П эрлих лауреат нобелевской премии за открытие гуморального иммунитета

П эрлих лауреат нобелевской премии за открытие гуморального иммунитета thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 4 июня 2020;
проверки требуют 2 правки.

В Википедии есть статьи о других людях с фамилией Эрлих.

Па́уль Э́рлих (нем. Paul Ehrlich; 14 марта 1854, Штрелен, Силезия — 20 августа 1915, Бад-Хомбург, Германия) — немецкий врач, иммунолог, бактериолог, химик, основоположник химиотерапии. Лауреат Нобелевской премии (1908).

Биография[править | править код]

Пауль Эрлих родился в силезском городе Штрелен (ныне Польша). Он был четвёртым ребёнком (и единственным мальчиком) в обеспеченной еврейской семье. Его отец, Измар Эрлих (1818—1898), владел постоялым двором и винокурней, доставшейся ему от его отца, состоятельного торговца Хаймана Эрлиха (1784—1873); мать, Роза Вайгерт (1826—1909), была домохозяйкой. Двоюродный брат матери (лишь на девять лет старше Пауля), Карл Вайгерт (Karl Weigert, 1845—1904), был известным патологом и способствовал становлению научных интересов племянника.

В бреславльской гимназии получил среднее образование. Потом перешёл в медицинскую школу. Считался бунтовщиком, учился плохо.

Имел прозвище среди друзей «доктор Фантаст». Выкуривал до 25 сигарет в день.

Был сторонником революционных идей Роберта Коха и Луи Пастера. Стал работать под руководством Роберта Коха.

Эрлих работал в различных областях медицинской биологии, химии, экспериментальной патологии и терапии. Он установил наличие различных форм лейкоцитов, значение костного мозга для образования гранулоцитов, дифференцировал определённые формы лейкозов и создал дуалистическую теорию кроветворения (1880—1898). В этот же период он открыл так называемые тучные клетки; впервые обнаружил существование гематоэнцефалического барьера; предложил специфический метод окрашивания микобактерий туберкулёза, способ многоцветной окраски мазков крови и гистологических препаратов. Создал первую сывороточно-контрольную станцию. Высказал идею о том, что клетки, ответственные за иммунные реакции, имеют на поверхности антигенраспознающие структуры — рецепторы. Эта идея, сыгравшая огромную роль в развитии иммунологии, нашла полное подтверждение.

В 1888 году заразившись туберкулёзом был вынужден уехать в Египет. В 1890 году он вернулся из Египта и стал работать в берлинском институте имени Роберта Коха.

Начиная с 1891 года Эрлих стал разрабатывать методы лечения инфекционных болезней с помощью химических веществ. Он установил факт приобретения микроорганизмами устойчивости к химиотерапевтическим препаратам. Мировую славу Эрлиху принес разработанный им «препарат 606» (сальварсан), который оказался высокоэффективным при лечении сифилиса.

В 1899 переезжает из Берлина во Франкфурт-на-Майне. Из-за своей любви к книгам, журналам и сигаретам всегда жил в нужде.

В 1901 году Пауль Эрлих начал работать над проблемой злокачественных опухолей. Прочитав исследование Альфонса Лаверана, вдохновился на поиск «магической пули», которая бы убила трипаносому.

Он предложил много важных для клинической практики лабораторных реакций.

В 1906 году фрау Франциска Шпейер пожертвовала Эрлиху крупную сумму денег на постройку института имени Георга Шпейера. Находясь во главе этого инстутита, Эрлих руководил целой армией химиков. В этой лаборатории он видоизменил препарат атоксил, содержащий мышьяк, создав на его основе 606 соединений. Как раз «препарат 606», диокси-диамино-арсенобензол-дигидрохлорид, позволил очистить кровь мышей от трипаносом, оставаясь совершенно безвредным для животных. После этого открытия он вспомнил, что на трипонасому похожа спирохета, вызывавшая сифилис, и решил проверить свое лекарство на больных этой болезнью людях. Так великий ученый и создал лекарство от столь ужасного заболевания.

Впоследствии «препарат 606» был назван «сальварсан».

Нобелевская премия присуждена ему (совместно с И. И. Мечниковым) за работы в области иммунологии в 1908 году.

  • Портрет Пауля Эрлиха на банкноте в 200 марок 1996 года

Примечания[править | править код]

Литература[править | править код]

  • Эрлих, Пауль // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.
  • М. С. Шойфет. Эрлих (1854–1915) // 100 великих врачей. — М.: Вече, 2008. — 528 с. — (100 великих). — 5000 экз. — ISBN 978-5-9533-2931-6.
  • Поль де Крайф (де Крюи). Охотники за микробами. Издательство: Молодая гвардия. Москва. 1957. Страниц :485.

Ссылки[править | править код]

  • Леонид Мининберг: «Биографии известных евреев, именами которых названы улицы города» (недоступная ссылка). Дата обращения 23 марта 2009. Архивировано 22 апреля 2009 года.

Источник

Сегодняшний герой рубрики «Как получить Нобелевку», уже будучи лауреатом, снова и снова удостаивался номинаций. И не зря: создатель теории иммунитета, современной иммунологической терминологии и первого химиотерапевтического препарата, первооткрыватель гематоэнцефалического барьера, оппонент Мечникова. Зовут его Пауль Эрлих.

Пауль Эрлих

Родился 14 марта 1854 года, Штрелен, Силезия.

Умер 20 августа 1915 года, Бад-Хомбург, Германия.

Нобелевская премия 1908 года по физиологии и медицине (совместно с Ильей Мечниковым). Формулировка Нобелевского комитета: «За их работы по иммунитету».

Эрлих в лаборатории

Wikimedia Commons

Эпоху современной медицины можно назвать эпохой фармакотерапии или химиотерапии, ведь более успешного метода борьбы с патогенами, чем направленное (таргетное) влияние на возбудителя или звено патогенеза, пока что обнаружить не удалось. И первым человеком, который ввел в медицину это понятие, придумав «волшебную пулю» от сифилиса, стал наш нынешний герой. Однако премию он получил совсем не за это. Он, как полагается всем ученым начала XX столетия, занимался разными вещами, везде достигая успехов. Именно ему, помимо красивой «точки» в изучении клеток крови, принадлежит еще и фундаментальная для иммунологии «теория боковых цепей», а также понятие гематоэнцефалического барьера.

Ученый прожил не очень долгую, но крайне насыщенную жизнь. Он родился в семье трактирщика и владельца постоялого двора из маленького польского городка Стшелин. Благодаря веселому нраву Эрлих легко находил контакт с абсолютно разными людьми, и поэтому многие знакомые считали, что Пауль продолжит карьеру отца. Но не тут-то было. Мальчик, чьи родители совершенно не увлекались науками, попал под влияние дедушки по линии отца, который преподавал в местном университете физику и ботанику. Окончательно развить в себе интерес к науке юному гистологу помог двоюродный брат матери, бактериолог Карл Вейгерт, который завлек Пауля таинственным миром живых тканей и анилиновых красителей, с которыми он начал работать одним из первых.

Карл Вейгерт

Wikimedia Commons

Отчасти в этом была виновата книга, которую Эрлих прочел, поступив на медицинский факультет Университета Бреслау (современного Вроцлава). В ней говорилось о том, как по-особому свинец распределяется в разных тканях, и пытливый ум молодого человека тут же заинтересовался «характером и методами распределения веществ в организме и его клетках», чем не преминул заняться в более поздние годы обучения медицине.

Читайте также:  Растительные препараты и иммунитет

Интересно, что Эрлих в университетах (а он, помимо своего родного, успел поучиться и в Старсбургском, и в Лейпцигском университетах) слыл типичным двоечником, как в свое время Ньютон, Гельмгольц, Эйнштейн и множество других гениев. По-видимому, они думали одинаково: зачем тратить время на то, что не интересно, если его можно потратить на более увлекательные вещи. Трупы и врачевание Эрлиха никак не прельщали, но вот красители…

За годы учебы Пауль разработал множество новых красящих веществ со специфическим сродством к различным клеткам и к моменту получения диплома в 1878 году уже кое-что из себя представлял как ученый. Уникальное «видение» трехмерной структуры молекул, которое помогало ему предсказывать связь краски с определенными тканями, позволило ему в 1879 году опубликовать результаты своих исследований по окраске кровяных пленок. Исследователю тогда было всего 25 лет.

Все необходимое для полноценного существования гематологии наш герой обнаружил так: он отделил популяции белых клеток (агранулоциты — клетки без гранул, гранулоциты — клетки, содержащие в своей цитоплазме специфические гранулы), причем не только друг от друга, но и внутри. Благодаря ему мы знаем, что есть лимфоциты, которые не содержат гранул (в дальнейшем выяснилось, что они делятся на В-, Т- и NK-клетки), а гранулоциты, в свою очередь, подразделяются на несколько типов, среди которых можно найти нейтрофилы, эозинофилы и базофилы.

Гранулоцит

Wikimedia Commons

Эрлиха привлекала еще одна деталь. В одной из клиник Берлина, где он работал, никто не мешал заниматься разными исследованиями, в том числе и по окраске возбудителей заболеваний. Поэтому у него родилась идея о «волшебной пуле». «Если есть такая краска, которая окрашивает одну только ткань, то, несомненно, должна найтись и такая, которая окрасит только микробов, попавших в организм», — размышлял ученый. И, соответственно, если есть краска, которая окрасит только микробы, значит, должно быть и вещество, которое только лишь их будет способно убить. И, возможно, этим убийцей может стать один из красителей.

В качестве «красильщика-виртуоза» и в должности главного врача клиники Фридриха фон Фрерихса берлинской больницы Шарите Эрлих познакомился с уже знаменитым на тот момент Робертом Кохом, который в 1882 году открыл возбудителя туберкулеза. Он предложил Коху улучшенный метод окраски его палочки (который, кстати, используется и сегодня), с чего начались их многолетняя дружба и тесное сотрудничество.

Роберт Кох на марке, посвященной столетию его премии

Wikimedia Commons

Но вот беда: в 1888 году, во время очередного эксперимента с опасным возбудителем, Пауль сам заразился бациллой и вдобавок заразил и свою семью, которой он обзавелся в 1883 году. С женой Хедвигой Пинкус и двумя дочерями он был вынужден уехать лечиться в Египет, жаркий и сухой климат которого как нельзя лучше располагал к избавлению от возбудителя. Там они прожили два года.

Свято место пусто не бывает, и в результате подковерных интриг отсутствующего Эрлиха сместили с поста в клинике Шарите, что он обнаружил, когда вернулся в Берлин в 1890 году. Не пав духом, он продолжил научные изыскания в своей лаборатории, которую, к счастью, присвоить не могли, пока Кох не предложил помочь и не забрал его в свой Институт инфекционных заболеваний. Помимо этого Эрлих также стал профессором Берлинского университета.

Клиника Шарите

Wikimedia Commons

«Инфекционное» прошлое свело его с первооткрывателем анти-дифтерийной сыворотки фон Берингом, который удостоился Нобелевской премии 1901 года. Поначалу, однако, вакцинация, которая должна была путем постепенно нарастающих доз защищать мышей от токсинов, не давала надежных результатов. Но Эрлих нашел методы повышения эффективности сывороток: он посоветовал усиливать ее, повторно вводя дифтерийный токсин лошадям до тех пор, пока не получалась необходимая концентрация антитоксина, а затем помог Берингу наладить массовое производство. В это же время ученый начал задумываться о теории «боковых цепей».

Эрлих и Беринг на почтовой марке

Wikimedia Commons

«Живая протоплазма должна соответствовать гигантской молекуле, взаимодействующей с обычными химическими молекулами так, как Солнце с мельчайшими метеоритами. Мы можем предположить, что в живой протоплазме ядро со специальной структурой отвечает за специфические, свойственные клетке функции и к этому ядру присоединены наподобие боковых цепей атомы и их комплексы», — писал Эрлих.

Отсюда же пошли идеи о специфических рецепторах в клетках, которые способны связываться с возбудителями. Исследователь продолжил «копать глубже» и в 1897 году предложил первую теорию. Он считал, что эти боковые цепи снаружи клеточных мембран (которые стали позже называться рецепторами) способны связываться с теми или иными химическими веществами в среде. Некоторые из них могут соединяться с токсинами, которые микроорганизмы выделяют в среду, а связь эта строится по типу «ключ-замок» (открытие подтвердил Лайнус Полинг в 40-е годы). Связавшись с токсином, клетка начинает преображаться и свободно выделять в межклеточную среду «боковые цепи», где они бы встречались с токсином и нейтрализовывали его, защищая от «нашествия» другие клетки и вообще весь организм в целом. Даже название этим цепям Эрлих дал знакомое – Antikörper, или антитела. Его теория удивительно напоминала известный сегодня механизм гуморального иммунитета, который базируется на антителах, производимых В-клетками.

Такая своеобразная теория иммунитета, кстати, вызвала суровый спор Эрлиха с Мечниковым: эмигрант из России считал, что весь иммунитет обеспечивается фагоцитозом, а Эрлих яростно спорил, что главная роль отводится антителам. На самом деле, правы, как это бывает, были оба. Важнейшая заслуга Эрлиха в том, что он впервые представил взаимодействие между антителами, патогенами и клетками как химические реакции. Кроме того, именно он составил основу современной иммунологической терминологии.

Читайте также:  Аптечные настойки для укрепления иммунитета

Илья Мечников. Фото Надара

Wikimedia Commons

Судя по всему, Нобелевский комитет в начале своего существования ставил одной из задач примирение непримиримых соперников. Мы уже рассказывали, как в 1906 году получили премию ярые противники Камилло Гольджи и Сантьяго Рамон-и-Кахаль, по совместительству — основатели современных нейронаук. Видимо, руководствуясь тем же принципом, Нобелевский комитет дал в 1908 году премию двум основателям современной иммунологии: Мечникову и Эрлиху. Вообще Эрлиха номинировали всего 76 раз. Интересно, что много номинаций было и после 1908-го, в том числе одна номинация на премию по химии. За что? Читайте дальше!

Чуть позже Пауля позвали директором в Государственный институт разработки и контроля сывороток в Штеглице (предместье Берлина), который в 1899 расширился до Института экспериментальной серотерапии во Франкфурте-на-Майне. Через семь лет Эрлих стал директором и тут, а сейчас институт носит его имя — Paul-Ehrlich Institut.

«Волшебная пуля» все не покидала мысли исследователя. Со своим ассистентом, японцем Сахаширо Хата, он перепробовал более 500 разных красителей, ожидая найти эффективное средство против трипаносомы — возбудителя сонной болезни. Однажды, листая очередной химический журнал, он наткнулся на интересный препарат против сонной болезни — атоксил, или (в переводе с латинского) «неядовитый», который, как говорили авторы, прекрасно избавлял больных от их недуга.

Самостоятельно изучив препарат, ученые пришли к выводу, что название лгало. Атоксил, содержащий в своем составе мышьяк, обладал колоссальным токсическим действием на зрительный нерв, помогая больным выздоравливать и отбирая у них при этом зрение. Несколько лет потратили исследователи, прежде чем нашли более-менее эффективный и не такой токсичный аналог — арсенофенилглицин.

А когда Хоффман в 1905 году определил, что сифилис вызывается специфическим микробом, бледной спирохетой, очень похожим по строению на трипаносому, Эрлих начал искать «волшебную пулю» против него. Все это привело к созданию в 1909 году из атоксила вещества №606 (он и правда оказался 606-м по счету из проверенных мышьякорганических препаратов), которое назвали арсфенамином или сальварсаном. В первых же клинических испытаниях, проведенных в Магдебургском госпитале, оно показало высокую эффективность против сифилиса. Таким образом сальварсан стал первым в истории медицины препаратом химиотерапии. Об открытии средства от сифилиса Эрлих объявил в 1910 году и препарат сразу же начал свое путешествие по миру: например, в том же году его уже применяли в России.

Сальварсан

Wikimedia Commons

Впрочем, быстро выяснилось, что если дать пациенту недостаточно сальварсана, то бледная спирохета быстро вырабатывает устойчивость. Так, Эрлих попутно открыл и лекарственную устойчивость, и создал новый препарат, более эффективный, — неосальварсан. Впрочем, шумиха, поднятая против Эрлиха, была очень сильна. К тому же началась Первая мировая, и сердце чувствительного ученого не выдержало: 20 августа 1915 года он умер от инсульта, или, как тогда писали, от апоплексического удара.

Прививка препарата «606» служащему Императорского Воспитательного дома. Российская империя, 1910 год

Wikimedia Commons

Напоследок нужно написать еще об одном открытии, которое Эрлих совершил во время работы над сальварсаном. Это открытие задало фармакологии задачу, не решенную до сих пор. Эрлих вводил в лабораторных животных токичные красители. Вскрывая тела, он видел, что окрашиваются все ткани, кроме мозга. Поначалу он решил, что, поскольку мозг в основном состоит из липидов, они просто не прокрашиваются. Последующие опыты показали, что если ввести краситель в кровь, то максимум, что он способен окрасить, — это так называемые хориоидальные сосудистые сплетения желудочков головного мозга. Дальше ему путь закрыт. Если же ввести краситель в спинно-мозговую жидкость, выполнив люмбальную пункцию, то мозг окрашивался, но остальное тело не окрашивалось. Стало ясно, что между кровью и центральной нервной системой существует некая преграда, который многие вещества не могут преодолеть. Так был открыт гематоэнцефалический барьер, защищающий наш мозг от микроорганизмов и токсинов и ставший головной болью неврологов, которые пытаются лечить рак мозга. Именно гематоэнцефалический барьер не пускает химиотерапию к опухолям в голове. Поэтому задачи, поставленные Паулем Эрлихом, ученые решают и поныне.

Подписывайтесь на Indicator.Ru в соцсетях: Facebook, ВКонтакте, Twitter, Telegram.

Источник

Немецкий фармаколог и иммунолог Пауль Эрлих родился в Стрехлене (в настоящее время – Стшелин, Польша), в еврейской семье. Его родителями были богатый трактирщик Исмар Эрлих и Роза Эрлих (Вейгерт). Многие родственники семьи занимались наукой. На интересы Пауля уже в раннем детстве оказал влияние его дед со стороны отца, читавший лекции по физике и ботанике в местных учебных заведениях. Однако решающую роль в выборе им карьеры сыграл его двоюродный брат Карл Вейгерт.

Вейгерт был бактериологом, он одним из первых стал применять анилиновые красители, открытые в 1853 г., для изготовления микропрепаратов. Эти вещества давали возможность осуществлять избирательное прокрашивание, т.е. окрашивать определенные элементы ткани, лишь незначительно накапливаясь (или не накапливаясь вовсе) в других. Под руководством своего двоюродного брата Э. изучал способность красок соединяться с разными структурами. В 1876 г. он прочитал книгу, посвященную распределению свинца в органах отравленных животных, которая вызвала у него интерес к тому, что он впоследствии назвал «характером и методом распределения веществ в организме и его клетках».

В 1872 г. Э. поступил в университет Бреслау (в настоящее время – польский город Вроцлав). Но, проучившись здесь один семестр, он перешел в Страсбургский университет, где проявились его большие способности к химии, хотя формально он и не занимался ею. Спустя два года он вернулся в Бреслау и выполнил здесь основную часть работ, необходимых для получения медицинского диплома, который ему вручили в Лейпцигском университете в 1878 г.

За эти годы Э., обладавший удивительными способностями трехмерного видения химических структур, разработал новые краски со специфическим сродством к различным клеткам. Благодаря этой работе он создал способ различения отдельных форм лейкоцитов, и это открытие сыграло важнейшую роль в развитии гематологии (в т. ч. изучении лейкозов) и иммунологии. После получения медицинского диплома Э. был назначен главным врачом клиники Фридриха фон Фрерихса берлинской больницы Шарите и здесь продолжил гематологические исследования.

Читайте также:  Напряженность иммунитета к вирусу гепатита а

В Берлине Э. усовершенствовал методы окраски, распространив их на бактерии и ткани животных. Когда в 1882 г. Роберт Кох объявил об открытии бациллы туберкулеза, Э. предложил ему улучшенный метод окраски; в основном этот метод используется и по сей день. Три года спустя Э. опубликовал труд «Потребность организма в кислороде» («The Oxygen Need of Organisms»), в котором сформулировал теорию боковых цепей деятельности клеток. «Живая протоплазма должна соответствовать гигантской молекуле, взаимодействующей с обычными химическими молекулами так, как солнце с мельчайшими метеоритами, – писал Э. – Мы можем предположить, что в живой протоплазме ядро со специальной структурой отвечает за специфические, свойственные клетке функции и к этому ядру присоединены наподобие боковых цепей атомы и их комплексы».

В 1885 г. Фрерихс умер, а его преемник Карл Герхард без особой симпатии относился к исследованиям Э. В 1888 г. Э. во время лабораторного эксперимента заразился туберкулезом и вместе с семьей отправился лечиться в Египет. Здесь он прожил почти два года. Вернувшись в Берлин, Э. узнал, что его должность в больнице Шарите занята. В течение некоторого времени он работал в собственной лаборатории, пока Кох не нашел для него должность сначала в Моабитской муниципальной больнице, а затем в Институте инфекционных заболеваний. Работая под руководством Коха, Э. продолжал исследования в области иммунологии. Он установил, что антитела у млекопитающих могут передаваться с материнским молоком, а это создает пассивный иммунитет для потомства. В Институте инфекционных заболеваний он работал вместе с Эмилем фон Берингом, ученым, открывшим антитоксины. Беринг испытывал сложности с изготовлением дифтерийного антитоксина в достаточных количествах. В связи с этим Э. разработал метод, при котором лошадям повторно вводился дифтерийный токсин, пока не получалась необходимая концентрация антитоксина. В 1896 г. Э. был назначен директором Государственного института разработки и контроля сывороток в Штеглице (предместье Берлина). Здесь он использовал свои знания в области химии для стандартизации токсинов, антитоксинов и сывороток. Разработанная им система международных единиц получила широкое распространение и остается общепринятой по сей день.

В 1899 г. Институт разработки и контроля сывороток был расширен и переведен во Франкфурт-на-Майне. В это время Э. опубликовал свои окончательные выводы по применению теории боковых цепей в иммунологии. Следуя направлениям, которые он развил в труде по кислородной потребности организмов, Э. подчеркивал, что антитела могут вырабатываться не только в результате прямых химических взаимодействий между токсинами (или другими антигенами) и клетками. Поскольку антитела похожи на некоторые питательные вещества, они могут реагировать с рецепторами, расположенными на поверхности клеток, В результате клетки начинают усиленно вырабатывать такие рецепторы, взаимодействующие в крови с токсинами. Следовательно, в роли антител могут выступать рецепторы (или, по терминологии Э., реактивные боковые цепи) клеток, с которыми взаимодействуют антигены.

Теория боковых цепей оказала большое влияние на развитие науки, хотя лишь немногие ученые согласились с ней полностью. Важнейшее достижение Э. состояло в том, что он представил взаимодействие между клетками, антителами и антигенами как химические реакции. Подобный подход к теории иммунитета стал стимулом для многочисленных исследований, поскольку являлся рабочей гипотезой, подлежащей конкретной проверке. Кроме того, работы Э. помогли создать иммунологическую терминологию.

В 1908 г. Эрлиху совместно с Ильей Мечниковым была присуждена Нобелевская премия по физиологии и медицине «за работу по теории иммунитета». В Нобелевской лекции Э. выразил уверенность в том, что ученые начали «понимать механизм действия терапевтических веществ..,». «Я надеюсь также, – отметил он далее, – что, если эти направления будут систематически развиваться, вскоре нам станет легче, чем до сих пор, разрабатывать рациональные пути синтеза лекарств».

Через два года после присуждения Нобелевской премии Э. получил субсидии для строительства лаборатории по разработке терапевтических средств. В качестве директора Исследовательского института химиотерапии Э. поставил своей целью создать производное мышьяка, способное стать эффективным средством против трипаносом – микроорганизмов, вызывающих сонную болезнь и другие заболевания, и бледной спирохеты – возбудителя сифилиса. В 1910 г. после испытания 606 соединений Эрлих объявил об открытии средства, позволяющего излечить сифилис. Это вещество, содержащее мышьяк, названное им сальварсаном, обладало активным действием на бледную спирохету, но не оказывало токсического влияния на больного.

Появление сальварсана получило широкое одобрение, хотя в дальнейшем это вещество подверглось критике исследователями, обнаружившими, что, когда оно назначается в недостаточных дозах, спирохеты становятся невосприимчивыми к нему. После дальнейших исследований Э. в 1912 г. разработал видоизмененный вариант этого препарата – неосальварсан. Этот высокоэффективный лекарственный препарат вскоре получил широкое распространение, а Э. – всеобщее признание.

В 1883 г. Э. женился на Хедвиге Пинкус, дочери фабриканта-текстильщика. В семье у них было две дочери. На досуге Э. любил читать детективные романы Артура Конан Доила. Э. был горячо увлеченным исследователем, проводившим долгие часы в лаборатории, часто забывавшим при этом даже о еде. В последние годы жизни он страдал заболеванием сердца. Э. тяжело переживал страсти, разгоревшиеся вокруг сальварсана, и свирепствовавшую в Европе войну, и 20 августа 1915 г., отдыхая в Бад-Хомбурге, он умер от апоплексического удара.

Э. был удостоен многих премий, включая почетную премию Международного медицинского конгресса (1906), медали Лейбига Германского химического общества (1911), премии Камерона и звания почетного лектора Эдинбургского университета (1914). Он был членом 81 научного общества и академий различных стран и обладателем почетных званий университетов Чикаго, Геттингена, Оксфорда, Бреслау и др.

Источник