — Нобелевская премия 1919 г. за экспериментальные работы по комплементзависимому бактериолизу, специфическому гемолизу, за разработку метода фиксации комплемента для диагностики инфекционных болезней.

Карл Ландштейнер (Karl Landsteiner, 1868—1943, Австрия) — . Нобелевская премия 1930 г. за открытие групп крови и фундаментальную книгу «The Specificity of Serologic Reactions». Сам К.Ландштейнер считал, что не открытие групп крови — его главное дело жизни, а исследования реакции антигена с антителом.

Макс Тэйлер (Max Theiler, 1899-1972, ЮАР, Англия, США) — Нобелевская премия 1951 г. за создание вакцины против желтой лихорадки.

Дэниэль Бовэ (Daniel Bovet, 1907, Швейцария) — Нобелевская премия 1957 г. за открытие роли гистамина в патогенезе аллергических реакций и разработку антигистаминных фармакологических препаратов для лечения аллергических болезней. Кроме того, он разработал курареподобные релаксанты, транквилизаторы и ряд анестетиков.

Фрэнк Вернет (F.Macfarlane Buraet, 1899—1985, Австралия) и Питер Медавар (Peter В. Medawar, 1915—1987, Великобритания) — Нобелевская премия 1960 г. за исследования по искусственной индукции иммунологической толерантности.

Родни Портер (Rodney R. Porter, 1917—1985, Великобритания) и Джеральд Эдельман (Gerald M. Edelman, 1929, США) — Нобелевская премия 1972 г. за установление химической структуры молекул антител.

Розалин Ялоу (Rosalyn Yalow, 1921) — Нобелевская премия 1977 г. за разработку конкурентного радиоиммунологического анализа, позволившего определять нано- и пикограммовые количества пептидных гормонов.

Бару Бенацерраф (Baruj Benacerraf, 1920, США), Жан Доссе (Jean Dausset, 1916, Франция) и Джордж Д. Снелл (Gearge D. Snell, 1903, США) — Нобелевская премия 1980 г. за открытие генов и структур поверхности клеток главного комплекса гистосовместимости.

Нилье Йерне (Niels К. Jerne, 1911—1994, Великобритания) — Нобелевская премия 1984 г. за разработку теории идиотипических сетей. Кроме того, Н.Йерне разработал метод количественного подсчета антителообразующих клеток. Именно Н.Йерне является первым, кому принадлежит самая фундаментальная и по сей день основная идея иммунологии — идея клональности лимфоцитов, следовательно, клональности любого иммунного ответа.

Георг Кёлер (Georges F. Kohler, 1946—1995, Германия) и Цезарь Мильштейн (Cesar Milstein, 1927, Великобритания) — Нобелевская премия 1984 г. за разработку революционного биотехнологического метода — получения гибридом и моноклональных антител.

Сузуму Тонегава (Susumu Tonegawa, 1939, Япония) — Нобелевская премия 1987 г. за работы по молекулярной биологии генов иммуноглобулинов и раскрытие механизмов, обеспечивающих разнообразие антигенсвязывающих участков молекул антител — рекомбинацию ДНК в соматических клетках (лимфоцитах).

Питер Дохерти (Peter Doherty, 1940, США) и Рольф Цинкернагель (Rolf Zinkernagel, 1944, Швейцария) — Нобелевская премия 1996 г. за открытие двойного распознаванияв иммунологии — природной функции молекул главного комплекса гистосовместимости.

Стенли Прусинер (Stenly Prusiner, США) — Нобелевская премия 1997 г. за открытие прионов возбудителей инфекций нового типа, не похожих на известные ранее медицине. К прионным инфекциям относят возбудителей губчатого энцефалита — бешенства коров, заразного и для человека, в том числе по пищевым путям, всколыхнувшего Европу в 1996—1997 гг. Его первые публикации на эту тему были сделаны в 1982 г.

Лилацд Хартуэлл (L. Hartwall, 1939, США), Тимоти Хант (Т. Hunt, 1943, Великобритания), Пол Нерс (P. Nerth, 1949, Великобритания) — Нобелевская премия 2001 г. за исследования генов и их продуктов, контролирующих пролиферацию клеток. Хартуэлл ввел понятие CDC — cell division cycle, оценил количество генов, обеспечивающих деление клетки как не менее 100 и идентифицировал стартовый ген (start), инициирующий переход клетки из фазы gj в фазу S. Нерс нашел гены, кодирующие ферменты киназы, обеспечивающие переход клетки в фазу митоза — М. Хант нашел в клетке белки — циклины, приводя­щие в активное состояние киназы Нерса (CDK — cyclin dependent kinase), каждой киназе — свой циклин. Эти открытия существенным образом способствовали пониманию того, что этиология и патогенез злокачественных опухолей есть проблемы повреждения системы генов CDC.

По прогнозу одного из наиболее уважаемых современных теоретиков иммунологии Чарльза Джанвея (С. A. Janeway), который является также исследователем и преподавателем (он ведущий автор отличного учебника «Immunobiology: immune system in health and disease», переиздаваемого ежегодно с 1994 г.), ближайшей Нобелевской премии по иммунологии, заслуживают авторы исследований по молекулярным механизмам эволюционного происхождения процессов перестройки ДНК генов рецепторов лимфоцитов для антигенов. Две независимые группы исследователей получили фактические данные молекулярной биологии, наводящие на мысль, что инициаторные гены перестройки ДНК RAG-1 и RAG-2 — это транспозоны, т.е. ретро-вирусы по происхождению(отсутствие нитронов, характерные последовательности нуклеотидов и т.д.). Инфекция этих древних вирусов в гаметы каких-то древних челюстных рыб привнесла полезные для выживания свойства, которые закрепились отбором и превратились со временем в такое биологическое свойство всех вышестоящих многоклеточных, как лимфоцитарный иммунитет.

Древняя история до 20 века20-й векПервые шаги. Резус-фактор
Цитокины, интерлейкины Законы трансплантации Превратности судьбы
Иммунология в России Нобелевские лауреаты

Читайте также:  Вред лекарств для иммунитета

Об иммунитете

Источник: Р.М. Хаитов «Иммунология» 2002г.

Источник

Иммунная система позволяет нам существовать в мире, полном патогенных микроорганизмов — вирусов, бактерий, грибов. Нобелевская премия по физиологии и медицине 2011 года вручена за открытия в области активации врожденного иммунитета (половину премии разделили Брюс Бётлер и Жюль Хоффман) и за изучение роли дендритных клеток в приобретенном иммунитете (вторая половина премии присуждена Ральфу Стайнману, к сожалению, скончавшемуся 30 сентября). Эти достижения не только дали понимание того, как слаженная работа врожденного и адаптивного иммунитета защищает организм, но и открыли новые перспективы в лечении инфекций, рака и воспалительных заболеваний.

Две линии иммунной обороны

Мы обитаем в мире, буквально кишащем патогенными микроорганизмами (бактериями, грибами, вирусами и паразитами), однако наши организмы оснащены совершенной системой защиты, позволяющей (в норме) не замечать опасного соседства. «Первая линия» иммунной обороны — врожденный иммунитет — уничтожает вторгшиеся в организм патогены на основе технологии «свой—чужой», распознавая черты, всегда присутствующие у «захватчиков», но отсутствующие в собственном организме. Если же инфекции удается прорваться, вступает в работу «вторая линия» — приобретенный, или адаптивный, иммунитет. Основанный на согласованной работе B- и T-лимфоцитов, он действует посредством специфических к конкретной инфекции антител и клеток-«убийц», уничтожающих зараженные клетки и саму инфекцию. В отличие от врожденного иммунитета, способность к распознаванию патогенов которого закодирована генетически, приобретенный иммунитет обучается распознавать новые «образы» врага и сохраняет память о нем, мгновенно «вспоминая», встретившись вновь.

Однако, обеспечивая необходимую защиту, иммунные механизмы скрывают и опасность: если «активационный барьер» слишком низок, иммунитет может активироваться собственными молекулами, что приводит к развитию аутоиммунных и воспалительных заболеваний.

Организация иммунной системы изучалась в течение XX века постепенно; в частности, нобелевскими премиями отмечены изучение строения антител и определение механизма распознавания Т-клетками инородных веществ. Однако только с работами Бётлера, Хоффмана и Стайнмана стали понятны механизмы, активирующие врожденный иммунитет и связывающие его с иммунитетом приобретенным.

Открытие сенсоров врожденного иммунитета

Пионерское открытие Жюля Хоффмана было сделано в 1996 году, когда он с коллегами исследовал, как дрозофила сопротивляется инфекциям [1]. Они работали на линиях мух, мутантных по нескольким генам, включая ген Toll, участвующий в эмбриональном развитии (за открытие роли этого гена также вручена Нобелевская премия в 1995 году). Хоффман с коллегами открыли, что мухи с мутантным геном Toll погибали при заражении бактериями или грибами, в то время как «дикий тип» чувствовал себя вполне сносно. В результате их работ был сделан вывод, что продукт этого гена — Toll-рецептор — «чувствует» патогенные микроорганизмы и запускает механизмы врожденного иммунитета.

Брюс Бётлер с коллегами, со своей стороны, искали рецепторы, которые могли бы активироваться элементом клеточной стенки бактерий липополисахаридом (ЛПС), который при попадании в кровь вызывает септический шок (чрезмерная активация иммунной системы, грозящая смертью). В 1998 году они обнаружили, что мыши, не реагирующие на введение ЛПС, имели мутации в гене, гомологичном Toll у дрозофил. Продукт этого гена — Toll-подобный рецептор — и оказался искомым сенсором липополисахарида [2]. Связывание ЛПС (обозначающее присутствие бактерий) активирует иммунитет и запускает воспаление, а чрезмерная концентрация ЛПС приводит к септическому шоку. Это открытие показало, что и членистоногие, и млекопитающие используют схожие стратегии противостояния бактериальным инвазиям.

Открытия Хоффмана и Бётлера фактически положили начало новой «горячей» области биологии: впоследствии было открыто более 10 Toll-подобных рецепторов, каждый распознающий свой «образ», характерный для разных групп микроорганизмов. Мутации в генах этих рецепторов увеличивают вероятность инфекционных заболеваний, а также хронических воспалительных болезней.

Схема работы иммунитета

Рисунок 1. Схема работы иммунитета. Проникновение в тело человека патогенных микроорганизмов — бактерий, вирусов или грибов — активирует «две линии» иммунной реакции: врожденный иммунитет (останавливает инфекцию) и приобретенный иммунитет (выводит инфекцию из организма). Врожденный иммунитет: компоненты микроорганизмов, такие как липополисахарид, связываются с Toll-подобными рецепторами, находящимися на поверхности многих клеток организма. Это запускает врожденный иммунитет, активирующий воспалительную реакцию и уничтожающий «захватчиков». Приобретенный иммунитет: Дендритные клетки активируют T-лимфоциты, лежащие в основе каскада иммунных реакций, приводящих к синтезу антител и уничтожению патогенов и зараженных клеток.

Новый игрок в команде адаптивного иммунитета

Еще в 1973 году Ральф Стайнман открыл новый тип клеток иммунитета с длинными отростками, названный им дендритными клетками. Его предположение было — что эти клетки активируют T-лимфоциты, играющие ключевую роль в приобретенном иммунитете и иммунной памяти. Это предположение блестяще подтвердилось в клеточных экспериментах, где добавление дендритных клеток к популяции Т-лимфоцитов способствовало формированию иммунитета [3–5].

Дальнейшие работы Стайнмана и других исследователей были направлены на то, чтобы понять, как приобретенный иммунитет определяет, — надо ли реагировать на то или иное вещество, или можно этого не делать. Обнаружилось, что дендритные клетки воспринимают сигналы от системы врожденного иммунитета, и это управляет их способностью активировать T-клетки. Это позволяет нашему иммунитету прицельно бороться с патогенными микроорганизмами, «не обращая внимания» на молекулы нашего собственного тела.

Фундаментальные науки — медицине

Достижения нобелевских лауреатов 2011 года пролили свет на подробности работы систем врожденного и приобретенного иммунитета. Это знание легло в основу создания новых стратегий лечения многих болезней, — например, новых вакцин против инфекций и попыток «натравить» собственную иммунную систему на раковые опухоли. В дополнение к этому, стало понятно, почему организм иногда начинает атаковать свои собственные ткани, что приводит к воспалительным и аутоиммунным заболеваниям.

Горькая ирония

Как известно, Нобелевская премия не вручается посмертно. Однако этот год стал исключением: 30 сентября после продолжительной борьбы с раковой опухолью скончался Ральф Стайнман, — буквально за несколько дней до объявления лауреатов премии. Нобелевский комитет не знал об этом, и обнародовал свое решение 3 октября. Несмотря на этот печальный казус, решение менять не будут. Работы Стайнмана легли в основу терапии дендритными клетками — перспективного способа лечения воспалительных и онкологических заболеваний. К сожалению, самому ему оказалось суждено стать жертвой такого заболевания [6], [7].

И снова мимо!..

Сегодня интернет пестрит сообщениями, что опять — в который уже раз! — Нобелевский комитет обошел своим решением российских ученых. Речь идет о  российском эмигранте Руслане Меджитове [8], который, вместе со своим (ныне уже покойным) учителем Чарльзом Дженуэем показал, что и у людей существуют Toll-подобные рецепторы [9]. Если бы Дженуэй был жив, то, скорее всего, именно он был бы третьим лауреатом премии (вместо Стайнмана), а сама премия была бы конкретно за врожденный иммунитет.

По материалам пресс-релиза Нобелевского комитета [10].

  1. Bruno Lemaitre, Emmanuelle Nicolas, Lydia Michaut, Jean-Marc Reichhart, Jules A Hoffmann. (1996). The Dorsoventral Regulatory Gene Cassette spätzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell. 86, 973-983;
  2. A. Poltorak. (1998). Defective LPS Signaling in C3H/HeJ and C57BL/10ScCr Mice: Mutations in Tlr4 Gene. Science. 282, 2085-2088;
  3. R. M. Steinman. (1973). IDENTIFICATION OF A NOVEL CELL TYPE IN PERIPHERAL LYMPHOID ORGANS OF MICE: I. MORPHOLOGY, QUANTITATION, TISSUE DISTRIBUTION. Journal of Experimental Medicine. 137, 1142-1162;
  4. R. M. Steinman, M. D. Witmer. (1978). Lymphoid dendritic cells are potent stimulators of the primary mixed leukocyte reaction in mice.. Proceedings of the National Academy of Sciences. 75, 5132-5136;
  5. G. Schuler. (1985). Murine epidermal Langerhans cells mature into potent immunostimulatory dendritic cells in vitro. Journal of Experimental Medicine. 161, 526-546;
  6. Нобелевскую премию присудили только что умершему от рака ученому. Но другого выбирать уже не будут. (2011). NewsRu;
  7. Воронин Е. (2011). Ральф Стайнман. shvarz.livejournal.com;
  8. Интервью с профессором Йельского университета Русланом Меджитовым;
  9. Ruslan Medzhitov, Paula Preston-Hurlburt, Charles A. Janeway. (1997). A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 388, 394-397;
  10. The Nobel Prize in Physiology or Medicine 2011. (2011). The Nobel Prize.

Источник

Читайте также:  Препарат повышающий иммунитет ребенку

Сегодняшний герой рубрики «Как получить Нобелевку», уже будучи лауреатом, снова и снова удостаивался номинаций. И не зря: создатель теории иммунитета, современной иммунологической терминологии и первого химиотерапевтического препарата, первооткрыватель гематоэнцефалического барьера, оппонент Мечникова. Зовут его Пауль Эрлих.

Пауль Эрлих

Родился 14 марта 1854 года, Штрелен, Силезия.

Умер 20 августа 1915 года, Бад-Хомбург, Германия.

Нобелевская премия 1908 года по физиологии и медицине (совместно с Ильей Мечниковым). Формулировка Нобелевского комитета: «За их работы по иммунитету».

Эрлих в лаборатории

Wikimedia Commons

Эпоху современной медицины можно назвать эпохой фармакотерапии или химиотерапии, ведь более успешного метода борьбы с патогенами, чем направленное (таргетное) влияние на возбудителя или звено патогенеза, пока что обнаружить не удалось. И первым человеком, который ввел в медицину это понятие, придумав «волшебную пулю» от сифилиса, стал наш нынешний герой. Однако премию он получил совсем не за это. Он, как полагается всем ученым начала XX столетия, занимался разными вещами, везде достигая успехов. Именно ему, помимо красивой «точки» в изучении клеток крови, принадлежит еще и фундаментальная для иммунологии «теория боковых цепей», а также понятие гематоэнцефалического барьера.

Ученый прожил не очень долгую, но крайне насыщенную жизнь. Он родился в семье трактирщика и владельца постоялого двора из маленького польского городка Стшелин. Благодаря веселому нраву Эрлих легко находил контакт с абсолютно разными людьми, и поэтому многие знакомые считали, что Пауль продолжит карьеру отца. Но не тут-то было. Мальчик, чьи родители совершенно не увлекались науками, попал под влияние дедушки по линии отца, который преподавал в местном университете физику и ботанику. Окончательно развить в себе интерес к науке юному гистологу помог двоюродный брат матери, бактериолог Карл Вейгерт, который завлек Пауля таинственным миром живых тканей и анилиновых красителей, с которыми он начал работать одним из первых.

Карл Вейгерт

Wikimedia Commons

Отчасти в этом была виновата книга, которую Эрлих прочел, поступив на медицинский факультет Университета Бреслау (современного Вроцлава). В ней говорилось о том, как по-особому свинец распределяется в разных тканях, и пытливый ум молодого человека тут же заинтересовался «характером и методами распределения веществ в организме и его клетках», чем не преминул заняться в более поздние годы обучения медицине.

Интересно, что Эрлих в университетах (а он, помимо своего родного, успел поучиться и в Старсбургском, и в Лейпцигском университетах) слыл типичным двоечником, как в свое время Ньютон, Гельмгольц, Эйнштейн и множество других гениев. По-видимому, они думали одинаково: зачем тратить время на то, что не интересно, если его можно потратить на более увлекательные вещи. Трупы и врачевание Эрлиха никак не прельщали, но вот красители…

За годы учебы Пауль разработал множество новых красящих веществ со специфическим сродством к различным клеткам и к моменту получения диплома в 1878 году уже кое-что из себя представлял как ученый. Уникальное «видение» трехмерной структуры молекул, которое помогало ему предсказывать связь краски с определенными тканями, позволило ему в 1879 году опубликовать результаты своих исследований по окраске кровяных пленок. Исследователю тогда было всего 25 лет.

Все необходимое для полноценного существования гематологии наш герой обнаружил так: он отделил популяции белых клеток (агранулоциты — клетки без гранул, гранулоциты — клетки, содержащие в своей цитоплазме специфические гранулы), причем не только друг от друга, но и внутри. Благодаря ему мы знаем, что есть лимфоциты, которые не содержат гранул (в дальнейшем выяснилось, что они делятся на В-, Т- и NK-клетки), а гранулоциты, в свою очередь, подразделяются на несколько типов, среди которых можно найти нейтрофилы, эозинофилы и базофилы.

Гранулоцит

Wikimedia Commons

Эрлиха привлекала еще одна деталь. В одной из клиник Берлина, где он работал, никто не мешал заниматься разными исследованиями, в том числе и по окраске возбудителей заболеваний. Поэтому у него родилась идея о «волшебной пуле». «Если есть такая краска, которая окрашивает одну только ткань, то, несомненно, должна найтись и такая, которая окрасит только микробов, попавших в организм», — размышлял ученый. И, соответственно, если есть краска, которая окрасит только микробы, значит, должно быть и вещество, которое только лишь их будет способно убить. И, возможно, этим убийцей может стать один из красителей.

В качестве «красильщика-виртуоза» и в должности главного врача клиники Фридриха фон Фрерихса берлинской больницы Шарите Эрлих познакомился с уже знаменитым на тот момент Робертом Кохом, который в 1882 году открыл возбудителя туберкулеза. Он предложил Коху улучшенный метод окраски его палочки (который, кстати, используется и сегодня), с чего начались их многолетняя дружба и тесное сотрудничество.

Роберт Кох на марке, посвященной столетию его премии

Wikimedia Commons

Но вот беда: в 1888 году, во время очередного эксперимента с опасным возбудителем, Пауль сам заразился бациллой и вдобавок заразил и свою семью, которой он обзавелся в 1883 году. С женой Хедвигой Пинкус и двумя дочерями он был вынужден уехать лечиться в Египет, жаркий и сухой климат которого как нельзя лучше располагал к избавлению от возбудителя. Там они прожили два года.

Свято место пусто не бывает, и в результате подковерных интриг отсутствующего Эрлиха сместили с поста в клинике Шарите, что он обнаружил, когда вернулся в Берлин в 1890 году. Не пав духом, он продолжил научные изыскания в своей лаборатории, которую, к счастью, присвоить не могли, пока Кох не предложил помочь и не забрал его в свой Институт инфекционных заболеваний. Помимо этого Эрлих также стал профессором Берлинского университета.

Клиника Шарите

Wikimedia Commons

«Инфекционное» прошлое свело его с первооткрывателем анти-дифтерийной сыворотки фон Берингом, который удостоился Нобелевской премии 1901 года. Поначалу, однако, вакцинация, которая должна была путем постепенно нарастающих доз защищать мышей от токсинов, не давала надежных результатов. Но Эрлих нашел методы повышения эффективности сывороток: он посоветовал усиливать ее, повторно вводя дифтерийный токсин лошадям до тех пор, пока не получалась необходимая концентрация антитоксина, а затем помог Берингу наладить массовое производство. В это же время ученый начал задумываться о теории «боковых цепей».

Читайте также:  Тест на проверку иммунитета

Эрлих и Беринг на почтовой марке

Wikimedia Commons

«Живая протоплазма должна соответствовать гигантской молекуле, взаимодействующей с обычными химическими молекулами так, как Солнце с мельчайшими метеоритами. Мы можем предположить, что в живой протоплазме ядро со специальной структурой отвечает за специфические, свойственные клетке функции и к этому ядру присоединены наподобие боковых цепей атомы и их комплексы», — писал Эрлих.

Отсюда же пошли идеи о специфических рецепторах в клетках, которые способны связываться с возбудителями. Исследователь продолжил «копать глубже» и в 1897 году предложил первую теорию. Он считал, что эти боковые цепи снаружи клеточных мембран (которые стали позже называться рецепторами) способны связываться с теми или иными химическими веществами в среде. Некоторые из них могут соединяться с токсинами, которые микроорганизмы выделяют в среду, а связь эта строится по типу «ключ-замок» (открытие подтвердил Лайнус Полинг в 40-е годы). Связавшись с токсином, клетка начинает преображаться и свободно выделять в межклеточную среду «боковые цепи», где они бы встречались с токсином и нейтрализовывали его, защищая от «нашествия» другие клетки и вообще весь организм в целом. Даже название этим цепям Эрлих дал знакомое – Antikörper, или антитела. Его теория удивительно напоминала известный сегодня механизм гуморального иммунитета, который базируется на антителах, производимых В-клетками.

Такая своеобразная теория иммунитета, кстати, вызвала суровый спор Эрлиха с Мечниковым: эмигрант из России считал, что весь иммунитет обеспечивается фагоцитозом, а Эрлих яростно спорил, что главная роль отводится антителам. На самом деле, правы, как это бывает, были оба. Важнейшая заслуга Эрлиха в том, что он впервые представил взаимодействие между антителами, патогенами и клетками как химические реакции. Кроме того, именно он составил основу современной иммунологической терминологии.

Илья Мечников. Фото Надара

Wikimedia Commons

Судя по всему, Нобелевский комитет в начале своего существования ставил одной из задач примирение непримиримых соперников. Мы уже рассказывали, как в 1906 году получили премию ярые противники Камилло Гольджи и Сантьяго Рамон-и-Кахаль, по совместительству — основатели современных нейронаук. Видимо, руководствуясь тем же принципом, Нобелевский комитет дал в 1908 году премию двум основателям современной иммунологии: Мечникову и Эрлиху. Вообще Эрлиха номинировали всего 76 раз. Интересно, что много номинаций было и после 1908-го, в том числе одна номинация на премию по химии. За что? Читайте дальше!

Чуть позже Пауля позвали директором в Государственный институт разработки и контроля сывороток в Штеглице (предместье Берлина), который в 1899 расширился до Института экспериментальной серотерапии во Франкфурте-на-Майне. Через семь лет Эрлих стал директором и тут, а сейчас институт носит его имя — Paul-Ehrlich Institut.

«Волшебная пуля» все не покидала мысли исследователя. Со своим ассистентом, японцем Сахаширо Хата, он перепробовал более 500 разных красителей, ожидая найти эффективное средство против трипаносомы — возбудителя сонной болезни. Однажды, листая очередной химический журнал, он наткнулся на интересный препарат против сонной болезни — атоксил, или (в переводе с латинского) «неядовитый», который, как говорили авторы, прекрасно избавлял больных от их недуга.

Самостоятельно изучив препарат, ученые пришли к выводу, что название лгало. Атоксил, содержащий в своем составе мышьяк, обладал колоссальным токсическим действием на зрительный нерв, помогая больным выздоравливать и отбирая у них при этом зрение. Несколько лет потратили исследователи, прежде чем нашли более-менее эффективный и не такой токсичный аналог — арсенофенилглицин.

А когда Хоффман в 1905 году определил, что сифилис вызывается специфическим микробом, бледной спирохетой, очень похожим по строению на трипаносому, Эрлих начал искать «волшебную пулю» против него. Все это привело к созданию в 1909 году из атоксила вещества №606 (он и правда оказался 606-м по счету из проверенных мышьякорганических препаратов), которое назвали арсфенамином или сальварсаном. В первых же клинических испытаниях, проведенных в Магдебургском госпитале, оно показало высокую эффективность против сифилиса. Таким образом сальварсан стал первым в истории медицины препаратом химиотерапии. Об открытии средства от сифилиса Эрлих объявил в 1910 году и препарат сразу же начал свое путешествие по миру: например, в том же году его уже применяли в России.

Сальварсан

Wikimedia Commons

Впрочем, быстро выяснилось, что если дать пациенту недостаточно сальварсана, то бледная спирохета быстро вырабатывает устойчивость. Так, Эрлих попутно открыл и лекарственную устойчивость, и создал новый препарат, более эффективный, — неосальварсан. Впрочем, шумиха, поднятая против Эрлиха, была очень сильна. К тому же началась Первая мировая, и сердце чувствительного ученого не выдержало: 20 августа 1915 года он умер от инсульта, или, как тогда писали, от апоплексического удара.

Прививка препарата «606» служащему Императорского Воспитательного дома. Российская империя, 1910 год

Wikimedia Commons

Напоследок нужно написать еще об одном открытии, которое Эрлих совершил во время работы над сальварсаном. Это открытие задало фармакологии задачу, не решенную до сих пор. Эрлих вводил в лабораторных животных токичные красители. Вскрывая тела, он видел, что окрашиваются все ткани, кроме мозга. Поначалу он решил, что, поскольку мозг в основном состоит из липидов, они просто не прокрашиваются. Последующие опыты показали, что если ввести краситель в кровь, то максимум, что он способен окрасить, — это так называемые хориоидальные сосудистые сплетения желудочков головного мозга. Дальше ему путь закрыт. Если же ввести краситель в спинно-мозговую жидкость, выполнив люмбальную пункцию, то мозг окрашивался, но остальное тело не окрашивалось. Стало ясно, что между кровью и центральной нервной системой существует некая преграда, который многие вещества не могут преодолеть. Так был открыт гематоэнцефалический барьер, защищающий наш мозг от микроорганизмов и токсинов и ставший головной болью неврологов, которые пытаются лечить рак мозга. Именно гематоэнцефалический барьер не пускает химиотерапию к опухолям в голове. Поэтому задачи, поставленные Паулем Эрлихом, ученые решают и поныне.

Подписывайтесь на Indicator.Ru в соцсетях: Facebook, ВКонтакте, Twitter, Telegram.

Источник